
L’Œuvre mathématique de Vandermonde

Vandermonde pourrait bien être la forme francisée d’un nom hollandais et les Vandermonde ont
peut-être des ascendants venant de chez vous ; en tout cas, le mathématicien Alexandre-Théophile
Vandermonde était Français. Il naquit à Paris, le 28 février 1735.

L’enfant était maladif ; son père, médecin, ne lui fit guère apprendre que la musique ; mais, vers la
trentaine, Vandermonde fit la connaissance de Fontaine, ce mathématicien connu surtout pour ses
attaques fougueuses contre Lagrange et contre d’autres. Fontaine, vieilli, avait pourtant conservé
toute son ardeur et tout son enthousiasme et ceci aurait donné à Vandermonde le désir d’étudier la
science capable d’éveiller de telles passions. Quoiqu’il en soit, Vandermonde acquit vite une réputa-
tion et entra à l’Académie des Sciences en 1771. C’est dans les volumes de l’Histoire de l’Académie,
pour les années 1771 et 1772 que se trouvent les quatre mémoires qui constituent toute l’œuvre
mathématique de Vandermonde.

Il publia ensuite des études sur la musique lesquelles, bien que, d’après ce que nous apprend Lace-
pède dans l’éloge funèbre de Vandermonde, elles auraient reçu l’approbation des grands musiciens
de l’époque : Gluck, Philidor, Piccini, n’eurent d’autre résultat qu’une modification de la gentillesse
à double tranchant imaginée pour d’Alembert : il devint courant de dire que les musiciens consi-
déraient Vandermonde comme un mathématicien et que les mathématiciens voyaient en lui un
musicien.

On a encore de Vandermonde un mémoire sur le froid de l’année 1776, fait en collaboration avec
Bezout et Lavoisier, et un travail où, pour la première fois, on distingue les fontes et les aciers, fait
avec Berthollet et Monge. Vandermonde était d’ailleurs l’un des conseillers les plus intimes et les
plus écoutés de Monge ; on l’appelait la femme de Monge.

Vandermonde devint, en 1782, directeur du Conservatoire des Arts et Métiers et, en 1792, chef du
Bureau de l’habillement des armées ou, comme l’on disait plus volontiers, chef du déshabillement.
Il ne conserva ce poste qu’un an, il s’occupa ensuite de la fabrication des armes. Il fut membre de la
commune de Paris, membre du club des Jacobins ; c’était un révolutionnaire ardent et actif, aussi
le nom de Vandermonde revient assez souvent dans les écrits des historiens de la Révolution.

Toute cette agitation ne semble pas avoir été favorable à sa santé ; nomme membre de l’Institut
National à la création de celui-ci en 1796, Vandermonde s’inscrit le premier sur la liste nécrologique
de cet Institut. Il mourut le 17 janvier 1796, presque dans la salle des séances, dit Lacepède 1.

Conférence faite à l’Université d’Utrecht, le 20 octobre 1937.
Référence : L’enseignement mathématique, vol. 1, 1955, p. 203. (source :

https://www.e-periodica.ch/digbib/volumes?UID=ens-001.
Transcription en LATEX : Denise Vella-Chemla, février 2026.

1. Dans l’Index biographique de l’Annuaire de l’Académie des Sciences pour 1938, se trouvent les Indications
suivantes : Vandermonde (Alexandre, alias Alexis-Théophile, né à Paris, le 28 février 1835 adjoint géomètre, le 20
mai 1771, en remplacement de l’abbé Bossut, promu associé ; associé géomètre, le 17 décembre 1779, en remplacement
de l’abbé Bossut, promu pensionnaire de la classe de géométrie, lors de la réorganisation du 23 avril 1785 ; élu membre
résidant de la section des arts mécaniques de la 1re classe de l’Institut National, le 22 frimaire an IV (13 déc. 1796) ;
mort à Paris, le 11 nivose an IV. – Mathématicien – (1 janvier 1700). Éloge par Lacepède, lu le 15 germinal an IV (4
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Vandermonde n’a jamais occupé dans l’estime des mathématiciens la place qui lui était due 2 ; c’est
que, si certains parmi les mieux avertis ont apprécié son œuvre, ils ne nous ont laissé soupçonner
leur opinion que par un mot : Cauchy parle conjointement, mais sans autre précision, de Lagrange
et de Vandermonde ; Gergonne associe les noms d’Euler, de Vandermonde et de Lagrange. On n’a
pas pris l’habitude de citer Vandermonde pour des faits précis ; or la grande notoriété n’est assurée
en Mathématique qu’aux noms associés à une méthode, à un théorème, à une notation. Peu importe
d’ailleurs que l’attribution soit fondée ou non, et le nom de Vandermonde serait ignoré de l’immense
majorité des mathématiciens si on ne lui avait attribué le déterminant que vous connaissez bien. et
qui n’est pas de lui ! Lacroix avait bien, dans son Traité, introduit la notation des factorielles qu’uti-
lisait Vandermonde, ce qui aurait pu sauver de l’oubli le nom de Vandermonde ; mais l’exemple de
Lacroix ne fut pas suivi.

Nous ignorerions sans doute toute l’œuvre mathématique de Vandermonde sans les éloges enthou-
siastes que le grand algébriste Kronecker lui adressait dans ses Leçons et sans la découverte que le
célèbre physicien Clerk Maxwell fit dans l’un de ces cahiers où Gauss notait jour par jour tout ce
qu’il faisait.

Maxwell fut frappé par la note, en date du 22 janvier 1833, qu’il trouva dans le cahier d’électrody-
namique de Gauss et dont voici le début d’après la traduction française du traité de Maxwell : “Sur
la Géométrie de situation que Leibniz pressentit et sur laquelle seulement un couple de géomètres,
Euler et Vandermonde, jetèrent un regard atténué, savons-nous et avons-nous après 150 ans encore
beaucoup plus que rien”. Ceci était suivi de l’affirmation qu’une certaine intégrale double représente
le nombre des enlacements de deux courbes. Maxwell comprit que Gauss énonçait là le fait géomé-
trique général auquel l’avait conduit l’étude du potentiel d’un courant.

