
Résultats des chapitres I.5 et I.6 (début) du livre Algèbres d’opérateurs dans l’espace
hilbertien de Jacques Dixmier

CHAPITRE 5. ALGÈBRES HILBERTIENNES

1. Définition des algèbres hilbertiennes

Soit A une algèbre associative sur le corps C des nombres complexes, munie d’un produit scalaire
(x|y) qui en fait un espace préhilbertien séparé. Soit H l’espace hilbertien complété de A. On
suppose donnés

1o Une application linéaire bijective x 7→ x∧ de A sur A ; on notera x 7→ x∨ l’application
réciproque ;

2o Un antiautomorphisme involutif x 7→ x∗ de A, c’est-à-dire une application bijective de A sur
A telle que

(λx+ µy)∗ = λx∗ + µy∗, (xy)∗ = y∗x∗, x∗∗ = x

(cet antiautomorphisme fait de A une algèbre involutive).

Définition 1. On dit que A est une algèbre quasi-hilbertienne si les axiomes suivants sont vérifiés :
(i) (x|y) = (y∗|x∗) pour x ∈ A, y ∈ A ;
(ii) (xy|z) = (y|x∗∧z) pour x ∈ A, y ∈ A, z ∈ A ;
(iii) Pour tout x ∈ A, l’application y 7→ xy est continue ;
(iv) L’ensemble des éléments xy, où x ∈ A, y ∈ A, est total dans A ;
(v) Si a et b sont deux éléments de H tels que (a|xy) = (b|x∧y∧) pour tout x ∈ A et tout y ∈ A,

il existe une suite (xn) dans A telle que xn → b et x∧n → a.
On dit que A est une algèbre hilbertienne si, de plus, x∧ = x pour tout x ∈ A.

Les axiomes (i) et (iii) entraînent que l’application y 7→ yx = (x∗y∗)∗ est continue. Les axiomes (i)
et (ii) entraînent

(xy|z) = (z∗|y∗x∗) = (y∧z∗|x∗) = (x|zy∧∗), (1)

ce qui rétablit la symétrie entre la multiplication à gauche et la multiplication à droite. En outre,
on a

(xy|z) = (y|x∗∧z) = (x∗∧∗∧y|z) donc (x|zy∧∗) = (x∗∧∗∧|zy∧∗) ;

comme y∧∗ est un élément quelconque de A, l’axiome (iv) entraîne x = x∗∧∗∧, d’où

x∨∗ = x∗∧ (2)

x∧∗ = x∗∨. (3)

Transcription en LATEX : Denise Vella-Chemla, décembre 2025.
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La relation (i) et l’axiome (ii) peuvent donc s’écrire aussi

(xy|z) = (x|zy∗∨), (4)

(xy|z) = (y|x∨∗z). (5)

Dans le cas des algèbres hilbertiennes, l’axiome (v) est vérifié de lui-même.

D’après l’axiome (i), l’application x 7→ x∗ se prolonge de manière unique en une involution J de H,
c’est-à-dire, rappelons-le, en une application J de H sur H telle que

J2 = 1, (Ja|Jb) = (b|a), J(λa+ µb) = λJa+ µJb.

L’application J s’appelle l’involution de H définie canoniquement par A.

Les applications y 7→ xy, y 7→ yx se prolongent de manière unique en éléments Ux, Vx de L(H). On
a immédiatement

Uλx+µy = λUx + µUy, Uxy = UxUy, Ux∗∧ = U∗
x ; (6)

Vλx+µy = λVx + µVy, Vxy = VyVx, Vx∧∗ = V ∗
x ; (7)

UxVy = VyUx ; (8)

JUxJ = Vx∗ , JVxJ = Ux∗ . (9)

Les Ux (resp. Vx) constituent une algèbre involutive d’opérateurs dans H. D’après le § 3, corollaire 1
du théorème 2, et l’axiome (iv), l’adhérence faible de cette algèbre est une algèbre de von Neumann
U(A) [resp. V(A)], appelée algèbre de von Neumann associée à gauche (resp. à droite) à A. Donc
les xy, où x ∈ A, y ∈ A sont partout denses dans A. Les algèbres U(A) et U(A) sont permutables à
cause de (8), et J U(A) J = V(A), J V(A)J = U(A) à cause de (9). Les applications x 7→ Ux, x 7→ Vx
sont appelées les applications canoniques de A dans U(A) et V(A).

