Sur les formules explicites de la théorie des nombres André Weil

Il s'agira ici d'étendre des résultats déjà anciens [[6] (b)] relatifs aux fonctions L de Hecke, aux fonctions plus générales dites "d'Artin-Hecke" [v. [6] (a); cf. aussi [6] (d), § § 71-75 et 78]. Cette extension ne présente pas de difficulté, mais elle conduit à des formules dont la structure formelle semble mériter quelque attention. Pour la clarté de l'exposé, il va être nécessaire de reprendre d'abord quelques points de travaux antérieurs [[6] (a), [6] (b), [6] (d)] et d'introduire quelques définitions.

1. Soit M une représentation de degré r fini d'un groupe G, c'est-à-dire une représentation de G dans $GL(r, \mathbf{C})$; soit $\chi = \operatorname{tr} M$ son caractère, c'est-à-dire sa trace; le degré est donné par $r = \chi(1_G)$. Si G' est un sous-groupe de G d'indice fini ν , et si M' est une représentation de G' de degré r', de caractère χ' , on définit, comme on sait, une représentation M de G de degré $\nu r'$ qui est dite "induite" par M'. Si l'on prolonge χ' à G par la condition d'être 0 en dehors de G', le caractère χ de M est donné par la formule

$$\chi(g) = \sum_{\gamma \in G/G'} \chi'(\gamma^{-1}g\gamma), \tag{1}$$

où la sommation est étendue à un système complet de représentants des classes $\gamma G'$ suivant G' dans G. On écrira dans ces conditions

$$\chi = [\chi'; G' \to G].$$

Nous aurons principalement affaire à des groupes admettant un sous-groupe commutatif d'indice fini; si G est un tel groupe, il y a un morphisme φ de G sur un groupe fini $\mathfrak g$, de noyau commutatif H. Il est bien connu qu'alors toutes les représentations irréductibles de G sont de degré fini; toute représentation M irréductible, ou complètement réductible, de G est caractérisée à une équivalence près par son caractère $\chi = \operatorname{tr} M$; si M est irréductible, χ sera dit premier.

Une représentation irréductible de G sera dite primitive (relativement à H) si elle n'est pas "induite" par une représentation d'un groupe $G' \neq G$ entre G et H.

Soient G, φ, \mathfrak{g} et H comme ci-dessus. On a le lemme :

Lemme 1. Soit M une représentation irréductible et primitive de G dans $GL(r, \mathbf{C})$; soit Z le centre de $GL(r, \mathbf{C})$. Alors il y a un groupe fini Γ , extension centrale de \mathfrak{g} par un groupe cyclique \mathfrak{z} , et une représentation μ de Γ dans $GL(r, \mathbf{C})$, tels que $M(G) \subset \mu(\Gamma).Z$.

Comme M est primitive, il est bien connu que sa restriction à H est de la forme $h \to \omega(h).1_r$, où ω est un "quasicaractère" de H (représentation de H dans \mathbf{C}^{\times}) invariant par les automorphismes

Transcription en LATEX: Denise Vella-Chemla, novembre 2025.

Les résultats de ce travail ont été exposés dans une conférence à l'Institut Mathématique Steklov de l'Académie des Sciences de l'URSS, le 23 avril 1971. Je suis heureux de pouvoir ici exprimer ma vive gratitude à l'Académie des Sciences de l'URSS pour sa flatteuse invitation, ainsi qu'à mes collègues de Moscou pour la cordialité et la générosité de leur accueil à l'occasion de mon séjour auprès d'eux.

intérieurs de G. Soit G_0 le sous-groupe de $\mathfrak{g} \times GL(r, \mathbb{C})$ formé des éléments $(\varphi(g), zM(g))$ pour $g \in G, z \in Z$; alors $\psi = (\varphi, M)$ est un morphisme de G dans G_0 , et les projections de G_0 sur les deux facteurs de $\mathfrak{g} \times GL(r, \mathbb{C})$ sont, l'une un morphisme φ_0 de G_0 sur \mathfrak{g} , et l'autre une représentation M_0 de G_0 de degré r. Soit Z_0 le noyau de φ_0 ; il est formé des éléments $(1_{\mathfrak{g}}, z)$ avec $z \in Z$. Soit $\Gamma = G_0 \cap [\mathfrak{g} \times SL(r, \mathbb{C})]$; alors $G_0 = \Gamma.Z_0$, et $\Gamma \cap Z_0$ est cyclique d'ordre r. En appelant μ la restriction de M_0 à Γ , on a satisfait à toutes les conditions du lemme.

Remarque. Si dans le lemme 1 on suppose que M soit unitaire (resp. que son noyau soit d'indice fini dans G), la démonstration et la conclusion restent valables lorsqu'on y remplace Z par le sous-groupe de Z déterminé par $z\bar{z}=1_r$ (resp. par un sous-groupe cyclique fini convenable de Z).

2. On va faire servir le lemme 1 à étendre aux groupes tels que G le théorème classique de Brauer sur les groupes finis. Convenons d'appeler élémentaire (relativement à H) tout caractère de G de la forme $[\chi'; G' \to G]$ où G' est un groupe entre G et H et où χ' est un caractère premier de degré 1 (un "quasicaractère") de G'. Alors :

Lemme 2. Tout caractère de G est combinaison linéaire à coefficients entiers de caractères élémentaires.

Si une représentation M de G est "induite" par une représentation M' de G', et que G'' soit un groupe entre G et G', M est aussi "induite" par la représentation M'' de G' "induite" par M'. En vertu de cette transitivité, il suffit de démontrer le lemme pour le caractère χ d'une représentation M irréductible et primitive. Appliquons à celle-ci le lemme 1; il est clair que μ sera aussi irréductible et primitive, donc que sa restriction à \mathfrak{z} est de la forme $\zeta \to \lambda(\zeta).1_r$, où λ est un caractère de \mathfrak{z} . Soit ψ le caractère de μ ; en vertu du théorème de Brauer, il est combinaison linéaire, à coefficients entiers a_i , de caractères $[\psi_i ; \Gamma_i \to \Gamma]$, où, pour chaque i, ψ_i est un caractère de degré 1 de Γ_i . Soit $\Gamma_i' = \Gamma_i \cdot \mathfrak{z}$; on voit facilement que $[\psi_i ; \Gamma_i \to \Gamma_i']$ est la somme des caractères de degré 1 de Γ_i' qui coïncident avec ψ_i sur Γ_i : en vertu de la transitivité rappelée plus haut, on peut donc remplacer les Γ_i par les Γ_i' , ou autrement dit supposer que $\Gamma_i \supset \mathfrak{z}$ pour tout i. Écrivons:

$$\psi = \sum a_i [\psi_i ; \Gamma_i \to \Gamma] ;$$

prenons la valeur des deux membres en un élément γ de Γ , et substituons $\gamma\zeta$ à γ , avec $\zeta \in \mathfrak{z}$; le premier membre est multiplié par $\lambda(\zeta)$, tandis que (par exemple en raison de (1)) les termes du second membre le sont respectivement par $\psi_i(\zeta)$. On peut donc supprimer dans la formule ci-dessus tous les termes pour lesquels la restriction de ψ_i à \mathfrak{z} n'est pas λ . Pour chaque $\gamma \in \Gamma$, notons $\overline{\gamma}$ l'image de γ dans $\mathfrak{g} = \Gamma/\mathfrak{z}$; le groupe G_0 introduit dans la démonstration du lemme 1 est aussi le groupe formé des éléments $(\overline{\gamma}, z\mu(\gamma))$ pour $\gamma \in \Gamma, z \in Z$. Pour chaque i, soit \mathfrak{g}_i , l'image de Γ_i dans \mathfrak{g} ; posons $G_i = \varphi^{-1}(\mathfrak{g}_i), G_i^0 = \varphi_0^{-1}(\mathfrak{g}_i)$; G_i^0 est formé des éléments $(\overline{\gamma}, z\mu(\gamma))$ pour $\gamma \in \Gamma_i, z \in Z$, et on définit un caractère Ψ_i de G_i^0 en posant, pour $\gamma \in \Gamma_i, z \in Z$:

$$\Psi_i[(\overline{\gamma}, z\mu(\gamma))] = z\psi_i(\gamma),$$

puis un caractère χ_i de G_i au moyen de

$$\chi_i(g) = \Psi_i(\varphi(g), M(g))$$

pour tout $g \in G_i$. Il est trivial, dans ces conditions, que χ est bien donné par

$$\chi = \sum a_i [\chi_i ; G_i \to G].$$

Remarque. En faisant usage de la remarque qui suit le lemme 1, on voit que le lemme 2 reste valable dans les conditions suivantes : (a) au lieu de "caractère", lire "caractère de représentation unitaire"; au lieu de "caractère élémentaire", lire "caractère induit par un caractère de degré 1, de valeur absolue 1"; (b) au lieu de "caractère", lire "caractère d'une représentation de noyau d'indice fini"; au lieu de "caractère élémentaire", lire "caractère induit par un caractère de degré 1 d'ordre fini".

3. On dira qu'un groupe topologique G est $modul\acute{e}$ si l'on s'est donné, en même temps que G, un morphisme propre non trivial $g \to |g|$ de G dans \mathbf{R}_+^{\times} ; le noyau G_0 de ce morphisme est donc compact; on dira que |g| est le module de g. On identifiera G/G_0 à l'image de G dans \mathbf{R}_+^{\times} par ce morphisme : c'est, soit \mathbf{R}_+^{\times} , soit un sous-groupe infini discret de \mathbf{R}_+^{\times} suivant le cas, on dira que G est continument ou discrètement modulé. Dans ce dernier cas, G/G_0 a un générateur $\mu > 1$ qui sera dit le module du groupe G, et tout élément \mathfrak{f} de G tel que $|\mathfrak{f}| = \mu^{-1}$ sera dit frobénien. Pour tous les groupes discrètement modulés qui se présenteront par la suite, le module sera de la forme p^n , où p est un nombre premier et n est un entier $\geqslant 1$.

Soit G un groupe modulé; pour tout m réel > 1, soit G(m) la partie compacte de G donnée par $1 \le |g| \le m$; on peut, d'une manière et d'une seule, choisir la mesure de Haar sur G de façon que la mesure de G(m) soit $\log m + O(1)$ pour $m \to +\infty$. Cette mesure sera dite canonique; c'est elle qu'on conviendra une fois pour toutes d'adopter sur tout groupe modulé, en la notant dg. On notera $d_0(g_0)$ la mesure de Haar sur le sous-groupe compact maximal G_0 de G, normalisée de sorte que la mesure de G_0 soit 1. Le groupe G/G_0 étant lui-même considéré comme groupe modulé au moyen de son injection naturelle dans \mathbf{R}_+^{\times} , on aura, pour toute fonction F sur G:

$$\int_{G} F(g)dg = \int_{G/G_0} \left[\int_{G_0} F(gg_0)d_0(g_0) \right] d\mathring{g},\tag{2}$$

où g = |g| est l'image de g dans G/G_0 , et où la fonction entre crochets est considérée comme fonction de g. En particulier, si G est discrètement modulé de module g, la mesure canonique de g0 est log g0.

Un groupe modulé commutatif est quasicompact au sens de [6] (c), Chap. VII-3. En général, si G est un groupe modulé quelconque, on désignera par G^c son "groupe des commutateurs topologique" (adhérence dans G du sous-groupe engendré par les commutateurs d'éléments de G); on peut alors considérer G/G^c comme modulé lui-même par $g \to |g|$; il est donc quasicompact. Pour tout $s \in \mathbb{C}$, on posera $\omega_s(g) = |g|^s$; les représentations ω_s de G dans \mathbb{C}^\times seront dites principales; ce sont celles qui sont triviales sur G_0 . Soit ω une représentation quelconque de G dans \mathbb{C}^\times ; elle détermine d'une manière évidente une représentation de G/G^c dans \mathbb{C}^\times (c'est-à-dire un "quasicaractère" de G/G^c); de plus, il y a un $\sigma \in \mathbb{R}$ et un seul tel que $\omega_{-\sigma}\omega$ soit de valeur absolue 1, donc détermine un "caractère" de G/G^c au sens usuel.

4. Soit M une représentation du groupe modulé G dans $GL(r, \mathbf{C})$; sa restriction M_0 au groupe compact G_0 est complètement réductible; l'espace de représentation \mathbf{C}^r de M se décompose d'une

manière unique en somme directe de deux sous-espaces X, Y stables par M_0 tels que M_0 opère trivialement sur X et ne laisse invariant aucun vecteur $y \neq 0$ dans Y. Comme G_0 est invariant dans G, X et Y sont stables par M.

En particulier, si la restriction M_0 de M à G_0 ne contient pas la représentation triviale, c'est-à-dire si $X = \{0\}$, on aura, comme on sait, quel que soit $g \in G$:

$$\int_{G_0} M(gg_0)d_0(g_0) = M(g)\int_{G_0} M(g_0)d_0(g_0) = 0,$$

et par suite, si $\chi = \operatorname{tr} M$:

$$\int_{G_0} \chi(gg_0)d_0(g_0) = 0.$$
(3)

Il revient au même de dire qu'on a alors :

$$\int_{G} F(|g|)\chi(g)dg = 0$$

quelle que soit la fonction F sur G/G_0 . Il en est ainsi en particulier, d'après ce qu'on a vu plus haut, chaque fois que M est irréductible et non principale, c'est-à-dire chaque fois que χ est premier et non principal.

Supposons G modulé discrètement; soit \mathfrak{f} frobénien dans G, et soient X,Y définis comme plus haut. Alors $M(\mathfrak{f})$ détermine sur X un automorphisme M_X indépendant du choix de \mathfrak{f} ; par définition, le polynôme caractéristique det $(1_X-t.M_X)$ de M_X s'appellera le polynôme caractéristique de M sur G.

Lemme 3. Soient G et M comme ci-dessus; soit $\chi = \operatorname{tr} M$, et soit L(t) le polynôme caractéristique de M sur G. Alors :

$$d \log L(t) = -\frac{dt}{t} \sum_{n=1}^{\infty} t^n \int_{G_0} \chi(\mathfrak{f}^n g_0) d_0(g_0).$$

Comme M est somme de deux représentations N_X, N_Y opérant respectivement sur X et sur Y, il suffit de faire la démonstration pour celles-ci. Soient μ_1, \ldots, μ_m les racines caractéristiques de $M_X = N_X(\mathfrak{f})$; on a $L(t) = \prod (1 - \mu_i t)$ et $N_X(\mathfrak{f}^n g_0) = M_X^n$, donc $\operatorname{tr} N_X(\mathfrak{f}^n g_0) = \sum \mu_i^n$ pour tout $g \in G_0$. En ce qui concerne N_Y , il suffit d'appliquer (3).