Cette citation de Maxwell incita à rechercher le travail de Vandermonde ; on le trouva dans l’His-
toire de l’Académie pour 1771. C’est une petite note de 8 pages avec planches, qui contient, déduites
de la même idée, une notation de la marche du cavalier au jeu d’échecs et une notation des tissus.
Expliquons celle-ci : sans modifier la position respective des fils on peut supposer qu’on leur donne
la forme de lignes polygonales à côtés parallèles aux axes ; il suffira donc d’indiquer pour chaque fil
les coordonnées des sommets successifs. Cette remarque, qui montre bien le lien entre des questions
de géométrie de situation et des questions d’analyse combinatoire, est pourtant trop simple pour
ne pas décevoir quelque peu ; mais, quand on se reporte à la note d’Analysis situs de Vandermonde,
qui est son second travail, on trouve dans le même volume le premier mémoire de Vandermonde
fort étendu et qui attire nécessairement l’attention. Dans le volume suivant se trouvent les deux

avril 1796).
La Notice sur la vie et les ouvrages de Vandermonde par Lacepède a été publiée dans le tome I des Mémoires de
l’Institut national des Sciences et Arts.

2. On verra que c’est surtout en France que Vandermonde a été méconnu. Dans son livre Géomètres français sous
la Révolution, Niels Nielsen, qui qualifie de “publication merveilleuse” le principal mémoire de Vandermonde, écrit :
“La célébrité de Vandermonde est bien reconnue en Allemagne, mais il faut que son nom entre dans l’Histoire de
l’algèbre, avee celui de Lagrange, comme nom de l’un des dignes précurseurs d’Abel. Comme preuve de la notoriété
que Vandermonde a dans certains pays, Nielsen signale que M. Carl Itzigsohn a donné à Berlin en 1888, une édition
allemande des trois mémoires de Vandermonde qui traitent des questions algébriques. Il ajoute, mais sans autre
précision, “un auteur allemand a même publié une étude sur les prénoms de Vandermonde”. Les différents historiens
des sciences donnent en effet pour prénoms à Vandermonde Alexandre, Alexandre-Théophile, Alexit-Théophile,
Ahnit-Théophile, Charles-Auguste, etc.
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derniers travaux mathématiques de Vandermonde dont je vais dire d’abord quelques mots.

Le troisième mémoire de Vandermonde est une petite note de 9 pages, très formelle, peu impor-
tante ; elle contient la notation des factorielles utilisée par Lacroix. Le quatrième mémoire vaudrait
d’être plus longuement analysé, si je ne devais tenir compte du temps : Vandermonde y forme les
résultants de deux équations des degrés 2, 3 ou 4 ; il utilise là une notation des déterminants, qui
est en somme la nôtre. Seulement, comme les éléments des déterminants qu’il rencontre sont les
coefficients des inconnues dans des équations linéaires écrites ordonnées, ces éléments sont déjà

rangés en tableau ; Vandermonde ne récrit pas ce tableau il se contente de noter
(
1 3 5
2 4 7

)
les

rangs des colonnes ou lignes utilisées. C’est notre notation des mineurs. Vandermonde crée là toute
la théorie des déterminants ; mais, au même moment, ou un peu avant, ou un peu après, bien des
mathématiciens ont bâti une théorie équivalente. Cela n’est donc pas très original. Ce qui aurait
pu être personnel, c’est le déterminant de Vandermonde ? Or il n’est pas là, ni nulle part ailleurs
dans l’œuvre de Vandermonde !

D’où vient donc la dénomination déterminant de Vandermonde ? Vandermonde considère des équa-
tions linéaires dont il désigne les inconnues par les notations ξ1, ξ2, ξ3, . . . 3et le coefficient de ξi dans

la kieme équation par
k
i. La résolution d’un tel système, de

1
1 ξ1 +

1
2 ξ2 +

1
3 ξ3 +

1
4 = 0,

2
1 ξ1 +

2
2 ξ2 +

2
3 ξ3 +

2
4 = 0,

3
1 ξ1 +

3
2 ξ2 +

3
3 ξ3 +

3
4 = 0,

par exemple, donnera des déterminants tels que∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1

1 2 3
2 2 2

1 2 3
3 3 3

1 2 3

∣∣∣∣∣∣∣∣∣∣∣∣
;

or, oubliant un instant la convention de notation faite, interprétez les indices supérieurs comme des
exposants, vous avez un déterminant de Vandermonde. Et peut-être est-ce cette méprise qui sauve
le nom de Vandermonde d’un plus complet oubli.

Ainsi, le déterminant de Vandermonde n’est pas de Vandermonde ; sa théorie des déterminants n’est
pas très originale, sa notation des factorielles est sans importance ; son étude de la,géométrie de
situation est un peu enfantine, que reste-t-il ? Il reste son premier mémoire au sujet duquel Cauchy

3. Note de la transcriptrice en LATEX : Dans le mémoire original, l’indice est simplement écarté du nom de la
variable.
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écrivait : “MM. Lagrange et Vandermonde sont, je crois, les premiers qui ont considéré les fonctions
de plusieurs variables relativement au nombre de valeurs qu’elles peuvent obtenir, lorsqu’on substi-
tue ces variables à la place les unes des autres”, et duquel Kronecker, haussant le ton, proclamait :
“L’essor moderne de l’algèbre commence avec le mémoire présenté par Vandermonde à l’Académie
en 1770 et intitulé : Sur la résolution des équations, la profondeur des conceptions, si clairement
exprimées dans cet ouvrage, nous semble vraiment surprenante”.

Examinons ensemble ce mémoire. Après avoir rappelé comment on résoud les équations du second
et du troisième degré, Vandermonde conclut :

“On voit dès à présent que, pour un degré quelconque, la condition essentielle de la résolution
générale étant de trouver une fonction de la somme des racines, de la somme de leurs produits deux
à deux, de la somme de leurs produits trois à trois, etc., qui soit indifféremment l’une quelconque
de ces racines, cette recherche peut se partager en trois chefs :

1o Trouver une fonction des racines de laquelle on puisse dire, dans un certain sens, qu’elle égale
telle de ces racines que l’on voudra ;

2o Mettre cette fonction sous une forme telle qu’il soit de plus indifférent d’y changer les racines
entre elles ;

3o Y substituer les valeurs en somme de ces racines, somme de leurs produits deux à deux, etc.”
Ainsi, si l’on avait eu l’idée d’écrire l’expression :

(1)
1

2

[
x1 + x2 +

√
x2
1 + x2

2 − 2x1x2

]

dont les deux déterminations sont x1, et x2, on aurait, pour le degré 2, satisfait au premier chef de
Vandermonde.