Les algèbres hilbertiennes sont parfois appelées aussi algèbres unitaires. Elles constituent, on le verra, un puissant
moyen d’étude des algèbres de von Neumann.

2. Le théorème de commutation.

Définition 2. Un élément a ∈ H est dit borné à gauche (resp. à droite) s’il existe un opérateur
continu Ua (resp. Va) de L(H) tel que Uax = Vxa (resp. Vax = Uxa) pour x ∈ A.

Les éléments de A sont bornés à gauche et à droite et les notations Ua, Va sont cohérentes avec les
notations Ux, Vx antérieures lorsque a ∈ A. D’autre part, l’égalité Uax = Vxa (resp. Vax = Uxa)
prouve, en faisant converger faiblement Vx (resp Ux) vers 1, que a ∈ Ua(H) [resp. a ∈ Va(H)]. Il en
résulte, en particulier, que les application a 7→ Va sont injectives.

Lemme 1. Si a est borné à gauche et T ∈ V(A)′, Ta est borné à gauche, et TUa = UTa ; les Ua

forment un idéal à gauche m de V(A)′. Si a est borné à droite et T ∈ U(A)′, Ta est borné à droite
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et TVa = VTa ; les Va forment un idéal à gauche n de U(A)′.

Soit m∗ (resp. n∗) l’image de m (resp. n) par l’application T 7→ T ∗.

Lemme 2. Soient m1 = m ∩m∗, n1 = n ∩ n∗. On a

m′′
1 = V(A)′, n′′1 = U(A)′.

Lemme 3. m1 et n1 commutent.

Théorème 1. U(A)′ = V(A), V(A)′ = U(A).

Proposition 1. Soit A une algèbre hilbertienne, A′ une sous-algèbre involutive de A.
(i) A′ est une algèbre hilbertienne.
(ii) Si les Ux, où x ∈ A′, sont fortement partout denses dans U(A), A′ est partout dense dans A.
(iii) Si A′ est partout dense dans A, on a U(A′) = U(A),V(A′) = V(A).

Dans toute la suite du livre (sauf pour l’exercice 5), il ne sera question que d’algèbres hilbertiennes. On a toutefois
démontré le théorème 1 pour les algèbres quasi-hilbertiennes, parcè qu’il est utile dans certaines applications, et
parce qu’on n’abrège pas les démonstrations en se limitant aux algèbres hilbertiennes.

3. Éléments bornés dans les algèbres hilbertiennes.

Dans toute la fin de ce §, on suppose que A est une algèbre hilbertienne.

Proposition 2. Pour qu’un élément a ∈ H soit borné à gauche, il faut et il suffit qu’il soit borné
à droite. L’élément Ja possède alors les mêmes propriétés, et l’on a :

UJa = U∗
a = JVaJ, VJa = V ∗

a = JUaJ.

Corollaire. Pour tout élément C du centre commun de U(A) et V(A), on a JCJ = C∗.

Définition 3. Un élément a ∈ H possédant les propriétés de la proposition 2 est dit borné relati-
vement à A.

Remarque. Soit a ∈ H. Pour x, y ∈ A, on a (xy|a) = (x|Vy∗a). Donc, dire que a est borné revient
à dire que la forme bilinéaire (x, y) 7→ (xy|a) est continue par rapport aux deux variables x, y. On
voit alors qu’il revient au même de dire que a est borné relativement à A, ou relativement à toute
sous-algèbre hilbertienne de A partout dense dans A.

Proposition 3. Les Ua (resp. Va), a borné, forment un idéal bilatère de U(A) [resp. V(A)]. On a,
pour T ∈ U(A),

TUa = UTa, UaT = UJT ∗Ja ;

pour T ′ ∈ V(A),
T ′Va = VT ′a, VaT

′ = VJT ′∗Ja.
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Proposition 4. Pour qu’un élément a ∈ H soit borné, il faut et il suffit qu’il existe une suite (xn)
d’éléments de A telle que ∥xn − a∥ → 0 et sup∥Uxn∥ < +∞. Alors, Uxn tend fortement vers Ua.