5. Il est clair que tout sous-groupe fermé G' d'indice fini d'un groupe modulé G est lui-même modulé par la restriction de |g| à G'; les caractères principaux de G' sont les restrictions à G' de ceux de G. Si G est discrètement modulé, il en est de même de G', mais bien entendu G et G' n'ont pas nécessairement même module.

Les groupes les plus importants pour nous sont les groupes modulés admettant un sous-groupe commutatif fermé d'indice fini ; on peut leur appliquer les résultats des § § 1-2. En particulier :

Lemme 4. Soit M une représentation irréductible d'un groupe modulé G admettant un sous-groupe commutatif fermé d'indice fini. Alors il y a un $\sigma \in \mathbf{R}$ et un seul tel que $M\omega_{-\sigma}$ soit équivalent à une représentation unitaire. Si de plus G est totalement discontinu, il y a $s \in \mathbf{C}$ tel que $M\omega_{-s}$ soit à noyau d'indice fini.

Comme pour la démonstration du lemme 2, on se ramène immédiatement au cas où M est primitive. Appliquons alors le lemme 1; Γ étant fini, il y a une forme hermitienne A sur \mathbb{C}^r , invariante par $\mu(\Gamma)$; il s'ensuit que, pour tout $g \in G$, l'automorphisme M(g) de \mathbb{C}^r multiplie A par un facteur scalaire $\lambda(g) > 0$. Il est évident que λ est une représentation de G dans \mathbb{R}_+^{\times} , donc de la forme $\omega_{2\sigma}$ avec $\sigma \in \mathbb{R}$. Cela démontre la première assertion. Si G est totalement discontinu, il est clair qu'il est modulé discrètement, donc engendré par G_0 et un élément frobénien \mathfrak{f} . Le noyau de la restriction de M à G_0 est d'indice fini; d'autre part, $M(\mathfrak{f})$ ne diffère de l'une des matrices de $\mu(\Gamma)$, donc d'une matrice d'ordre fini dans $GL(r, \mathbb{C})$, que par un facteur scalaire λ ; alors tout s tel que $\omega_s(\mathfrak{f}) = \lambda$ a la propriété requise.

6. On va considérer maintenant un p-corps commutatif K (extension de degré fini de \mathbf{Q}_p , ou bien corps de séries formelles à une indéterminée sur un corps fini \mathbf{F}_q de caractéristique p). Soit K_{sep} la "clôture séparable" de K; soit K_0 l'extension non ramifiée maximale de K dans K_{sep} , engendrée par les racines de l'unité d'ordre premier à p. Soit \mathfrak{K} un corps entre K_0 et K_{sep} , galoisien sur K; soit G_0 son groupe de Galois sur K_0 avec sa topologie usuelle, et soit φ un automorphisme de \mathfrak{K} induisant sur K_0 l'automorphisme de Frobenius de K_0 sur K. Dans ces conditions [cf. [6] (c'), Appendice II] on appellera W-groupe de \mathfrak{K} sur K le groupe W d'automorphismes de \mathfrak{K} engendré par G_0 et φ , topologisé de telle sorte que W/G_0 soit discret (donc isomorphe à \mathbf{Z}) et modulé comme suit. Soit $w \in W$: il y a un nombre Q de la forme q^n , où q est le module de K et où $n \in \mathbf{Z}$, tel que, pour toute racine μ de 1 d'ordre premier à p dans K_0^{\times} , on ait $\mu^w = \mu^Q$; alors on pose $|w| = Q^{-1}$. Ainsi W est discrètement modulé de module q, et φ en est bien un élément frobénien.

La plupart des propriétés "fonctorielles" des groupes de Galois se transportent trivialement aux W-groupes. Le cas le plus important est celui où on prend pour \mathfrak{K} l'extension abélienne maximale L_{ab} d'une extension galoisienne L de K de degré fini; on notera alors $W_{K,L}$ le W-groupe de L_{ab} sur K. Si L = K, il résulte du théorème fondamental du "corps de classes local" [cf. [3], Chap. XIV, ou bien [6] (c), Chap. XII] que $W_{K,K}$ s'identifie canoniquement au groupe K^{\times} , celui-ci étant modulé par mod $_{K}$.

Plus généralement, soit L galoisien de degré n sur K. D'après ce qui précède, $W_{K,L}$ peut être considéré comme extension par $L^{\times} = W_{L,L}$ du groupe de Galois \mathfrak{g} de L sur K. On démontre que la classe de cohomologie qui détermine cette extension est la classe dite "fondamentale", générateur privilégié de $H^2(\mathfrak{g}, L^{\times})$. Mais il est plus utile pour nous de savoir que la structure de $W_{K,L}$ est donnée comme suit par le théorème de Shafarevitch [v. [7] ou bien [6], (c'), Appendice III]. Soit A l'algèbre à division de centre K, de dimension n^2 sur K, d'invariant $h(A) = e^{2\pi i/n}$; on modulera A^{\times} par $|a| = \text{mod}_K(\nu(a))$, où ν est la norme réduite prise dans A sur K, de sorte qu'on a $\text{mod}_A(a) = |a|^n$; le module de A^{\times} est q (tandis que, d'après les définitions de [6] (c), Chap. I, celui de A serait q^n). On peut, d'une seule manière à un automorphisme intérieur près de A, plonger L dans A; pour $x \in L^{\times}$, on a alors $|x| = \text{mod}_L(x)$, et $W_{K,L}$ s'identifie canoniquement (toujours à un automorphisme intérieur près) au normalisateur de L^{\times} dans A^{\times} , modulé par |a|.

Soit d'autre part K un corps local "archimédien", donc \mathbf{R} ou \mathbf{C} . Par définition, on posera $W_{K,K} = K^{\times}$, le module étant mod_K ; en particulier, $|x| = x^1$) si $K = \mathbf{C}$. Soit maintenant L une extension galoisienne de K, autre que K; on a donc $K = \mathbf{R}, L = \mathbf{C}$. Soit A l'algèbre à division sur K, d'invariant h(A) = -1; c'est algèbre des quaternions "usuels", définie par la base $\{1, i, j, k\}$ avec la table de multiplication bien connue; on plonge L dans A en posant L = K(i). Comme plus haut, on module A^{\times} au moyen de $|a| = \operatorname{mod}_K(\nu(a))$, donc par $|a| = a\overline{a}$ si $a \to \overline{a}$ est l'antiautomorphisme usuel de A.

Alors, par définition, $W_{K,L}$ sera le normalisateur de L^{\times} dans A^{\times} , donc le groupe engendré par L^{\times} et par j: on a $j^2 = -1, j^{-1}xj = \overline{x}$ pour $x \in L^{\times}$, et |j| = 1.

7. Passons au cas d'un A-corps (ou "corps global") k. Supposons d'abord que k soit de caractéristique p > 1; c'est donc un corps de fonctions algébriques (de dimension 1) sur un corps de constantes \mathbf{F}_q . Soit k_0 l'extension de k dans k_{sep} par la clôture algébrique de \mathbf{F}_q , ou, ce qui revient au même, par les racines de 1 d'ordre premier à p. Alors, si \mathfrak{K} est un corps entre k_0 et k_{sep} , galoisien sur k, on définira le W-groupe de \mathfrak{K} sur k au moyen de k, k_0 , \mathfrak{K} exactement comme on a fait au moyen de k, k_0 , \mathfrak{K} au § 6. On écrira de nouveau k, pour le W-groupe de k sur k lorsque k est une extension galoisienne de k de degré fini. En vertu du théorème fondamental du "corps de classes" (cf. e. g. [6] (c), Chap. XIII), k0, s'identifie canoniquement au groupe k1, k2 des classes d'idèles de k2 modulé de la manière usuelle.