On satisfait au second en écrivant l’expression sous la forme :

1

2

[
(x1 + x2) +

√
(x1 − x2)2

]
On satisfait au troisième en écrivant la nouvelle forme :

1

2

[
(x1 + x2) +

√
(x1 − x2)2 − 4x1x2

]
Et l’on obtient en effet ainsi, pour la résolution de x2 + px+ q = 0, la formule

x1

x2
=

1

2

[
−p±

√
p2 − 4q

]
.

En langage moderne les trois chefs de Vandermonde deviennent :
a) Construire à partir de x1, x2, . . . , xn une expression algébrique irrationnelle qui, parmi ses

déterminations, en admette qui soient égales à x1, x2, . . . , xn elles-mêmes ;
b) Transformer cette expression de façon qu’elle ne contienne que des fonctions symétriques de

x1, x2, . . . , xn ;
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c) Calculer ces fonctions symétriques à l’aide des fonctions symétriques élémentaires.

Vandermonde développe d’abord la solution du problème c) qu’il considère d’ailleurs comme élé-
mentaire et accessoire. Je n’insiste pas, il s’agit d’une question maintenant classique et pour laquelle
Vandermonde avait été précédé à son insu par Waring.

Pour résoudre le problème a), Vandermonde, généralisant l’expression (1), écrit :

(I)
1

n

[
(x1 + . . .+ xn) +

n
√

(ρ1x1 + . . .+ ρnxn)n +
n

√
(ρ21x1 + ρ22x2 + . . .+ ρ2nxn)n

+ . . .+ n
√

(ρn−1
1 x1 + . . .+ ρn−1

n xn)n

]
dans laquelle ρ1, ρ2, . . . , ρn sont les racines niemes de l’unité.

Si nous prenons, en effet, les déterminations suivantes des radicaux

1

ρi
(ρ1x1 + . . .+ ρnxn),

1

ρ2i
(ρ21x1 + . . .+ ρ2nxn), . . .

1

ρn−1
i

(ρn−1
1 x1 + . . .+ ρn−1

n xn),

l’expression, ordonnée par rapport aux x, s’écrit

1

n

{
nxi +

∑
j ̸=i

xj

[
1 +

ρj
ρi

+

(
ρj
ρi

)2

+ . . .+

(
ρj
ρi

)n−1
]}

;

or, pour j ̸= i,
ρj
ρi

est une racine nieme de l’unité différente de 1, donc une racine de

Xn − 1

X − 1
= 1 +X +X2 + . . .+Xn−1 = 0,

et notre expression a pour valeur xi. Ainsi la formule (I) résoud le problème a) en général. Il sera
commode que j’utilise nos notations actuelles et que, par exemple, à la place de (I), j’écrive l’ex-
pression

(II)
1

n

k=n∑
k=1

n

√
(ρk1x1 + ρk2x2 + . . .+ ρknxn)n =

1

n

k=n∑
k=1

n
√
(Vk)n.

Vk est, pour k premier avec n, ce que l’on appelle la résolvante de Lagrange, bien que Vandermonde
l’ait utilisée avant Lagrange. Si k et n ont un diviseur δ et k = δk1, n = δn1, Vk ne contiendra en
réalité que les puissances kiemes

1 des racines niemes
1 de l’unité, σ1, σ2, . . . , σn1 . Si, par exemple, les ρ

et les σ sont rangés par ordre d’arguments croissants à partir de zéro, on a :

(2)

Vk = σk
11
x1 + σk

12
x2 + . . .+ σk

1n1
xn1 + σk

11
xn1+1 + σk

12
xn1+2 + . . .+ σk

1n1
x2n1

+ . . .

= σk
11
(x1 + xn1+1 + . . .+ x(δ−1)n1+1) + σk

12
(x2 + xn1+2 + . . .+ x(δ−1)n1+2) + . . .
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Et comme les seules déterminations utiles de n
√

(Vk)n sont celles de la forme
1

σk
1j

Vk on peut rem-

placer ce radical par n1

√
(Vk)n1 d’où la nouvelle expression :

(III)
1

n

k=n∑
k=1

n1
√
(Vk)n1 ,

que donne Vandermonde. Bien entendu, Vandermonde n’utilise pas la notation précédente ; il montre
pour n = 4, n = 6 la formation de la formule (III), et signale sa généralité ; ainsi il résoud le pro-
blème a) de deux manières quand n est composé. À ces deux manières, Vandermonde en ajoute
encore d’autres dont il signale la généralité et qu’il expose pour n = 4, 6, 8, 9, 10.

(IV)



Pour n = 4, par exemple, il prend l’expression

1

4

{
x1 + x2 + x3 + x4 +

2
√

[(x1 + x2)− (x3 + x4)]2

+ 2
√

[(x1 + x3)− (x2 + x4)]2 +
2
√

[(x1 + x4)− (x2 + x3)]2

}

que j’écrirai sous forme abrégée

1

4

{
x1 + x2 + x3 + x4 + S 2

√
[(x1 + x2)− (x3 + x4)]2

}
le symbole S signifiant qu’il faut faire la somme de tous les
radicaux, analytiquement différents, déduits de celui écrit
par les permutations des racines.

Pour n = 6,

1

6

{
x1 + x2 + x3 + x4 + x5 + x6

+S 3
√

[(x1 + x2) + i(x3 + x4) + j(x5 + x6)]3

}
,

avec 1, i, j = 3
√
1 ou

1

12

{
2(x1 + x2 + x3 + x4 + x5 + x6)

+S 2
√
[(x1 + x2 + x3)− (x4 + x5 + x6)]2

}
.

Pour ne pas allonger, je n’écris pas la formule générale ; on l’obtiendrait facilement à partir de
cette remarque : si, dans la formule (III), on ne conservait que les termes relatifs aux valeurs de k
multiples d’un nombre δ diviseur de n, n = n1δ, on serait conduit à l’expression

(III′)
1

n1

k1=n1∑
k1=1

n1
√
[Vk1δ]

n1

qui, comme le montre la forme (2) de Vk, aurait en particulier comme déterminations les n1 sommes
de δ racines qui sont de la forme xi + xn1+i + . . .+ x(δ−1)n1+i.

