La conjecture de Goldbach binaire stipule que tout nombre pair sauf 2 est la somme de deux nombres premiers.
J’ai commencé à travailler sur ce problème en septembre 2005.
Denise Vella-Chemla
  • 22.7.2024 : Sacs de... plage (et si on recousait les extrémités en 0 et n de chaque brin pour les refermer) articles avec des références à Vaughan Jones ou Patrick Dehornoy, sur les tresses : un article de Christian Kassel article de magazine : Polynôme de Jones L'art de tresser (de P. Dehornoy) Isotopie des tresses Vaughan Jones : des tresses au kitesurf Toutes les courbes, deux par deux (pair-impair) qui se suivent de même couleur, l'une foncée, l'autre claire.
  • 18.7.2024 : Chercher la raison
  • 12.07.2024 : valeurs contraintes et retour vers l'arithmétique
  • 10.07.2024 : décomposants de Goldbach et fonctions paires fonctions paires
  • 08.07.2024 : décomposants de Goldbach dans le plan complexe les courbes papillons de 6 à 102
  • 01.05.2024 : le jour où les demi-droites s'alignèrent ou se perpendicularisèrent et dessins complexes
  • 27.04.2024 : dans l'introduction de l'article de Gemma de Las Cuevas et al. (), j'ai appris qu'il faut appeler Moments les traces des puissances d'un opérateur, ce sont donc les moments que calculait le programme du 10.7.2019 : un ensemble, une transformation, des traces de premiers

    (si ce n'est que la matrice à multi-circulantes sur la diagonale n'est pas symétrique, et donc, je ne sais pas si le terme Moments s'applique). Patience et longueur de temps font plus que force ni que rage.
  • 22 février 2024 : exponentielle et logarithme : Des intérêts composés (petit encart devoir d'Évariste, et dédicace spéciale à grand-papa Lulu, qui m'a appris à factoriser, et le célèbre holorime aussi) étonnement constant
  • Physiciens et π
    converge très vite converge très lentement
  • janvier 2024, poursuite de la transcription en Latex des textes de É. Galois : texte fondateur sur la résolubilité par radicaux des équations articles du Bulletin des sciences mathématiques de Férussac Lettre à M. Auguste Chevalier Fragment d'un second mémoire
  • mars 2024 : Transcription en LaTeX de la Section troisième des Recherches arithmétiques de Carl Friedrich Gauss
  • juillet 2023 : vieux souvenirs : programme d’été d’une courbe presque aussi jolie que celle de Hilbert (Mandelbrot la dénomme Minkowski sausage, en l'honneur de son ami mort jeune)
  • juillet 2023 : graphique 1 : enfin ma surface bosselée avec les décompositions de Goldbach qui ’’tombent au sol’’ (z=0) en python, graphique 2 : Plaid Goldbach vu de dessus (on distingue en foncé 3+3, 3+5, 3+7), graphique 3 : les nombres premiers de 3 à 19 vus en coupe de profil de la surface bosselée, et enfin, plaid 500 en python
  • juin 2023 : les calculs d'Estelle Sonnenblick pour David Slepian
  • 31.5.2023 : Nombres premiers et valeurs propres
  • 25.5.2023 : Comment une valeur propre de matrice peut-elle permettre de distinguer les nombres premiers
    des nombres composés ?
  • 1.5.2023 : Impression
  • 31.12.2018 : Dancing Links pour Conjecture de Goldbach, selon le Christmas tree de Donald Knuth

  • avoir entendu Alain Connes présenter les idées de la géométrie non-commutative icone pour les pdf
    Alain Connes vignettes Alain Connes vignettes
  • 19.2.2022 : Programmation de la démonstration du théorème de Morley par Alain Connes
  • 12 août 2022 : probabilité (en)
  • janvier 2023 : Conjecture de Goldbach et logique propositionnelle (propositions à une variable) (en)
  • 25 décembre 2022 : Comète de Goldbach et Golden ratio (nombre d’or)
  • 19 novembre 2022 : que le nombre d’or φ soit caché dans la comète des nombres de décompositions de Goldbach, ça devrait couler sous le sens ! (Les programmes sont la légende des courbes : la rouge (Prod(1-2/p).x/6, avec p premier < √x), la jaune (2φ.x/(5.log(x).log(x))) et la rose (φx/(√5.log(x).log(x))) semblent minorer la comète, la bleue semble la majorer (Prod(1-2/p).x, p premier < √x), et la verte φ.x/(log(x).log(x)) semble tomber pile au milieu des nombres de décompositions des pairs de la forme 6p, avec p premier).

  • 13 novembre 2022 : on visualise dans la comète (programmes en python d’une idée de décembre 2010) que les nombres de décompositions de Goldbach sont partiellement ordonnés selon la relation de divisibilité
  • Juillet 2022 : moins deux article de Rosser et Schoenfeld en référence
  • 17.5.2014 : continuer de suivre Galois (ajout du problème des nombres premiers d’écart 2)
    ecart 2 explication dans corps finis ecart 2 table jusqu’à 30
  • 26.1.2019 : où l’on retrouve ζ autrement 31.5.2019 : (en) 23.7.2019 : annexe
  • 2.2.2020 : 8 petites vidéos sont disponibles dans la page Vidéos à destination d’élèves de CM2
Christian Goldbach (18.3.1690, Königsberg (maintenant Kaliningrad), 20.11.1764, Moscou).
Léonard Euler (15.4.1707, Bâle, 18.9.1783, Saint-Pétersbourg).
Carl Frédéric Gauss (30.4.1777, Brunswick, 23.2.1855, Göttingen).
Georg Cantor (3.3.1845, Saint-Pétersbourg, 6.1.1918, Hall).
George Boole (2.11.1815, Lincoln, 8.12.1864, Ballintemple).
Alan Turing (23.6.1912, Londres, 7.6.1954, Cheshire).
En 1742, date de la conjecture, Goldbach a 52 ans, Euler en a 35, Gauss -35, et moi -222.

Contact : chemla point denise at orange point fr
Blog : https://milliardsdautres.blogspot.com