Lorsque k est un corps de nombres algébriques, la construction des groupes $W_{k,K}$ ne peut s'effectuer par les seuls moyens de la théorie de Galois, à cause des places à l'infini; nous nous contenterons d'indications très sommaires, renvoyant à [6] (a) (ou bien à [1]) pour un exposé détaillé. Par définition, on prendra pour $W_{k,k}$ le groupe k_A^\times/k^\times des classes d'idèles de k, modulé (continument, bien entendu) de la manière usuelle. Si K est une extension galoisienne de k de degré fini, de groupe de Galois \mathfrak{g} , on prend pour $W_{k,K}$ l'extension de \mathfrak{g} par $W_{K,K} = K_A^\times/K^\times$ déterminée, comme pour p > 1 par la classe de cohomologie "fondamentale", générateur privilégié de $H^2(\mathfrak{g}, K_A^\times/K^\times)$; ce groupe sera modulé comme suit. La correspondance "de type galoisien" entre les corps entre k et K et leurs W-groupes détermine en particulier un homomorphisme canonique φ de $W_{k,K}$ sur $W_{k,k}$, de noyau $(W_{k,K})^c$; alors, pour $w \in W_{k,K}$, on posera $|w| = |\varphi(w)|$, le second membre étant pris au sens de $W_{k,k} = k_A^\times/k^\times$. On vérifie que, pour $k \subset k' \subset K$, l'identification canonique de $W_{k',K}$ avec un sous-groupe de $W_{k,K}$, et, lorsque k' est galoisien sur k, l'homomorphisme canonique de $W_{k,K}$ Sur $W_{k,k'}$ conservent les modules. En revanche, il n'en est pas de même de l'injection "naturelle" de $W_{k,k}$ sur un sous-groupe de $W_{k',K'}$, qui doit plutôt être considérée comme le "transfert" de $W_{k,K}/(W_{k,K})^c$ dans $W_{k',K}/(W_{k',K})^c$.

8. Par k on désignera désormais un A-corps choisi une fois pour toutes; on notera p sa caractéristique, et, si p>1 on notera q le nombre d'éléments de son corps des constantes. Soit K extension galoisienne de k de degré fini; dans ce qui suit, on écrira simplement W au lieu de $W_{k,K}$; on notera W_0 le noyau de $w \to |w|$ dans W. Comme on a vu, W/W^c s'identifie canoniquement à $W_{k,k} = k_A^\times/k^\times$, et W est de module q si p>1.

Soit v une place de k; les places de K au dessus de v se déduisent les unes des autres par les

^{1.} xx? mal lisible.

automorphismes de K sur k; soit w l'une d'elles. Il est clair, pour p > 1 et on démontre pour p = 0 (v. [6] (a); cf. aussi [6] (d), § 73) qu'on peut plonger W_{k_v,K_w} dans W; ce plongement est canonique, à un automorphisme intérieur près de W, et conserve le module. On écrira W_v pour le groupe W_{k_v,K_w} ainsi plongé dans W, et on posera $W_v^0 = W_v \cap W_0$; de plus, pour chaque place v fine, on choisira un élément frobénien \mathfrak{f}_v de W_v .

Soit M une représentation de W de caractère χ . Pour chaque place v de k, soient M_v , χ_v les restrictions de M et χ à W_v . On leur attachera comme suit un "facteur local" $L_v(\chi, s)$:

(I) Pour chaque place finie v, soit q_v le module de k_v , qui est aussi celui de W_v ; soit $L_v(t)$ le polynôme caractéristique de M_v sur W_v , au sens du § 4. On pose alors :

$$L_v(\chi, s) = L_v(q_v^{-s})^{-1}.$$

- (II) Si v est une place infinie, on écrira χ_v comme somme de caractères premiers α_i , et on prendra $L_v(\chi, s) = \prod L_{\alpha_i}(s)$, les facteurs de ce produit étant choisis comme suit :
 - (a) Si $k_v = K_w = \mathbf{R}$, donc $W = \mathbf{R}^{\times}$, tous les α_i sont de degré 1; soit α l'un d'eux. On peut écrire $\alpha(x) = |x|^{\eta}$ ou $\alpha(x) = x^{-1}|x|^{\eta}$ avec $\eta \in \mathbf{C}$, suivant que $\alpha(-1)$ est 1 ou -1. On prend alors $L_{\alpha}(s) = \pi G_1(s + \eta)$, où $G_1(s)$ est la fonction $\pi^{-s/2}\Gamma(s/2)$.
 - (b) Si $k_v = K_w = \mathbf{C}$, donc $W_v = \mathbf{C}^{\times}$, les α_i sont encore de degré 1. Si α est l'un d'eux, on peut l'écrire, soit $\alpha(x) = x^{-m}(x\overline{x})^{\eta}$, soit $\alpha(x) = \overline{x}^{-m}(x\overline{x})^{\eta}$, avec $\eta \in \mathbf{C}, m \in \mathbf{Z}, m \geqslant 0$; on prend $L_{\alpha}(s) = \pi G_2(s + \eta)$, où $G_2(s) = (2\pi)^{1-s}\Gamma(s)$.
 - (c) Si $k_v = \mathbf{R}, \mathbf{K}_w = \mathbf{C}$, on a vu qu'on a $W_v = \mathbf{C}^{\times} \cup j\mathbf{C}^{\times}$ avec $j^2 = -1$, $xj = j\overline{x}$ pour $x \in \mathbf{C}^{\times}$; W_v admet l'homomorphisme τ sur \mathbf{R}^{\times} donné par $\tau(x) = x\overline{x}$ pour $x \in \mathbf{C}^{\times}$, $\tau(j) = -1$. Les α_i , sont de degré 1 ou 2; soit α l'un d'eux. Si α est de degré 1, il est de la forme $\beta \circ \tau$, où β est un caractère de \mathbf{R}^{\times} , et on prend pour L_{α} la fonction L_{β} définie comme dans (a). Si α est de degré 2, il est 0 sur $j\mathbf{C}^{\times}$, et sur \mathbf{C}^{\times} , il est de la forme $\beta(x) + \beta(\overline{x})$, où β est un caractère de \mathbf{C}^{\times} ; alors on prend pour L_{α} la fonction L_{β} définie comme dans (b).

On notera que, si p > 1, il n'y a pas de places à l'infini, et tous les q_v sont de la forme q^n , de sorte que $L_v(s)$ est périodique de période $2\pi i (\log q)^{-1}$ quel que soit v; on posera alors $P = 2\pi (\log q)^{-1}$, et on dira que iP est la période de k.