Vandermonde a donc résolu les problèmes a) et c) en général, toute la difficulté de la question est
réduite à la résolution du problème b), c’est-à-dire au calcul, à l’aide d’équations auxiliaires que
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l’on sache résoudre algébriquement, de celles des quantités (Vk)
n2 qui figurent dans celle des for-

mules I, II, III ou IV que l’on veut utiliser. Toutes les fois qu’on y aura réussi, la formule employée
deviendra une formule de résolution de l’équation envisagée. Cette formule donnera, en plus des
valeurs cherchées, des valeurs parasites dont Vandermonde ne s’occupe jamais ; sans doute faut-il
comprendre que le tri entre l’ivraie et le bon grain, entre bonnes et fausses valeurs, se fera par
vérification.

Faisons encore une remarque, qui n’est pas dans Vandermonde mais qui nous sera utile plus tard.
Laissons à part, pour simplifier, les formules (IV) ; il est clair que si l’une des formules I ou II peut
être utilisée, la formule III peut l’être ; supposons donc que notre formule de résolution dérive de
III. Alors, les formules III’ associées donnent, pour chaque diviseur δ de n, les sommes telles que
xi + xn1+i + . . . + x(δ−1)n1+i. Ce sont ces sommes que, dans un cas particulier, Gauss appellera les
valeurs des périodes de δ termes.

Voyons maintenant ce que Vandermonde dit de la solution du problème b). Pour n = 2, une seule
expression V 2

1 = (x1−x2)
2 est à calculer ; or, c’est une fonction symétrique, le problème b) est tout

résolu ; il ne se pose même pas.

Pour n = 3, on a à calculer, i et j étant les valeurs complexes de 3
√
1,

V 3
1 = (x1 + ix2 + jx3)

3

= x3
1 + x3

2 + x3
3 + 6x1x2x3 + 3i(x2

1x2 + x2
2x3 + x2

3x1) + 3j(x1x
3
2 + x2x

2
3 + x3x

2
1)

= S + 3iX + 3jY,

V 3
2 = (x1 + i2x2 + j2x3)

3

= (x1 + jx2 + ix3)
2

= S + 3iY + 3jX.

S est une fonction symétrique des racines ; X et Y sont les deux seules déterminations
de u2v + v2w + w2u quand on met de toutes manières x1, x2, x3 à la place de u, v, w. Donc X + Y
et XY sont des fonctions symétriques des racines ; X et Y sont donc donnés par une équation du
2ieme degré. Le problème b) est traité, l’équation du 3ieme degré est résolue.

Pour n = 4, on pourrait utiliser les formules I, II, III, mais Vandermonde utilise la formule IV ; il
a donc à calculer des expressions telles que

[(x1 + x2)− (x3 + x4)]
2 = x2

1 + x2
2 + x2

3 + x2
4

− 2x1x2 − 2x1x3 − 2x1x4 − 2x2x3 − 2x2x4 − 2x3x4

+ 4(x1x2 + x3x4)
= S + 4X,

où S est une fonction symétrique et où la quantité X et les deux quantités analogues Y et Z sont
les trois seules déterminations de uv + wz quand les variables ont les valeurs x1, x2, x3, x4. X, Y, Z
sont donc donnés par une équation auxiliaire de degré 3. b) est traité, l’équation de degré 4 est
résolue.

Je ne suivrai pas Vandermonde jusqu’aux formules explicites de résolution, ni dans ses essais pour
les degrés 5 et 6. C’est pourtant là qu’il se montre le précurseur et le premier ouvrier de la théorie
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des substitutions, comme le signalait Cauchy. Il va déjà loin dans l’étude de la question ; distinguant,
avant Gauss et Abel, les fonctions cycliques invariantes par une permutation circulaire déterminée,
voyant nettement le rôle de ces fonctions comme on s’en rendra compte dans un instant, décom-
posant les fonctions symétriques, qu’il appelle types complets, en fonctions cycliques, qu’il appelle
types partiels. Naturellement Vandermonde n’aboutit pas pour les degrés 5 et 6 ; il ne croit pas
qu’on puisse aboutir, mais il montre aussi combien il serait prématuré cependant de conclure à
l’impossibilité de la résolution des équations générales de degré supérieur à 4.

Puis il remarque que, si sa méthode échoue pour ces équations générales, elle réussit pour des équa-
tions particulières quand les racines sont liées par certaines relations, et il prend comme exemple
x11 − 1 = 0.

S’étant débarrassé de la racine 1, et ayant usé de l’artifice classique des équations réciproques, il a
à résoudre une équation du 5ieme degré, dont il désigne les racines par a, b, c, d, e. Ces racines sont
les valeurs de 2 cos 2Kπ

11
pour K = 1, 2, 3, 4, 5 ; la formule de multiplication des cosinus nous donne

les relations

a2 = b+ 2, ab = a+ c, ac = b+ d, ad = c+ e, ae = d+ e

et celles qui s’en déduisent par la permutation circulaire a, b, d, e, e.

Classant les racines cinquièmes de l’unité dans l’ordre

ρ1 = e
2 i π
5 , ρ2 = e

−2 i π
5 , ρ3 = e

4 i π
5 , ρ4 = e

−4 i π
5 , ρ5 = 1,

d’où entre ces racines les relations :

ρ21 = ρ3, ρ1ρ2 = 1, ρ1ρ3 = ρ4, ρ1ρ4 = ρ2,

Vandermonde se propose de calculer les quantités

(3) V 5
k = [a+ bρk1 + eρk2 + dρk3 + cρk4]

5 ;

plaçant ainsi a, b, c, d, e dans un ordre inattendu. Pourquoi ?

Multipliant les deux membres de l’égalité précédente par ρ5
k

1 =1, les relations entre les ρ nous
donnent une nouvelle expression de V 5

k :

(4) V 5
k = [e+ aρk1t+ cρk2 + bρk3 + dρk4]

5

Or cette nouvelle expression se déduit aussi de la précédente par la substitution

a e
b a
d b
c d
e c

8



c’est-à-dire par la permutation circulaire a, b, d, c, e déjà rencontrée. Vandermonde a donc choisi
l’ordre des racines de façon que les V 5

j soient des fonctions cycliques invariantes, par la permu-
tation circulaire qui laisse invariantes les relations entre les racines a, b, c, d, e. Or ces relations,
en permettant d’abaisser progressivement jusqu’au premier degré le degré de tout polynôme en
a, b, c, d, e, permettent d’écrire l’expression (3) sous la forme

(3′) V 5
k = aA+ bB + dD + cC + eE + F,

avec des A,B,C,D,E, F faciles à calculer à partir des ρ, ces relations permettront aussi de donner
à (4) la forme

(4′) V 5
k = eA+ aB + bD + dC + cE + F.

avec les mêmes A,B,C,D,E, F . On passe de (3’) à (4’) par notre permutation circulaire, la ré-
pétition de cette permutation donnera trois autres expressions linéaires de V 5

k , d’où, par moyenne
arithmétique,

V 5
k =

1

5
(A+B + C +D + E)(a+ b+ c+ d+ e) + F.