Définition 4. On dit que A est achevée si tout élément borné de H appartient à A.

Soit A une algèbre hilbertienne. Soit B ⊃ A l’espace vectoriel des éléments bornés de H. Comme
sous-espace de H, B est muni d’une structure préhilbertienne. Pour a ∈ B et b ∈ B, on a Uab = Vba ;
en effet, soit (xn) une suite d’éléments de A tendant fortement vers b ; pour tout y ∈ A, on a

(Uaxn|y) = (Vxna|y) = (a|yx∗n) = (a|Uyx
∗
n),

donc à la limite
(Uab|y) = (a|UyJb) = (a|VJby) = (Vba|y),

ce qui prouve notre assertion. Posons, pour a ∈ B et b ∈ B, ab = Uav = Vba. On définit ainsi sur
B une multiplication qui prolonge celle de A et qui fait de B une algèbre associative, car, pour
a ∈ B, b ∈ B, c ∈ B, on a

a(bc) = UaVcb = VcUab = (ab)c.

Enfin, pour a ∈ B, posons a∗ = Ja. On a

a∗b∗ = UJaJb = JVab = J(ba) = (ba)∗ ;

donc B devient une algèbre involutive et A est une sous-algèbre involutive de B. On vérifie aussitôt
que B est une algèbre hilbertienne, appelée algèbre hilbertienne des éléments bornés. Un élément de
H borné relativement à B est dans B. Donc l’algèbre hilbertienne des éléments bornés est achevée.

D’après la proposition 1 (iii), on a

U(A) = U(B), V(A) = V(B).

Ce qui précède permet de ramener, presque toujours, les problèmes relatifs aux algèbres hilber-
tiennes à des problèmes relatifs aux algèbres hilbertiennes achevées.

Au lieu de “achevée”, on dit aussi “maximale”.

4. Éléments centraux dans les algèbres hilbertiennes.

Proposition 5. Pour un élément a ∈ H, les conditions suivantes sont équivalentes :
(i) (a|xy) = (a|yx) pour x ∈ A, y ∈ A ;
(ii) Uxa = Vxa pour x ∈ A ;
(iii) Ta = JT ∗Ja pour T ∈ U(A) [donc pour T ∈ V(A)].

Définition 5. Si a ∈ H vérifie les conditions de la proposition 5, on dit que a est central relative-
ment à A.

Si a ∈ A, on retrouve la notion algébrique usuelle, d’après la condition (ii) de la proposition 5.
L’ensemble Z des éléments centraux de H est un sous-espace vectoriel fermé de H, qui ne change
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pas si l’on remplace A par une sous-algèbre involutive de A partout dense dans A [puisque U(A) ne
change pas] ; en particulier, les éléments centraux sont les mêmes relativement à A et relativement
à l’algèbre hilbertienne des éléments bornés.

Proposition 6. Soit Z = U(A) ∩ V(A) le centre commun de U(A) et V(A) :
(i) J(Z) = Z ;
(ii) PZ ∈ Z ′ ;

(iii) Pour a ∈ Z, EU(A)
a = E

V(A)
a ∈ Z ;

(iv) EU(A)
Z = E

V(A)
Z ∈ Z.

Définition 6. Le projecteur EU(A)
Z = E

V(A)
Z de la proposition 6 est appelé le projecteur caracté-

ristique de A.

En particulier, si A admet un élément unité, le projecteur caractéristique de A est 1.

Proposition 7. Pour qu’un élément borné a de H soit central, il faut et il suffit que Ua ∈ Z, ou
que Va ∈ Z. On a alors Ua = Va.

5. Opérations élémentaires sur les algèbres hilbertiennes.

Soit A une algèbre hilbertienne. Sans changer la structure préhilbertienne ni l’involution de A,
remplaçons la multiplication (x, y) 7→ xy par la multiplication (x, y) 7→ yx. On vérifie aussitôt
qu’on obtient ainsi une algèbre hilbertienne A′ qui est dite l’algèbre hilbertienne opposée à A. On
a

U(A′) = V(A), V(A′) = U(A).