9. Nous poserons maintenant

$$\Lambda_k(\chi, s) = \prod_v L_v(\chi, s),$$

le produit étant étendu à toutes les places de k; nous désignerons par $L_k(\chi, s)$ le produit analogue étendu aux seules places finies. Si p > 1, Λ_k ne diffère pas de L_k et est périodique de période iP. Il est clair que l'on a, quels que soient les caractères χ_1, χ_2 de W:

$$\Lambda_k(\chi_1 + \chi_2, s) = \Lambda_k(\chi_1, s) \Lambda_k(\chi_2, s)$$

et, pour tout caractère principal ω_a de W, et tout χ :

$$\Lambda_k(\chi\omega_a, s) = \Lambda_k(\chi, a + s). \tag{4}$$

De plus, si $\sigma \in \mathbf{R}$ est pris tel que $\chi \omega_{-\sigma}$ soit le caractère d'une représentation unitaire (comme dans le lemme 4, § 5), les produits pour L_k et Λ_k sont convergents et $\neq 0$ dans $Re(s) > 1 + \sigma$. Nous rappelons les résultats suivants [cf. [6] (a), [6] (d)] :

- (a) Si χ est de degré 1, on peut le considérer comme caractère de W/W^c , donc de k_A^{\times}/k^{\times} . Alors $L_k(\chi, s)$ est la fonction de Hecke "usuelle" attachée à ce caractère de k_A^{\times}/k^{\times} , et $\Lambda_k(\chi, s)$ est la même fonction munie des "facteurs gamma" qui l'accompagnent dans son équation fonctionnelle.
- (b) Soient k' un corps entre k et K, χ' un caractère de $W' = W_{k',K}$ et $\chi = [\chi'; W' \to W]$. Alors $\Lambda_k(\chi, s) = \Lambda_{k'}(\chi', s)$. Il s'ensuit que, pour tout caractère élémentaire, $\Lambda_k(\chi, s)$ est une fonction de Hecke usuelle, donc, d'après le lemme 2 du § 2, que toutes les fonctions $\Lambda_k(\chi, s)$ sont méromorphes dans tout le plan et satisfont à des équations fonctionnelles. Celles-ci se déduisent aussitôt (cf. [5] et [6] (d), § § 75 et 78) des équations connues pour les fonctions de Hecke, et s'écrivent :

$$\Lambda_k \left(\chi, \frac{1}{2} + s \right) = \eta(\chi) \Lambda_k \left(\widehat{\chi}, \frac{1}{2} - s \right) \left| \mathfrak{f}(\chi) d^{\chi(1)} \right|^s, \tag{5}$$

où les notations sont les suivantes. On a noté $\widehat{\chi}$ le caractère de la représentation ${}^tM^{-1}$ de W "contragrédiente" de M, de sorte que $\widehat{\chi}(w) = \chi(w^{-1})$ pour $w \in W$. On a noté d un idèle "différental" de k, de sorte que $|d|^{-1}$ est au signe près le discriminant de k si p=0 et a la valeur q^{2g-2} si k est un corps de fonctions de genre g (cf. [6] (c), Chap. VII-2, prop. 6). On a noté $\mathfrak{f}(\chi)$ un idèle dont le diviseur est le "conducteur" de χ (cf. [6] (d), § 73); il en sera plus amplement question au § 15. Enfin $\eta(\chi)$ est une constante qui a fait l'objet d'importants travaux de Dwork et de Langlands, mais dont la valeur ne nous intéresse pas ici.

10. D'après le lemme 3 du § 4, et la remarque qui suit le lemme 2 au § 2, on ne restreint par la généralité en se bornant une fois pour toutes aux caractères des représentations unitaires de W; c'est ce que nous ferons désormais, de sorte qu'en particulier il sera sous-entendu que tout caractère principal est de la forme ω_{ib} avec $b \in \mathbf{R}$. Dans ces conditions, les produits infinis L_k , Λ_k convergent pour Re(s) > 1; de plus, on a $\widehat{\chi} = \overline{\chi}$ pour tout χ , et par suite

$$\overline{\Lambda_k(\chi,s)} = \Lambda_k(\widehat{\chi},\overline{s}). \tag{6}$$

D'après (5), $\Lambda_k(\chi, s)$ est donc holomorphe et $\neq 0$ en dehors de la "bande critique" $0 \leqslant Re(s) \leqslant 1$.

La fonction $L_k(1,s)$ n'est autre que la fonction zêta de k; d'après (4) on en conclut que, si χ est principal, donc de la forme ω_{ib} avec $b \in \mathbf{R}$, la fonction $\Lambda_k(\chi,s)$ est $\neq 0$ sur Re(s) = 0 et Re(s) = 1 et n'a sur ces droites d'autre pôle que s = -ib, s = 1 - ib si p = 0 ou ces mêmes points modulo la période iP si p > 1; ces pôles sont simples. Si χ est de degré 1 et non principal, on sait (cf. e. g. [6] (c), Chap. XIII-12) que $\Lambda_k(\chi,s)$ est sans zéro ni pôle sur Re(s) = 0 et Re(s) = 1 et holomorphe partout. D'après le lemme 2, $\Lambda_k(\chi,s)$ ne peut donc en tout cas avoir qu'un nombre fini de zéros et de pôles sur ces droites, si p = 0; bien entendu, si p > 1 cette fonction n'a même qu'un nombre fini de zéros et de pôles modulo iP dans tout le plan.

11. Proposition 1. Soit χ le caractère d'une représentation unitaire de W. Pour tout α tel que $Re(\alpha) = 0$, soit $n(\chi, \alpha)$ l'ordre de $\Lambda_k(\chi, s)$ en $s = \alpha$. Alors on a, pour toute fonction F sur W/W_0 :

$$\int_{W} F(|w|)\chi(w)dw = -\sum_{\alpha} n(\chi,\alpha) \int_{W/W_0} F(\nu)\nu^{-a}d\nu,$$
(7)

la somme étant étendue à tous les points de $Re(\alpha) = 0$ si p = 0 et à ces mêmes points modulo iP si p > 1.

Comme au § 3, dw et dv désignent ici les mesures canoniques sur W et W/W_0 . D'après (2), (7) revient à dire qu'on a

$$\int_{W_0} \chi(ww_0)d_0(w_0) = -\sum_{w} n(\chi,\alpha)|w|^{-\alpha}$$

pour tout $w \in W$. C'est évident si χ est principal, d'après ce qui précède, et aussi si χ est de degré 1 et non principal, pour les mêmes raisons.

Soit maintenant $\chi = [\chi'; W' \to W]$, où $W' = W_{k',K}$ avec k' entre k et K; W' est un sous-groupe ouvert de W, d'indice [k':k], et on a, d'après (1) du § 1:

$$\int_{W} F(|w|)|\chi(w)dw = [W:W'] \int_{W'} F(|w'|)\chi'(w')dw',$$

où au second membre dw' désigne la restriction de dw à W'. Soit d'w' la mesure canonique sur W'. Choisissons dans W des représentants w_i des classes suivant W'; soit m réel > 1; soit W(m)la partie compacte de W définie par $1 \leq |w| \leq m$. On a alors $W(m) = \bigcup v_i W_i'(m)$, où W_i' est la partie de W' définie par $1 \leq |v_i w'| \leq m$. Pour $m \to \infty$, par définition de la mesure canonique, la mesure de W(m) pour dw, et celle de chacun des $W'_i(m)$ pour d'w', sont de la forme $\log m + O(1)$. Donc d'w' = [W : W']dw' sur W'. Par suite, le premier membre de (7) n'est pas changé si on y substitue W', w', χ' à W, w, χ . Comme $\Lambda_k(\chi, s)$ n'est autre que $\Lambda_{k'}(\chi', s)$, il en est de même du second membre, si p=0; pour obtenir la même conclusion pour p>1, nous procédons comme suit. Soit $q' = q^n$ le module de W', c'est-à-dire le nombre d'éléments du corps des constantes de k'; la période de k' est alors iP'=iP/n; W/W_0 et W'/W_0' sont respectivement engendrés par q et par q^n , et la mesure canonique $d'\nu'$ sur W'/W'_0 est la restriction de la mesure $n.d\nu$ sur W/W_0 . Au second membre de (7), groupons ensemble les termes relatifs aux points α congrus entre eux modulo iP'; $n(\chi,\alpha)$ a même valeur pour ces termes, et il est immédiat que pour eux $\sum \nu^{-\alpha}$ est $n.\nu^{-\alpha}$ ou 0 suivant que ν est ou non dans W'/W'_0 . On en tire bien la conclusion annoncée. D'après ce qu'on a vu précédemment, il s'ensuit que la proposition est vraie pour tout caractère élémentaire, donc aussi dans le cas général d'après le lemme 2 du § 2.