Ainsi les quantités V 5
k sont des fonctions symétriques des racines ; pour x11 − 1 = 0, comme pour

l’équation générale du 2ieme degré, le problème b) est tout résolu, il ne se pose même pas. L’équation
x11 − 1 = 0 est donc résolue.

Vandermonde n’explicite pas son raisonnement comme je viens de le faire, mais il obtient effective-
ment les valeurs de 11

√
1 par les calculs que j’ai indiqués puis, relativement à xn − 1 = 0, il ajoute :

Comme pour résoudre l’équation, il n’est question que de déterminer la quantité qui est indiffé-
remment l’une des racines, problème a), et nullement de faire qu’il soit indifférent d’y changer ces
racines entre elles, problème b) cette résolution nous sera toujours facile.

J’espère que dans cette phrase, qui n’a pas toujours été comprise 4, vous reconnaissez exactement ce
que j’ai dit pour x11− 1 = 0. Mais Vandermonde 5 avait-il le droit de l’affirmer pour xn− 1 = 0 ? Si
Vandermonde avait écrit les racines dans l’ordre alphabétique a, b, c, d, e, V 5

k n’aurait plus été une
fonction symétrique, c’est grâce seulement à l’ordre tout particulier choisi qu’il en est ainsi. Il est

4. C’est à son sujet que Nielsen écrit : “Il me semble asses difficile de juger la portée de cette remarque”.
5. À un autre endroit, Vandermonde avait écrit aussi : “Ajoutons seulement que, lorsque n est premier, 2m+ 1,

pour obtenir les valeurs rigoureuses de r en supposant

rn − 1 = r2m+1 − 1 = 0 = (r − 1)(r2 + x′r + 1)(r2 + x′′r + 1)(r2 + x′′′r + 1) . . .

on a l’équation

xm − xm−1 + (m− 2)xm−3 − (m− 3)(m− 4)

1.2
xm−5 + . . .

− (m− 1)xm−2 +
(m− 2)(m− 3)

1.2
xm−4 − (m− 3)(m− 4)(m− 5)

1.2.3
xm−6 + . . . = 0

dont les racines sont, x′, x′′, x′′′, etc., et qui est toujours facile à résoudre, comme on le verra ci-après par le calcul
du cas où m = 5. Si n n’est pas un nombre premier, les simplifications sont encore plus grandes, et s’offrent sans
peine.”
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donc indispensable de prouver qu’on peut toujours choisir un ordre des racines donnant un résultat
analogue, au moins quel que soit n premier, puisque, comme l’on sait et comme Vandermonde
l’observe, les racines de l’unité se calculent toutes à l’aide de celles d’indice premier. Vandermonde
ne dit pas un mot de cette nécessité qui n’a pourtant pas pu lui échapper car l’ordre a, b, e, d, c ne
s’est pas présenté à lui, il lui avait fallu le chercher.

Comblons cette lacune si surprenante et, pour gagner quelques minutes, raisonnons directement sur
xn − 1

x− 1
= 0, sans abaisser le degré de moitié. Soient x1, x2, . . . , xn−1 ces racines et soit ρ = e

2π i
n−1 .

Le raisonnement précédent s’appliquera aux quantités

(Vk)
n−1 = [ρkx1 + ρ2kx2 + ρ3kx3 + . . .+ ρ(n−1)kxn−1]

n−1

si l’on peut classer les racines dans un ordre tel que toute relation de la forme

xA
αx

B
β . . . = xL

λ ou = 1,

soit inaltérée par la permutation circulaire x1, x2, . . . , xn−1 ; c’est-à-dire en ajoutant un même
nombre à tous les indices, à condition de convenir que la notation xn−1+k sera équivalente à la
notation xk.

Admettons que la conservation des relations ait lieu ; alors, si ξ est racine primitive de xn − 1 = 0,
et si ξ occupe le rang i dans la suite x1, x2, . . . , xn−1, on a :

xi = ξ, xi+1 = ξg,

pour un certain entier g, mais ceci s’écrivant xi+1 = xg
i , entraîne

(5) xi = ξ, xi+1 = ξg, xi+2 = ξg
2
, . . . , xi+n−1 = ξg

n−2
.

Donc il faut et il suffit, pour l’application du raisonnement de Vandermonde, qu’il existe un nombre
g permettant d’exprimer les racines par les formules (5) ; un tel nombre s’appelle, depuis Euler, une
racine primitive de n.

Que Vandermonde n’ait pas explicité le raisonnement précédent, cela ne serait pas étonnant ; les
géomètres du xviiie siècle, entraînés au calcul, considéraient comme allant de soi des choses bien
plus cachées. D’ailleurs, traitant seulement des cas particuliers, ils laissaient toujours au lecteur le
soin d’opérer de même dans les cas non traités et il leur arrivait alors parfois de ne pas voir les
difficultés qu’on éprouverait au moment où l’on essaierait d’opérer de même. Je pense que Vander-
monde n’a pas aperçu la lacune de son raisonnement, en somme qu’il n’a pas compris la nécessité
de démontrer l’existence d’une racine primitive g des nombres n qu’il considérait, c’est-à-dire des
nombres n premiers. Cette démonstration n’a été donnée que par Gauss.