Soit (Aι)ι∈I une famille d’algèbres hilbertiennes. Soir Hι l’espace hilbertien complété de Aι. Soit
A la somme directe des Aι : un élément de A est une famille (xι)ι∈I , oxι ∈ Aι, et où tous les xι
sont nuls sauf un nombre fini d’entre eux. Définissons une structure d’algèbre et une structure
d’espace préhilbertien sur A à la manière habituelle, et posons (xι)∗ = (x∗ι ). On vérifie aussitôt que
A est alors une algèbre hilbertienne, appelée l’algèbre hilbertienne somme directe des Aι. L’espace
hilbertien A complété de A est la somme hilbertienne des Hι. On a

U(A) =
∏
ι∈I

U(Aι), V(A) =
∏
ι∈I

V(Aι) ;

en effet, il est clair que, pour tout x ∈ A,

Ux ∈
∏
ι∈I

U(Aι), donc U(A) ⊂
∏
ι∈I

U(Aι) ;

de même V(A) ⊂
∏
ι∈I

V(Aι) et, par suite,

U(A) = V(A ⊃
∏
ι∈I

V(Aι)
′ =
∏
ι∈I

U(Aι) ;
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d’où notre assertion. Si Eι = PHι , les Eι sont des projecteurs de U(A) ∩ V(A), et

U(Aι) = (U(A))Eι , V(Aι) = (V(A))Eι ,

Réciproquement, soit A une algèbre hilbertienne, et soit (Eι)ι∈I une famille de projecteurs de
U(A) ∩ V(A), deux à deux orthogonaux, de somme 1. Soient Hι = Eι(H),Aι = A ∩ Hι. Comme
Hι est stable pour U(A) et V(A), on a AAι ⊂ Aι,AιA ⊂ Aι. Si x ∈ Aι, on a x∗ ∈ Aι, car
EιJx = JEιx = Jx (corollaire de la proposition 2). Supposons A achevée. Pour z ∈ A, Eιz est
borné, donc Eιz ∈ A ; il en résulte que Aι = Eι(A) est partout dense dans Hι. Ainsi, Aι est munie
d’une structure d’algèbre hilbertienne, l’espace hilbertien complété étant Hι. Il est immédiat que
les Aι sont achevées. On a aussitôt

U(Aι) ⊂ U(A))Eι , V(Aι) ⊂ V(A))Eι

donc
U(Aι) = U(A))Eι , V(Aι) = V(A))Eι

L’algèbre hilbertienne somme directe des Aι est une sous-algèbre involutive partout dense de A.

Proposition 8. Soit A une algèbre hilbertienne, H l’espace hilbertien complété de A.
(i) Soit I un idéal bilatère de A, I son adhérence dans H. Alors PI ∈ U(A) ∩ V(A).
(ii) Soit E un projecteur de U(A)∩ V(A). Alors K = E(H)∩A est un idéal bilatère auto-adjoint

de A, qui est partout dense dans E(H) si A est achevée.
(iii) Soit E ′ un autre projecteur de U(A) ∩ V(A), et K ′ = E ′(H) ∩A. Supposons A achevée. Pour

que KK ′ = 0, il faut et il suffit que E et E ′ soient orthogonaux.
Remarque. En posant, pour λ, µ ∈ C, (λ|µ) = λµ, λ∗ = λ, on munit évidemment C d’une structure
d’algèbre hilbertienne de dimension 1. En faisant des sommes directes de telles algèbres, on voit
qu’il existe, pour tout espace hilbertien H, des algèbres hilbertiennes partout denses dans H.

Soient A1,A2 des algèbres hilbertiennes. L’algèbre A1⊗A2 devient une algèbre involutive lorsqu’on
pose (

n∑
i=1

xi1 ⊗ xi2

)∗

=
n∑

i=1

xi∗1 ⊗ xi∗2 .

On sait par ailleurs qu’il existe sur A1 ⊗ A2 une structure préhilbertienne unique telle que (x1 ⊗
x2|y1 ⊗ y2) = (x1|y1)(x2|y2). On vérifie immédiatement que A = A1 ⊗ A2 est alors une algèbre hil-
bertienne appelée algèbre hilbertienne produit tensoriel des algèbres hilbertiennes A1 et A2. Soient
H,H1,H2 les espaces hilbertiens complétés de A1 ⊗ A2, A1, A2. Soient H,H1,H2 les espaces hilber-
tiens complétés de A1 ⊗ A2, A1, A2. On a H = H1 ⊗ H2.