Corollaire. Si χ est un caractère premier non principal, $\Lambda_k(\chi, s)$ est sans zéro ni pôle en dehors de la bande 0 < Re(s) < 1.

C'est évident d'après la proposition 1 et (3) du § 4.

12. Les questions que nous allons aborder maintenant peuvent être traitées plus élémentairement pour les corps de fonctions que pour les corps de nombres; c'est sur ceux-ci que nous porterons notre attention, en indiquant chaque fois entre crochets les modifications à faire quand p est > 1. On sait d'ailleurs que dans ce dernier cas les fonction $\Lambda_k(\chi, s)$ sont des fonctions rationnelles en q^{-s} , et même des polynômes si χ est premier non principal, et que tous leurs zéros sont sur Re(s) = 1/2.

Les notations étant comme précédemment, nous identifierons encore W/W_0 avec l'image de W dans \mathbf{R}_+^{\times} au moyen de $w \to |w|$, donc avec \mathbf{R}_+^{\times} lui-même si p=0 et [avec le sous-groupe de \mathbf{R}_+^{\times} engendré par q, si p>1]. Ce groupe sera noté N: comme toujours, nous y adoptons la mesure canonique au sens du § 3; pour éviter toute confusion, nous la noterons $d^{\times}\nu$; si p=0, c'est $d(\log \nu)$ au sens usuel [si p>1 c'est la mesure pour laquelle chaque élément a la mesure $\log q$]. Soit F une fonction sur N; on posera

$$\Phi(s) = \int_{N} F(\nu)\nu^{\frac{1}{2}-s} d^{\times}\nu. \tag{8}$$

Nous supposerons qu'il y a $b>\frac{1}{2}$ tel que $F(\nu)$ soit $\mathcal{O}(\nu^b)$ pour $\nu\to 0$ et $\mathcal{O}(\nu^{-b})$ pour $\nu\to +\infty$. Alors, si $\frac{1}{2}< A< b$, Φ est holomorphe dans la bande $\frac{1}{2}-A\leqslant Re(s)\leqslant \frac{1}{2}+A$ [et périodique de période iP si p>1]. Écrivant suivant l'usage $s=\sigma+it$ avec σ,t réels, on supposera de plus (pour p=0 bien entendu) que $\Phi(s)$ est uniformément $\mathcal{O}(|t|^{-1-\varepsilon})$, avec $\varepsilon>0$ pour $\left|\sigma-\frac{1}{2}\right|\leqslant A$: et on supposera F continue sur N, et de classe C^1 dans un voisinage de 1. On peut assurément élargir ces hypothèses (qui sont un peu plus strictes que celles de [6] (b)); mais, du point de vue formel qui est le nôtre ici, on pourrait tout aussi bien, au contraire, prendre F indéfiniment différentiable à support compact, Φ étant alors holomorphe pour tout s et $\mathcal{O}(|t|^{-n})$ pour tout s dans toute bande s0 supposeration s1. En tout cas, pour s2, l'intégrale

$$\int \Phi(\sigma + it) \nu^{\sigma + it} dt,$$

prise de $t=-\infty$ à $t=+\infty$ [de t=0 à t=P, si p>1] est indépendante de σ pour $\left|\sigma-\frac{1}{2}\right|\leqslant A$, on obtient sa valeur, par exemple au moyen de la formule de l'intégrale de Fourier [de la série de Fourier, si p>1] en y faisant $\sigma=\frac{1}{2}$. Cela donne :

$$\int \Phi(\sigma + it)\nu^{\sigma + it}dt = 2\pi\nu^{\frac{1}{2}}F(\nu). \tag{9}$$

13. Soit toujours χ le caractère d'une représentation unitaire de W. Pour chaque ρ dans la bande $0 \leq Re(s) \leq 1$, soit $N(\chi, \rho)$ l'ordre de $\Lambda_k(\chi, s)$ en $s = \rho$; en particulier, on a, pour $Re(\alpha) = 0, N(\chi, \alpha) = \eta(\chi, \alpha)$, puis, d'après (5) et (6), $N(\chi, 1 + \alpha) = n(\chi, \alpha)$.

Le but du présent travail est d'évaluer la somme

$$S(\chi, F) = \sum_{\rho} N(\chi, \rho) \Phi(\rho)$$
 (10)

étendue à tous les points ρ intérieurs à la bande en question [ou, si p > 1, à ces points pris modulo iP]. La série (10) est absolument convergente ; il est bien connu en effet, pour les fonctions de Hecke, que le nombre de leurs zéros $\rho = \sigma + it$ avec $T \le t \le T + 1$ est $O(\log |T|)$ pour $T \to +\infty$, et cette conclusion s'étend aussitôt aux zéros et aux pôles de $\Lambda_k(\chi, s)$ au moyen du lemme 2.

Soit R le rectangle $\left|\sigma-\frac{1}{2}\right|\leqslant A, T\leqslant t\leqslant T'$; soient R',R_0,R_1 ses intersections avec $0<\sigma<1$ et avec les droites $\sigma=0,\sigma=1$, respectivement. Soit C le contour de R orienté positivement ; écrivons C=C'+C'', où C' est formé des côtés verticaux et C'' des côtés horizontaux. Posons

$$I = \frac{1}{2\pi i} \int_{C} \Phi(s) \ d\log \Lambda_k(\chi, s),$$

d'où I = I' + I'' si I', I'' sont les intégrales analogues prises respectivement sur C' et sur C''. On a $I = S' + S_0 + S_1$, si S', S_0, S_1 sont les sommes des termes de (10) relatifs aux points $\rho \in R', \rho \in R_0, \rho \in R_1$, respectivement.