Relativement au théorème d’existence des racines primitives, Gauss écrit au no 56 de la section II
de ses Disquisitiones 6 : “Ce théorème nous fournit un exemple remarquable de la circonspection
dont on a besoin dans la théorie des nombres, pour ne pas regarder comme démontrées des choses

6. Je cite cet ouvrage d’après la traduction qu’en a faite Pouillet-Delisle sous le titre : Recherches arithmétiques.
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qui ne le sont pas. Lambert, dans la dissertation que nous avons citée plus haut fait mention de
cette proposition mais ne dit pas un mot de la nécessité de la démontrer. Personne même n’a tenté
de le faire, excepté Euler (Comm. nova Acad. Petrop., L. XVIII, p. 85) dans son mémoire intitulé
Demonstrationes circa residua ex divisione polestatum per numeros primos resultantia. On peut
voir surtout l’article 57 7, dans lequel il a parlé avec étendue de la nécessité de démontrer cette pro-
position. Cependant la démonstration de cet homme pénétrant présente deux défauts ; l’un tient à
ce qu’il suppose tacitement, article 51 et suivant, que la congruence xn = 1 (en ramenant ses raison-
nements à notre notation) a réellement n racines différentes, tandis qu’il était seulement démontré
que cette congruence ne peut en avoir davantage ; l’autre à ce qu’il ne déduit que par induction la
formule du no 34.”

La dissertation de Lambert est insérée dans les Acta eruditorum de 1769 ; le mémoire d’Euler
dans les Novi commentarii academiae scientiarum imperiales Petropolitanae pour 1773, parus en
1774. Ainsi, quand Vandermonde écrivait son mémoire en 1770, il aurait commis la même faute
que Lambert commettait au même moment et sur laquelle Euler n’avait pas encore attiré l’attention.

Mais peut-être n’est-ce pas en la ramenant à l’existence des racines primitives d’un nombre premier
n que la possibilité de ranger les n−1 racines niemes imaginaires de l’unité dans un ordre qui assure
la permanence des relations est apparue certaine à Vandermonde. Peu importe ; la faute logique
qu’il a commise peut être différente, elle n’en devient pas plus grave. Ce qui est certain, c’est que
Vandermonde, considérant le premier les résolvantes de Lagrange Vk, a vu que la possibilité de la
résolution algébrique dépendait de l’existence d’une permutation des racines donnant à (Vk)

n−1,
si le degré est n − 1, un petit nombre de valeurs et qu’il a, d’après cela, construit une méthode
de résolution des équations. De plus, en ce qui concerne les équations binômes xn − 1 = 0, il a
affirmé que, pour n premier, la résolution était possible et simple, l’une des valeurs de (Vk)

n−1 étant
fonction symétrique des racines différentes de 1. Or tout cela est exact ; mais le dernier point n’a
été logiquement prouvé que par Gauss. C’est là un apport très important dû à Gauss, logiquement
indispensable ; il n’en est pas moins injuste d’attribuer à Gauss la résolution des équations binômes.

Certes le travail de Gauss est un chef-d’œuvre ; chef-d’œuvre d’exposition élégante, rigoureuse et
complète, chef-d’œuvre de compréhension et d’intelligence, mais où la part d’invention personnelle
est en réalité fort mince. Gauss expose la résolution de deux façons : m étant premier, m − 1
est composé et Gauss, utilisant les formules III’, calcule d’abord ces sommes de racines que nous
avons rencontrées et qu’il appelle les valeurs des périodes ; d’où ensuite les racines elles-mêmes
par des formules équivalentes à IV. Ensuite Gauss, pour résumer et conclure nettement, reprend
la résolution sans parler des périodes, il utilise alors I et son exposé est identique à celui que je
viens de vous faire. Ainsi Gauss, dans l’un ou l’autre de ses calculs, suit pas à pas Vandermonde ;
mais, bien entendu, il le perfectionne beaucoup. Par exemple, la méthode de Vandermonde conduit
aux périodes, mais Vandermonde ne parle pas des périodes ; de Vandermonde est la méthode, de
Gauss sont les résultats. Par exemple encore, Vandermonde obtenait des valeurs parasites parce
qu’il utilisait plusieurs extractions de racines m− 1iemes, Gauss les ramène toutes à une seule et n’a
plus de valeurs parasites. Il ne s’agit pas de diminuer Gauss, mais de rendre justice à Vandermonde.

Pourquoi Gauss n’a-t-il pas lui-même rendu justice à Vandermonde, pourquoi n’a-t-il pas cité Van-

7. Cette référence est inexacte.
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dermonde ?

J’écarte l’hypothèse d’une redécouverte faite par Gauss ; une rencontre si complète dans le fond et
dans la forme est impossible. Au reste la note trouvée par Maxwell prouve que Gauss a eu entre les
mains le volume de l’Académie qui contient le travail de Vandermonde, au plus tard en 1833. S’il
ne l’avait eu qu’après la publication de ses recherches (1801), Gauss aurait ainsi appris qu’il avait
été devancé, alors il aurait tenu à dire qu’il n’avait pas connu le travail de Vandermonde et en avait
retrouvé la méthode. Non ; c’est délibérément que Gauss, qui en 1849 publia encore un long travail
sur les équations algébriques, a méconnu la priorité de Vandermonde.

J’écarte aussi l’hypothèse d’une tentative de vol commise par Gauss, cet homme qui conserva sans
les publier plusieurs très belles découvertes, qui n’avait pas besoin du suffrage des autres et ne
tenait qu’à sa propre estime. Non ; mais, par réaction contre la tolérance qui, au xviiie siècle, avait
si souvent permis de remplacer les raisonnements logiques par des arguments tendancieux, Gauss
en était arrivé à méconnaître l’essentiel : la découverte, n’estimant que la démonstration rigoureuse.
D’où cette sévérité, profondément injuste, dont il a fait preuve envers Vandermonde, comme envers
lui-même d’ailleurs.

Cette impartialité dans la sévérité prouverait la bonne foi de Gauss si l’on songeait à la mettre en
doute ; il a été de bonne foi, mais il s’est trompé en n’attachant de l’importance qu’à l’achèvement
de la démonstration. Certes, au point de vue de la stricte logique, une démonstration est inexistante
si elle n’est pas achevée et entièrement rigoureuse ; il est certain aussi qu’un fait mathématique n’est
acquis que lorsqu’il est démontré. Pourtant aucune découverte n’a jamais été faite en mathéma-
tiques, comme ailleurs du reste, par un effort de logique déductive ; elle résulte toujours d’un travail
de création de l’imagination qui bâtit ce qui lui semble devoir être la vérité, guidée parfois par des
analogies, parfois par un idéal esthétique, mais qui ne bâtit nullement sur de solides bases logiques.
La découverte faite, la logique intervient ensuite pour contrôle ; c’est elle qui, finalement, décide
s’il s’agissait bien d’une vraie découverte et non d’une découverte illusoire ; son rôle est donc consi-
dérable, il n’est pourtant que secondaire. L’imagination intervient d’ailleurs encore pour découvrir
les voies dans lesquelles doit s’engager la démonstration logique. Et celle-ci n’est acquise le plus
souvent qu’après quelques essais infructueux et grâce précisément à l’emploi simultané des idées
qui avaient présidé à l’élaboration de preuves insuffisantes.