Proposition 9.

(i) U(A1 × A2) = U(A1)⊗ U(A2);
V(A1 × A2) = V(A1)⊗ V(A2) ;
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(ii) Si les projecteurs caractéristiques de A1 et A2 sont égaux à 1, le projecteur caractéristique de
A est égal à 1.

Définition 7. Soient H un espace hilbertien complexe, A une algèbre de von Neumann dans H.
On dit que A est standard s’il existe une algèbre hilbertienne A partout dense dans H telle que
A = U(A).

Les résultats de ce numéro entraînent alors la proposition suivante :
Proposition 10.

(i) Si A est standard, A′ est standard ;
(ii) Si A et B sont standards, A⊗ B est standard ;

(iii) Soit A =
∏
ι∈I

Aι ; pour que A soit standard, il faut et il suffit que les Aι soient standards.

Plus tard (§ 6 ; et chap. III, § 1), nous saurons caractériser complètement les algèbres de von Neumann standard.

CHAPITRE 6. TRACES

1. Définition des traces.

Définition 1. Soit A une algèbre de von Neumann. On appelle trace sur A+ une fonction φ définie
sur A+, à valeurs ≥ 0 finies ou non, possédant les propriétés suivantes :

(i) Si S ∈ A+ et T ∈ A+, on a φ(S + T ) = φ(S) + φ(T ) ;
(ii) Si S ∈ A+ et si λ est un nombre ≥ 0, on a φ(λS) = λφ(S) (on convient que 0.+∞ = 0) ;
(iii) Si S ∈ A+ et si U est un opérateur unitaire de A, on a φ(USU−1) = φ(S).

On dit que φ est fidèle si les conditions S ∈ A+, φ(S) = 0 entraînent S = 0.

On dit que φ est finie si φ(S) < +∞ pour tout S ∈ A+.

On dit que φ est semi-finie, si, pour tout S de A+, φ(S) est la borne supérieure des nombres φ(T )
pour les T ∈ A+ tels que T ≤ S et φ(T ) < +∞.

On dit que φ est normale si, pour tout ensemble filtrant croissant F ⊂ A+ de borne supérieure
S ∈ A+, φ(S) est la borne supérieure de φ(F).

Proposition 1. Soient A une algèbre de von Neumann, φ une trace sur A+. L’ensemble des
T ∈ A+ tels que φ(T ) < +∞ est la partie positive d’un idéal bilatère R de A. Il existe une forme
linéaire φ̇ et une seule sur R coïncidant avec φ sur R+, et l’on a φ̇(ST ) = φ̇(TS) pour S ∈ m, T ∈ A.
Enfin, soit S ∈ m ; si φ est normale, la forme linéaire T 7→ φ̇(ST ) sur A est ultrafaiblement continue.

Par abus de langage, on donne parfois le nom de trace à la forme linéaire φ̇ sur m. Si φ est finie, φ̇
est une forme linéaire positive sur A, et les résultats du § 4 sont applicables. Mais il ne serait pas
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suffisant pour la suite d’envisager des traces finies.

Corollaire 1. Soit φ une fonction à valeurs ≥ 0, finies ou non, définie sur A+, telle que
φ(S + T ) = φ(S) + φ(T ), φ(λS) = λφ(S) pour S ∈ A+, T ∈ A+, λ ≥ 0. Pour que φ soit une
trace, il faut et il suffit que φ(R∗R) = φ(RR∗) pour tout R ∈ A.

Corollaire 2. Soit φ une trace normale sur A+. Alors, A s’identifie canoniquement au produit de
trois algèbres de von Neumann, A1, A2, A3, de telle sorte que φ induise sur A+

1 ,A+
2 ,A+

3 des traces
normales φ1, φ2, φ3 possédant les propriétés suivantes : 1o φ1 est fidèle et semi-finie ; 2o φ2 = 0 ;
3oφ3(S) = +∞ pour tout S non nul de A+

3 .