Des évaluations classiques (cf. e. g. [6] (b)) permettent de voir, pour les fonctions de Hecke, que I'' tend vers 0 pour $T \to -\infty, T' \to +\infty$, et cette conclusion s'étend aussitôt au cas général au moyen du lemme 2 [pour p > 1 on a I'' = 0 en prenant T' = T + P]: dans les mêmes conditions, I' tend vers l'intégrale J analogue à I, prise sur la frontière de la bande $\left|\sigma - \frac{1}{2}\right| \leqslant A$ (intégrale qui est absolument convergente sur $\sigma = \frac{1}{2} + A$ en raison d'évaluations triviales, puis sur $\sigma = \frac{1}{2} - A$ d'après (5) et (6)), et S' tend vers $S(\chi, F)$ [pour p < 1, T' = T + P, on a $S' = S(\chi, F)$ et on pose J = 1]. Enfin, pour -T et T' assez grands [pour T' = T + P, si p > 1], S_0 et S_1 ont respectivement pour valeurs:

$$S_0 = \sum n(\chi, \alpha)\Phi(\alpha), \quad S_1 = \sum n(\chi, \alpha)\Phi(1+\alpha),$$

où la sommation est prise comme dans la proposition 1 : en appliquant celle-ci, on trouve immédiatement, d'après (8) :

$$S_0 + S_1 = -\int_W F(|w|)\chi(w)[|w|^{1/2} + |w|^{-1/2}]dw.$$
(11)

Écrivons $J = J_+ + J_-$, où J_+, J_- sont les parties de J relatives à $\sigma = \frac{1}{2} + A$ et à $\sigma = \frac{1}{2} - A$ respectivement. On a :

$$J_{\pm} = \pm \frac{1}{2\pi i} \int \Phi\left(\frac{1}{2} \pm A + it\right) d\log \Lambda_k\left(\chi, \frac{1}{2} \pm A + it\right),$$

les intégrales étant prises de $t = -\infty$ à $t = +\infty$ [de t = T à t = T + P si p > 1]. Dans la formule pour J_- , appliquons l'équation fonctionnelle (5), combinée avec (6). Posant pour abréger $\lambda(t) = \log \Lambda_k(\chi, \frac{1}{2} + A + it)$, on obtient :

$$J_{-} = -\frac{1}{2\pi i} \int \Phi\left(\frac{1}{2} - A + it\right) d\overline{\lambda(t)} - \frac{1}{2\pi} \log |\mathfrak{f}(\chi)d^{\chi(i)}|. \int \Phi\left(\frac{1}{2} - A + it\right) dt.$$

D'après (9), la dernière intégrale est égale à F(1). Posons donc :

$$J_0 = \frac{1}{2\pi i} \int \Phi\left(\frac{1}{2} + A + it\right) d\lambda(t) - \Phi\left(\frac{1}{2} - A + it\right) d\overline{\lambda(t)}; \qquad (12)$$

 $S(\chi, F)$ est alors donné par la formule

$$S(\chi, F) = J_0 - (s_0 + s_1) - F(1) \log |f(\chi)d^{\chi(1)}|.$$
(13)

14. Dans (12), remplaçons $\lambda(t)$ par sa définition, c'est-à-dire Λ_k par le produit de ses facteurs locaux. Pour toute place finie v, on a, d'après le lemme 3 du § 4 :

$$\frac{d}{ds}\log \Lambda_v(\chi,s) = -\log q_v \sum_{1}^{\infty} q_v^{-ns} \int_{W_v^n} \chi_v \left(\mathfrak{f}_v^n w_0\right) d_0(w_0).$$

Comme M est unitaire, on a $|\chi(w)| \leq \chi(1)$ sur W. On en conclut facilement que, dans J_0 on peut échanger la sommation et l'intégration; il s'ensuit que J_0 est somme de termes locaux J_v qu'on va écrire maintenant. Pour une place finie v, on trouve aussitôt, en se servant de (9):

$$J_v = -\log q_v \sum_{1}^{\infty} F(q_v^{-n}) q_v^{-n/2} \int \chi_v(\mathfrak{f}_v^n w_0) d_0(w_0) - \log q_v \sum_{1}^{\infty} F(q_v^n) q_v^{-n/2} \int \overline{\chi}_v(\mathfrak{f}_v^n w_0) d_0(w_0).$$

Comme on a $\overline{\chi}(w) = \chi(w^{-1})$ pour tout w, cela s'écrit aussi :

$$J_v = -\int_{W_v - W_v^0} F(|w|) \chi_v(w) \cdot \inf(|w|^{1/2}, |w|^{-1/2}) dw.$$
(14)

Si v est une place infinie, $L_v(\chi, s)$ est par définition le produit des facteurs $L_\alpha(s)$ attachés aux caractères premiers figurant dans χ_v . Comme ici les α sont unitaires, chaque L_α est de la forme $\pi G_{\varepsilon}(s+\eta)$ avec $\varepsilon=1$ ou 2 et $Re(\eta)\geqslant 0$; tenant compte du fait que Φ est holomorphe dans $\left|\sigma-\frac{1}{2}\right|\leqslant A$, et de son ordre de grandeur, on voit que la contribution de L_α à J_v est :

$$J_{\alpha} = \frac{1}{2\pi i} \int \Phi(s) d \log G_{\varepsilon}(s+\eta) + \Phi(1-s) d \log G_{\varepsilon}(s+\overline{\eta}),$$

l'intégrale étant prise sur une droite constante dans la bande $0 < \sigma < 1$. Cette intégrale s'évalue au moyen de la formule connue [v. [2], page 76] qui donne $\Gamma'/\Gamma(s)$ comme transformée de Laplace de la "partie finie" d'une fonction élémentaire. Pour plus de commodité, introduisons sur $N = \mathbf{R}_+^{\times}$ les fonctions

$$\mathfrak{f}_0(\nu) = \inf(\nu^{1/2}, \nu^{-1/2}), \qquad \mathfrak{f}_1 = \mathfrak{f}_0^{-1} - \mathfrak{f}_0.$$

convenons de plus, chaque fois qu'une fonction φ sur \mathbf{R}_+^{\times} est telle qu'il y ait une constante c pour laquelle $\varphi - c \mathfrak{f}_1^{-1}$ soit intégrable sur \mathbf{R}_+^{\times} , de poser

$$PF \int \varphi d^{\times} \nu = \lim \left[\int (1 - \mathfrak{f}_0^{2t}) \varphi d^{\times} \nu - 2c \log t \right]$$

et aussi $PF_0 \int \varphi \ d^{\times} \nu = PF \int \varphi \ d^{\times} \nu + 2c \log 2\pi$; si $P\mathfrak{f}$ est la "partie finie" au sens de L. Schwartz, on a $PF = P\mathfrak{f} - 2c\Gamma'(1)$. Alors, d'après J. Lavoine (loc. cit.) :

Lemme 5. Pour Re(s) > 0 on a

$$PF \int \mathfrak{f}_0^{2s-1} \mathfrak{f}_1^{-1} d^{\times} \nu = 2\Gamma'/\Gamma(s).$$

On tire facilement de là :

Lemme 6. Soit $\eta = a + ib$, avec $a \ge 0$, $b \in \mathbf{R}$; soient a' = 2a - 1 et $\varepsilon' = 2$ si $\varepsilon = 1$; soient a' = 2a et $\varepsilon' = 1$ si $\varepsilon = 2$. Alors:

$$J_{\alpha} = -PF_0 \int F(\nu) \nu^{ib} \mathfrak{f}_0(\nu)^{a'} \mathfrak{f}_1(\nu^{\varepsilon'})^{-1} d^{\times} \nu.$$