Aussi Gauss a-t-il été doublement injuste en ne tenant jamais compte, dans ses Disquisitiones,
du vrai moment de la découverte, et en critiquant âprement les démonstrations de ses devanciers
sans dire, le plus souvent, quels sont les points de ces démonstrations qu’il a utilisés. Ainsi, on
ne se douterait guère, à lire le no 56 que j’ai reproduit plus haut, qu’il y a des liens étroits entre
la première démonstration qu’a donnée Gauss pour l’existence des racines primitives des nombres
premiers et la démonstration d’Euler que Gauss critique justement.

Quant à Vandermonde, Gauss ne le cite pas du tout. Il semble que la section VII de ses Disquisi-
tiones relative aux équations binômes ne soit pas écrite de la même plume que les autres sections.
Peut-être s’agit-il d’une partie ajoutée au reste de l’ouvrage et que Gauss aurait eu d’abord l’idée de
publier ailleurs. En tout cas, un fait est certain c’est que la publication des Disquisitiones a été faite
avec une sorte de précipitation tout à fait contraire aux habitudes de lente et complète préparation
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que Gauss montrera ensuite ; ainsi, le texte comporte de nombreux renvois à une section VIII, qui
n’existe pas, ce que Gauss explique dans la préface en disant seulement : “le volume devenait plus
considérable que je ne m’y étais attendu”.

Quoiqu’il en soit, aucun nom n’est cité dans la section VII contrairement à ce que Gauss a fait dans
les sections précédentes ? Je crois qu’il convient de chercher l’explication de cette omission dans
cette phrase de la préface : “La théorie de la division du cercle, ou des polygones réguliers, qui com-
pose la section VII, n’appartient pas par elle-même à l’arithmétique mais ses principes ne peuvent
être puisés que dans l’arithmétique transcendante. Ce résultat pourra sembler aux géomètres aussi
inattendu que les vérités nouvelles qui en dérivent et qu’ils verront, j’espère, avec plaisir 8”. Ne doit-
on pas comprendre que Gauss réclame seulement pour lui la partie arithmétique de la question ? La
partie algébrique, c’est-à-dire le procédé de calcul, n’appartient pas par elle-même à l’arithmétique,
il la suppose connue, il n’en cite pas les auteurs. Mais la justification de ces calculs, les principes
sur lesquels ils reposent sont de nature arithmétique, c’est ce que Gauss a vu, lui seul ; tous les géo-
mètres s’étaient bornés jusqu’à lui à distinguer le cas d’un degré premier et d’un degré composé, ils
pourront donc trouver inattendue l’intervention de propriétés arithmétiques cachées. Et là encore
Gauss n’a personne à citer, il n’a été précédé par personne dans cette voie.

Si mon interprétation était exacte, Gauss délimiterait sa part et celle de Vandermonde exactement
comme je le fais. Il est regrettable pourtant que Gauss n’ait pas cité Vandermonde, fût-ce pour le
critiquer. Ç’aurait été plus juste.

Mais pourquoi d’autres n’ont-ils pas réparé vite l’injustice de Gauss ? La faute incombe surtout à
Vandermonde lui-même. Ça a d’abord été une faute parfaitement excusable ; il a été trop modeste
pour penser : “Il faut que je dise beaucoup de bien de moi ; sans quoi, qui donc commencerait à
en dire ?”. Rencontrant, débutant, inconnu, Lagrange plein de gloire, et l’antériorité de son travail
étant masquée par un malheureux retard de publication, il se borne à déclarer : “Ce mémoire a été
lu dans le courant de novembre 1770 et paraphé par M. de Fouchy le 28 du même mois ; mais il
m’a fallu attendre l’impression des mémoires de 1771 ”, parus seulement en 1774, Vandermonde ne
le dit pas, “parce que je n’avais pas en 1770, l’honneur d’être de l’Académie. . .. Depuis, l’illustre
M. de La Grange a publié. . . une méthode particulière qu’il se propose d’appliquer aux degrés non
résolus. On remarquera quelques conformités entre cet ouvrage et le mien, dont je ne puis qu’être
flatté”. Et c’est tout, pas un mot pour préciser quels sont ces points communs, pas un mot sur ce
qui n’appartient qu’à lui seul. D’autre part, pour caractériser son étude, il se borne à écrire : “La
méthode que je vais exposer ne suppose l’introduction d’aucune inconnue et à quelque instant que
ce soit dans la marche du calcul ; on n’a que des équations faciles à vérifier en y exéculant les opéra-
tions indiquées”. On comprend l’embarras du secrétaire perpétuel 9 ayant à rédiger, suivant l’usage

8. Les italiques sont de Gauss.
9. J’avais cru d’abord pouvoir attribuer à Condorcet le résumé dont il est ici question ; mais, comme on va le

voir, cela n’est pas certain.
Grandjean de Fouchy resta secrétaire perpétuel jusqu’au 24 juillet 1776, mais, le 8 mars 1773, Condorcet lui fut
adjoint avec survivance. J’avais cru qu’à partir de cette date, Condorcet avait, en fait, assumé toutes les charges du
secrétaire perpétuel et que l’Histoire de Académie pour 1771 était de lui car elle est parue en 1774, et même tout
à la fin de 1774 puisqu’on y trouve un Rapport des inoculations faites dans la famille royale au château de Marly
par M. de Lassone, qui fut élu à l’Académie le 20 juillet 1774. À la vérité, ce rapport est après le mot Fin placé au
bas de la page 848, mais il est paginé à partir de 849 et le titre de volume court partagé entre les hauts des pages
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de l’époque, le résumé et l’exposé critique du mémoire. Il se borne à peu près à en dire ceci, où il est
plus question de Lagrange que de Vandermonde : “On verra qu’il (Vandermonde) s’est rencontré
dans plusieurs points avec M. de La Grange, mais il paraît s’être plus particulièrement appliqué à
simplifier les calculs pour les rendre plus praticables, tandis que M. de La Grange s’est plus occupé
des moyens de s’assurer a priori de la possibilité de la solution cherchée ou de la généralité des mé-
thodes connues.”. Et ne pouvant s’arrêter là, le secrétaire se lance dans un interminable dithyrambe
à la gloire des recherches désintéressées – sans doute pour bien marquer qu’il n’a pas vu l’intérêt du
mémoire de Vandermonde. C’est là, en particulier, que l’on trouve, et pour la première fois je crois,
le fameux poncif académique : si des Grecs, désintéressés, n’avaient pas étudié les coniques, Képler
ne les aurait pas utilisées et nous n’aurions pas ces tables astronomiques si précises qui sauvent la
vie à tant de navigateurs ! Quant à Lacepède, il se borne à dire, dans son éloge de Vandermonde,
que celui-ci a cherché à simplifier les calculs.