Ce corollaire ramène l’étude des traces normales à celle des traces normales fidèles et semi-finies.
Le projecteur 1−F s’appelle le support de φ. Lorsque φ est finie, le support de φ est identique au
support de φ̇, au sens de la définition 3 du § 4.

Corollaire 3. Soit φ une trace normale sur A+. Pour que φ soit semi-finie, il faut et il suffit que
tout élément non nul de A+ majore un élément non nul T de A+ tel que φ(T ) < +∞.

Proposition 2. Soit A une algèbre de von Neumann, φ une trace normale sur A+, (Tι)ι∈I une
famille d’éléments de A+, tels que

∑
ι∈I

Tι = 1 (au sens de la topologie faible). Pour tout T ∈ A+,

on a
φ(T ) =

∑
ι∈I

φ
(
T

1
2
ι TT

1
2
ι

)
.

Corollaire. Soient A une algèbre de von Neumann dans H, φ une trace normale sur A+. Il existe
une famille (xι)ι∈I de vecteurs de H tels que φ =

∑
ι∈I

ωxι sur A+.

Dans certains Mémoires, on appelle traces les traces normales, ou les traces fidèles. Au lieu de “semi-finie”, on dit
parfois “essentielle”. Au lieu de “trace”, on dit parfois “pseudo-trace”.

Soient A une algèbre de von Neumann, m un idéal bilatère de A, φ une forme linéaire positive sur m telle que
φ(ST ) = φ(TS) pour S ∈ m et T ∈ A. On peut alors, dans certains cas, prolonger la restriction de φ à m+ en une
trace normale sur A+.

Sur une algèbre de von Neumann abélienne, il existe en général des traces non normales finies, comme on le voit
aisément.

2. Traces et algèbres hilbertiennes.

Théorème 1. Soient A une algèbre hilbertienne, H l’espace hilbertien complété de A. Pour
S,U(A)+ [resp. S ∈ V(A)+], posons :

φ(S) = (a|a) si S 1
2 = Ua (resp. S

1
2 = Va) pour un a ∈ H borne ;

φ(S) = +∞ dans le cas contraire.

Alors, φ est une trace fidèle, semi-finie, et normale sur U(A)+ [resp. V(A)+]. L’idéal bilatère des
T ∈ U(A) [resp. V(A)] qui peuvent se mettre sous la forme Ua (resp. Va) avec un a borné, est
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identique à l’idéal bilatère des T ∈ U(A) [resp. V(A)] tels que φ(T ∗T ) < +∞. Si a et b sont des
éléments bornés, on a

φ̇(U∗
b Ua) = (a|b) [resp. φ̇(V ∗

b Va) = (a|b)].

Définition 2. Étant donnée une algèbre hilbertienne A, les traces définies par le théorème 1 sont
appelées traces naturelles sur U(A)+ et V(A)+.

Ces traces ne changent pas si l’on remplace A par l’algèbre hilbertienne des éléments bornés.

Soient A une algèbre de von Neumann, φ une trace sur A+, m l’idéal de définition de φ̇. Pour
S ∈ m

1
2 , T ∈ m

1
2 , on a T ∗S ∈ m ; posons

(S|T ) = φ̇(T ∗S).

Il est clair qu’on définit ainsi sur m
1
2 une structure d’espace préhilbertien. Nous emploierons tou-

jours la notation (S|T ) au sens précédent (quand il n’y aura pas de confusion possible sur φ) et
nous noterons ∥S∥2 la semi-norme (S|S) 1

2 correspondante (pour la distinguer de la norme habituelle
∥S∥ de l’opérateur S).

Théorème 2. Soient A une algèbre de von Neumann, ω une trace normale fidèle semi-finie sur
A+, m l’idéal de définition de ω̇. Muni du produit scalaire (S|T ) = ω̇(T ∗S), m

1
2 est une algèbre

hilbertienne achevée. Soient R l’espace hilbertien complété de m
1
2 , J l’involution de R définie

canoniquement par m
1
2 . Pour R ∈ A, l’application S 7→ RS (resp. S 7→ SR) de m

1
2 dans m

1
2 se

prolonge par continuité en un opérateur Φ(R) [resp. Ψ(R)] de L(R). L’application Φ (resp. Ψ) est
un isomorphisme (resp. antiisomorphisme) de A sur U(m 1

2 ) [resp. V(m 1
2 )] qui prolonge l’application

canonique de l’algèbre hilbertienne m
1
2 dans U(m 1

2 ) [resp. V(m 1
2 )], et l’on a Ψ(R) = JΦ(R∗)J .