Revenons au groupe W_v , avec le sous-groupe compact W_v^0 ; comme toujours, nous identifions W_v/W_v^0 avec $N = \mathbf{R}_+^{\times}$. Par analogie avec (14), il est tentant de chercher à mettre J_{α} sous la forme

$$J_{\alpha} = -PF_0 \int F(\nu) \left[\int_{W_v^0} \alpha(ww_0) \varphi(ww_0) \ d_0(w_0) \right] d^{\times} \nu,$$

où φ est une fonction convenablement choisie sur W_v , et où w est tel que $|w| = \nu$. Le cas le plus simple est celui où $k_v = K_w = \mathbf{R}, W_v = \mathbf{R}^{\times}$, puisqu'alors W_v^0 est à deux éléments. Dans ce cas, d'après le § 8, on a $Re(\eta) = 0$ ou 1, et φ se détermine immédiatement; on trouve :

$$\varphi(w) = |w|^{1/2} |1 - w|^{-1}. \tag{15}$$

Pour $k_v = K_w = \mathbf{C}$, $W_v = \mathbf{C}^{\times}$, W_v^0 est le sous-groupe $w\overline{w} = 1$ de W_v ; dans ce cas, les conditions ci-dessus déterminent la série de Fourier de $w_0 \to \varphi(ww_0)$ pour tout w, et un calcul simple montre que φ est encore donnée par (15). Enfin, si $k_v = \mathbf{R}$, $K_w = \mathbf{C}$, W_v^0 est un groupe non commutatif; si on impose à $w_0 \to \varphi(ww_0)$ d'admettre un développement suivant les caractères de W_v^0 , ou autrement dit si on impose à φ d'être invariante par les automorphismes intérieurs de W_v , φ est de nouveau déterminée d'une manière unique par les conditions ci-dessus, et on retrouve avec plaisir la formule (15), pourvu qu'on y prenne 1-w au sens de l'algèbre A des quaternions dans laquelle W_v se trouve plongé comme il a été dit au § 6; c'est aussi au sens du § 6 qu'on prendra |1-w|.

On peut donc écrire en un sens évident, pour toute place v à l'infini :

$$J_v = -PF_0 \int_{W_v} F(|w|) \chi_v(w) \frac{|w|^{1/2} dw}{|1 - w|}.$$
 (16)

Il est à noter que les mêmes calculs donnent également

$$\frac{d}{ds}\log L_v(\chi, s) = -PF_0 \int_{|w|<1} \chi_v(w) \frac{|w|^s dw}{|1-w|},$$
(17)

où PF_0 est défini par la condition que l'on ait

$$PF_0 \int_{\nu < 1} \varphi d^{\times} \nu = \frac{1}{2} PF_0 \int_{N} \varphi d^{\times} \nu$$

chaque fois que $\varphi(\nu^{-1}) = \varphi(\nu)$ pour tout $\nu \in N$ et que le second membre est défini. D'après le lemme 3 du § 4, (17) reste valable pour toute place finie (le symbole PF_0 devenant alors inutile), puisque |w| < 1 entraı̂ne |1-w| = 1 dans l'algèbre à division A sur k_v où on a plongé W_v au §6. Autrement dit, (17) définit $L_v(\chi, s)$ à un facteur constant près, pour toute place v, finie ou infinie.

15. Pour obtenir le résultat que nous avions en vue, il reste à examiner le rôle du conducteur de χ , tel qu'il apparaît dans (13). En chaque place finie v, soit F_v l'ordre de $\mathfrak{f}(\chi)$; on aura :

$$\log |\mathfrak{f}(\chi)| = -\sum F_v \log q_v,$$

et d'autre part, si H_v est la "distribution de Herbrand" sur W_v^0 (cf.[6] (c), Chap. VIII-3 et Chap. XII-4, et [6] (c'), Appendice IV) :

$$F_v = \int_{W^0} \chi_v(\omega_0) dH_v(\omega_0),$$

de sorte que la contribution du conducteur de χ_v à (13) s'écrit :

$$J'_{v} = \log q_{v} \int_{W_{v}^{0}} F(|w_{0}|) \chi_{v}(w_{0}) dH_{v}(w_{0}).$$

On peut combiner cette intégrale avec le second membre de (14) en une seule intégrale prise sur W_v et il est tentant de penser que celle-ci peut être écrite sous une forme analogue à (16). Heureusement, ou malheureusement, suivant les goûts, il n'est pas nécessaire pour cela d'ajouter à l'amas touffu de conjectures dont s'agrémente de nos jours la théorie des nombres. En effet, le résultat dont on a besoin ici a été fort opportunément démontré par Tate et Shankar Sen dès 1964 (v. [4], ou bien, dans un langage mieux adapté à notre présent objet, [6] (c'), Appendice IV). On obtient une formule identique à (16), à condition de poser

$$PF_0 \int_{W_v} \frac{f(w)dw}{|1 - w|} = \int_{W_v^0} \frac{[f(w) - f(1)]dw}{|1 - w|} + \int_{W_v - W_v^0} \frac{f(w)dw}{|1 - w|}$$

chaque fois que \mathfrak{f} est localement constant sur W_v et que la dernière intégrale a un sens. Comme au $\S 14, 1-w$ et |1-w| sont à prendre ici au sens de l'algèbre à division A dans laquelle on a plongé W_v au $\S 6$.

16. En définitive, pour chaque place v de k, finie ou non, soit D_v la distribution donnée sur W_v par la formule

$$D_v(F) = PF_0 \int_{W_v} F(w) \frac{|w|^{1/2} dw}{|1 - w|}.$$

Soit D la distribution sur W, donnée par

$$D(F) = \int_{W} F(w)[|w|^{1/2} + |w|^{-1/2}]dw.$$

Soit δ_1 la mesure de Dirac, c'est-à-dire la masse 1 en w=1. Soit Δ la distribution sur W, donnée par

$$\Delta = \log |d^{-1}| \cdot \delta_1 + D - \sum_v D_v.$$

Notre résultat final s'écrit maintenant :

$$S(\chi, F) = \Delta[F(|w|)\chi(w)].$$

Comme dans [6] (b), on observera que la positivité de la distribution Δ sur W équivaut à la conjonction de l'hypothèse de Riemann et de la conjecture d'Artin pour toutes les fonctions $L_k(\chi, s)$. Donc, pour p > 1, Δ est positive (et aussi "tempérée", en un sens qui serait facile à préciser). L'analogie entre les formules obtenues pour p = 0 et pour p > 1 est peut-être, à l'heure actuelle, l'argument le plus sérieux que je connaisse en faveur des conjectures en question pour les corps de nombres.

Reçu le 15. VI. 1971.

Bibliographie

- [1] ARTIN E. & TATE J., Classfield Theory, Harvard Math. Dept., 1961.
- [2] LAVOINE J., Calcul symbolique. Distributions et pseudofonctions, C. N. R. S., Paris, 1959.
- [3] Serre J.-P., Corps locaux, Paris, Hermann. 1962.
- [4] TATE J. & SHANKAR SEN. Ramification groups of local fields. J. Ind. Math. Soc., 27 (1964), 197-202.
- [5] TAMAGAWA T., On the functional equation of the generalized L-function. J. Fac. Sc. Tokyo, 6 (1953), 421-428.
- [6] Weil A., (a) Sur la théorie du corps de classes, J. Math. Soc. Japan, 3 (1951), 1-35; (b) Sur les formules "explicites" de la théorie des nombres premiers, Comm. Sém. Math. Lund (vol. dédié à M. Riesz), Lund (1952), 252-265; (c) Basic Number Theory, Springer 1967; (c') Основы теории чисел. М., "Мир", 1971 (éd. russe de [6] (c)); (d) Dirichlet series and automorphic forms (lezioni Fermiane), Lecture Notes in Math., vol. 189, Springer, 1971.
- [7] Шафаревич И. Р., О группах Галуа у-адических полей, Докл. АН СССР, 53 (1946), 15-16 (I. R. Shafarevich, On Galois groups of y-adic fields, C. R. Ac. Sc. URSS, éd. internat., 53 (1946), 15-16).