Vandermonde n’étant jamais revenu sur ses recherches, pour ne pas se laisser aller à attribuer au
seul Lagrange ce qui appartenait aussi à Vandermonde, pour reconnaître l’apport personnel de
celui-ci, il aurait fallu étudier, et avec grand soin, un mémoire, assez rébarbatif, dû à un homme
qu’on accablait de brocards, à la femme de Monge, au chef du déshabillement, à un mathématicien
pour musiciens. Dans des travaux d’Histoire des sciences, Montucla, Lalande, Lacroix et Delambre,
confrères de Vandermonde à l’Académie, citent Gauss pour sa résolution des équations binômes
parue moins de 5 ans après la mort de Vandermonde, mais ne citent pas Vandermonde.

De même Legendre, lui aussi confrère de Vandermonde, ne le cite pas dans son traité de géométrie
élémentaire à l’occasion du polygone régulier de 17 côtés, alors qu’il cite Gauss. À la vérité, Vander-
monde n’aurait pu être cité là qu’avec les plus expresses réserves, car il a commis une autre faute,
conséquence peut-être de la première, mais faute fort grave cette fois : il n’a pas compris toute
l’importance de sa méthode. Et, par exemple, alors qu’elle lui donnait les racines de x17 − 1 = 0 à
l’aide de radicaux d’ordre 16, donc à l’aide de radicaux carrés superposés, il laisse à Gauss le soin
de découvrir 30 ans après que le polygone régulier de 17 côtés peut être construit par la règle et le
compas !

Certes, tout homme qui trouve quelque chose de vraiment important est dépassé par sa propre
découverte ; il ne la comprend lui-même, et seulement partiellement, qu’en y réfléchissant ensuite

848 et 849 comme entre les hauts des autres couples de pages. Le rapport n’est donc pas là par suite d’une erreur
de reliure.
Ainsi, Condorcet me paraissait devoir être l’auteur de l’analyse du mémoire de Vandermonde ; J’ai demandé à M.
Pierre Gauja, secrétaire rédacteur de l’Académie des Sciences, de rechercher dans archives de l’Académie s’il existait
quelque pièce permettant de préciser. Or voici ce qu’il m’écrit : “Grandjean de Fouchy n’abandonna ses fonctions
qu’en 1776, et les plumitifs des procès-verbaux des séances sont de sa main jusqu’à cette époque.
Nous ne possédons pas le manuscrit original de l’Histoire de l’Académie. Cependant, parmi les pièces non classées
de 1771, se trouve un papier, de la main de de Fouchy, qui paraît avoir été préparé pour le début de l’histoire de
cette année, mais le texte imprimé est différent.
Il semble que de Fouchy s’est servi de Condorcet, qu’il avait lui-même choisi et fait nommer, mais que jusqu’à sa
démission, il a continué à remplir lui-même le rôle de secrétaire, et il faut probablement en conclure que l’histoire
de 1771 est le fruit de cette collaboration.
Dans la lettre, en date du 24 février 1773, par laquelle le duc de Lavrillière invite l’Académie à délibérer sur
l’adjonction de Condorcet à Grandjean de Fouchy, le ministre écrit textuellement que Grandjean de Fouchy a
déjà éprouvé les talents de Condorcet en lui confiant quelques articles de l’Histoire de l’Académie qu’on imprime
actuellement.”
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longuement. Or Vandermonde n’est jamais revenu sur ses recherches algébriques parce qu’il n’a tout
d’abord senti qu’imparfaitement leur importance, et s’il ne l’a pas mieux comprise par la suite c’est
précisément parce qu’il n’a pas réfléchi profondément sur elles ; il s’est intéressé à tout, s’est occupé
de tout ; il n’a rien pu approfondir lentement, sa vie fut trop active, trop embrasée. Si j’emploie ce
mot c’est qu’à lire sa biographie il me semble, qu’ayant eu une première atteinte de tuberculose dans
sa jeunesse, Vandermonde est mort de cette même maladie qui lui aurait fait presque entièrement
perdre la voix quelques mois avant sa fin.

Pour délimiter exactement ce que Vandermonde a vu, compris et ce qui lui a échappé il ne faudrait
pas seulement se refaire la mentalité d’un homme du xviiie siècle, mais la mentalité de Vander-
monde et à l’instant où celui-ci eut du génie et dépassa son temps. En essayant de le faire, on
attribuera toujours trop ou trop peu à Vandermonde. Aussi, tout en souscrivant à l’appréciation
de Kronecker sur la profondeur et la clarté des vues de Vandermonde, on ne doit pas oublier qu’il
s’agit pourtant de l’appréciation d’un homme qui a mieux compris le mémoire de Vandermonde que
Vandermonde lui-même, parce qu’il l’a vu au travers des recherches contemporaines de Lagrange
et des recherches postérieures des Gauss, Abel, Cauchy, Galois.

Essayons donc d’être justes envers tous : c’est un fait que Vandermonde a créé, et de toutes pièces,
une méthode de résolution qui s’applique, sans qu’on ait rien à y changer, à toute équation résoluble
algébriquement.

C’est un fait que la puissance de cette méthode n’est connue et prouvée que grâce aux travaux des
successeurs de Vandermonde.

Pour rendre à Vandermonde ce qui lui appartient, pour le citer à l’occasion de quelque chose qui
soit vraiment de lui, appelons méthode de Vandermonde cette méthode de calcul qu’il a bâtie et
employons-la systématiquement depuis l’équation du 3ieme degré jusqu’aux équations abéliennes,
l’enseignement ne fera qu’y gagner en unité, en simplicité et en clarté ; et cela ne nous empêchera
nullement de rendre pleine justice à tous les autres grands algébristes.
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