Enfin, soient φ et ψ les traces naturelles sur U
(
m

1
2

)+
et V

(
m

1
2

)+
; pour R ∈ A+, on a

ω(R) = φ(Φ(R)) = ψ(Ψ(R)).

3. Éléments-trace.

Définition 3. Soit A une algèbre de von Neumann dans H. Un élément a de H est appelé élément-
trace pour A si ωa est une trace sur A, autrement dit si (T1T2a|a) = (T2T1a|a) quels que soit
T1, T2 ∈ A.

Proposition 3. Soient A une algèbre hilbertienne, H l’espace hilbertien complété. Tout élément
central de H est élément-trace pour U(A) et V(A).

Soient A une algèbre de von Neumann, a un élément-trace pour A. Alors EA′
a , qui est le support

de ωa(§ 4, section 6) est un projecteur du centre Z de A. Comme EA
a et EA′

a ont même support
central (§ 1, proposition 7, corollaire 2), EA

a admet EA′
a pour support central. En particulier, si a est

totalisateur (cyclique) pour A, a est séparateur pour A. Posons alors, pour T ∈ A,Φ(T ) = Ta : Φ
est une application bijective de A sur A = Φ(A), et l’on a la proposition suivante :
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Proposition 4 :

(i) Si l’on transporte à A par Φ la structure d’algèbre involutive de A, A devient une algèbre
hilbertienne achevée.

(ii) On a A = U(A), : A′ = V(A) ;
L’élément a est élément unité pour A (donc est central).

Corollaire 1 : Si a est élément-trace et totalisateur pour A, a est élément-trace et totalisateur
pour A′.

Corollaire 2 : Soit A une algèbre de von Neumann abélienne. S’il existe un élément totalisateur
pour A, on a A′ = A.

4. Relation d’ordre dans l’ensemble des traces.

Le présent numéro éclaircira les questions d’unicité relatives aux traces. Les nos 6 et 7 seront consa-
crés aux questions d’existence.

Définition 4. Soient A une algèbre de von Neumann, φ et φ′ deux traces sur A+. On dit que φ
majore φ′, et l’on écrit φ ≥ φ′, si φ(T ) ≥ φ′(T ) pour tout T ∈ A+.

Théorème 3. Soient Z le centre de A, et φ une trace normale semi-finie sur A+. Pour tout S ∈ Z
tel que 0 ≤ S ≤ 1, la fonction T 7→ φ(ST ) sur A+ est une trace normale φS majorée par φ, et toute
trace normale majorée par φ est de ce type. Si φ est fidèle, l’application S → φS est injective.

Corollaire. Sur un facteur, deux traces normales fidèles et semi-finies sont proportionnelles.

Soient A une algèbre de von Neumann, φ une trace sur A+, φ′ une forme linéaire positive sur A.
Disons que φ majore φ′ si φ(T ) ≥ φ′(T ) pour T ∈ A+. Alors, la méthode de démonstration du
théorème 3 fournit aussi le résultat suivant :

Proposition 5. Soient φ une trace normale semi-finie sur A+, m l’idéal de définition de φ̇. Pour
tout S ∈ m tel que 0 ≤ S ≤ 1, la fonction T 7→ φ̇

(
S

1
2TS

1
2

)
= φ̇(ST ) sur A est une forme linéaire

positive normale φS majorée par φ, et toute forme linéaire positive normale majorée par φ est de
ce type. Si φ est fidèle, l’application S 7→ φS est injective.

5. Application : isomorphismes des algèbres de von Neumann standard.

Lemme 1. Soient A une algèbre de von Neumann standard dans H, φ une trace normale fidèle semi-
finie sur A+. Il existe une algèbre hilbertienne A partout dense dans H telle que : 1o A = U(A) ; 2o
φ est la trace naturelle correspondante sur A+.

Théorème 4. Soient A et A1 des algèbres de von Neumann standard. Tout isomorphisme de A
sur A1 est spatial.
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6. Traces normales sur L(H).

Théorème 5. Soient H un espace hilbertien complexe, (eι)ι∈I une base orthonormale de H. Pour
T ∈ L(H)+, posons

φ(T ) =
∑
ι∈I

(Teι|eι).

Alors φ est une trace normale fidèle et semi-finie sur L(H)+, indépendante du choix de la base
orthonormale (eι)ι ∈ I. Si E est un projecteur, φ(E) est la dimension hilbertienne de E(H).

(Dans la dernière assertion, on convient d’identifier tous les cardinaux infinis à +∞.)

D’après le corollaire du théorème 3, toute trace normale sur L(H)+ est proportionnelle à la trace
φ précédente, ou identiquement infinie sur les opérateurs non nuls de L(H)+.

Corollaire. L’ensemble n des T ∈ L(H) tels que∑
ι∈I

∥Teι∥2 =
∑
ι,x∈I

|(Teι|ex)|2 < +∞

est un idéal bilatère de L(H), indépendant de la base orthonormale (eι)ι∈I , et formé d’opérateurs
compacts. Tout matrice (tix) telle que

∑
i,x∈I

|tix|2 < +∞ représente par rapport à (eι)ι∈I un opérateur

de n. Si l’on pose, pour T ∈ n et T ′ ∈ n,

(T |T ′) =
∑
ι∈I

(Teι|T ′eι) =
∑
ι,x∈I

tιxt
′
ιx,

on définit sur n une structure d’espace hilbertien indépendante de la base orthonormale (eι). L’idéal
bilatère f des opérateurs de rang fini est partout dense dans n au sens de cette structure hilbertienne.

On dit que les opérateurs de n sont les opérateurs d’Hilbert-Schmidt.

Soit H′ l’espace hilbertien conjugué de H, c’est-à-dire, rappelons-le, l’espace H muni des opérations
(λ, x) 7→ λx, (x, y) 7→ x+y, et du produit scalaire (x, y) 7→ (y|x). Pour la forme bilinéaire (x, y) 7→
(x|y) sur H× H′, H′ s’identifie au dual de H. (Nous n’identifierons pas H à son dual dans la fin de

ce numéro). Tout élément T de f est de la forme y 7→
n∑

j=1

(y|yj)xj et l’application T 7→
n∑

j=1

yj ⊗ xj

permet d’identifier l’espace vectoriel f à l’espace vectoriel produit tensoriel algébrique de H′ et H.
On peut, en outre, supposer les yj orthonormaux et les xj orthogonaux, auquel cas

(T |T ) =
n∑

j=1

∥xj∥2 =

∥∥∥∥∥
n∑

j=1

yj ⊗ xj

∥∥∥∥∥
2

;

ceci prouve que l’application précédente est isométrique pour les structures préhilbertiennes des
espaces vectoriels considérés. Il en résulte qu’elle se prolonge en un isomorphisme canonique de
l’espace hilbertien n sur l’espace hilbertien H′ ⊗ H. Soit S ∈ n. Comme S est compact, on a
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Sy =
∞∑
j=1

(y|uj)vj les uj étant orthonormaux et les vj étant orthogonaux ; alors (S|S) =
∞∑
j=1

∥vj∥2 ;

on voit donc que S est limite au sens de la structure hilbertienne de n de l’opérateur y 7→
∑
j=1

n

(y|uj)vj, opérateur qu’on a identifié à
n∑

j=1

uj ⊗ vj. Finalement, S s’identifie à l’élément
∞∑
j=1

uj ⊗ vj

de H′ ⊗ H.

Proposition 6.

(i) L’application T 7→ T ∗ de n sur n s’identifie à l’application linéaire isométrique de H′ ⊗H sur
H′ ⊗ H qui transforme u⊗ v en v ⊗ u.

(ii) Si S ∈ L(H), l’application T 7→ ST de n dans n s’identifie à 1H′ ⊗S, et l’application T 7→ TS
de n dans n s’identifie à S∗ ⊗ IH.

Corollaire. Si H est un espace hilbertien, les algèbres de von Neumann L(H)⊗CH et CH⊗L(H)
dans H⊗ H sont des algèbres de von Neumann standard.

7. Une première classification des algèbres de von Neumann.

[...]
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