Résultats des chapitres 1.5 et 1.6 (début) du livre Algébres d’opérateurs dans l’espace
hilbertien de Jacques Dixmier

CHAPITRE 5. ALGEBRES HILBERTIENNES
1. Définition des algébres hilbertiennes

Soit 2 une algébre associative sur le corps C des nombres complexes, munie d’un produit scalaire
(z|y) qui en fait un espace préhilbertien séparé. Soit § l'espace hilbertien complété de 2. On
suppose donnés

1° Une application linéaire bijective  +— 2" de 2 sur 2A; on notera = +— z¥ l'application
réciproque ;
2° Un antiautomorphisme involutif z — x* de 2, c’est-a-dire une application bijective de 2 sur
2 telle que B
Az +py)* = e" +y",  (zy)" =y'z", 7=z

(cet antiautomorphisme fait de 2 une algébre involutive).

DEFINITION 1. On dit que 2 est une algebre quasi-hilbertienne si les axiomes suivants sont vérifiés :
(i) (zly) = (y*|z*) pour z € A,y € A;
(ii) (zy|z) = (y|a*"z) pour x € A,y € A,z € A;
(iii) Pour tout x € A, 'application y — zy est continue;
(iv) L’ensemble des éléments xy, on x € A,y € A, est total dans A ;

(v

~— ~— ~— —

Si a et b sont deux éléments de $) tels que (a|zy) = (blz"y") pour tout = € A et tout y € A,
il existe une suite (x,,) dans 2 telle que x,, — b et 2/} — a.

On dit que 2A est une algébre hilbertienne si, de plus, z"* = x pour tout z € .

Les axiomes (i) et (iii) entrainent que application y — yz = (z*y*)* est continue. Les axiomes (i)
et (ii) entrainent
(zyl2) = (2"ly"e") = (y"2"[2") = (z]29™), (1)

ce qui rétablit la symétrie entre la multiplication a gauche et la multiplication & droite. En outre,

on a

(1:y|2’) — <y|$*/\z) — (l'*/\*/\y’Z) dOHC ($’2yA*) — ($*A*A|Zy/\*) :

comme y"* est un élément quelconque de 2, Paxiome (iv) entraine z = z*™*", d’ou
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La relation (i) et axiome (ii) peuvent donc s’écrire aussi
(zyl2) = (w[zy™), (4)

(zylz) = (ylz™"2). (5)

Dans le cas des algébres hilbertiennes, I'axiome (v) est vérifié de lui-méme.

D’aprés I'axiome (i), 'application x +— x* se prolonge de maniére unique en une involution J de £,
c’est-a-~dire, rappelons-le, en une application J de § sur $ telle que

J2=1, (Ja|Jb) = (bla), J(Aa+ pb) = \Ja + aJb.
L’application J s’appelle I'involution de $ définie canoniquement par 2.

Les applications y — xy, y — yx se prolongent de maniére unique en éléments U,, V, de L($). On
a immeédiatement

Uiy = AUz + pU,,  Upy =UUy,  Upr =U; (6)
Vierpy = AVa + 1V, Viy =VyViy Vs = V5 )
U Vy =VyUs ; (8)

JUpJ = Ve, JVod = Uy (9)

Les U, (resp. V,) constituent une algébre involutive d’opérateurs dans $). D’aprés le § 3, corollaire 1
du théoréme 2, et 'axiome (iv), 'adhérence faible de cette algébre est une algébre de von Neumann
URL) [resp. V(A)], appelée algébre de von Neumann associée a gauche (resp. a droite) a 2. Donc
les zy, o x € A,y € A sont partout denses dans 2. Les algébres U(@) et U () sont permutables &
cause de (8), et JUA) J =V(A),J V(A)J =U() a cause de (9). Les applications z — U,z — V,
sont appelées les applications canoniques de 2 dans U(2() et V(2L).

Les algébres hilbertiennes sont parfois appelées aussi algébres unitaires. Elles constituent, on le verra, un puissant
moyen d’étude des algébres de von Neumann.

2. Le théoréme de commutation.

DEFINITION 2. Un élément a € $) est dit borné a gauche (resp. a droite) s’il existe un opérateur
continu U, (resp. V,) de L($) tel que U,z = V,a (resp. V,x = U,a) pour x € 2.

Les éléments de 2 sont bornés & gauche et a droite et les notations U,, V, sont cohérentes avec les
notations U,, V, antérieures lorsque a € 2. D’autre part, I'égalité U,z = V,a (resp. Vox = Ua)
prouve, en faisant converger faiblement V. (resp U,) vers 1, que a € U,($)) [resp. a € V,(9)]. Il en
résulte, en particulier, que les application a +— V, sont injectives.

LEMME 1. Si a est borné a gauche et T' € V(2)', Ta est borné a gauche, et TU, = Uy, ; les U,
forment un idéal & gauche m de V(2)’. Si a est borné a droite et T € U(A)’, T'a est borné a droite
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et TV, = Vpg,; les V, forment un idéal a gauche n de U(2)".
Soit m* (resp. n*) l'image de m (resp. n) par 'application 7" +— T™.
LEMME 2. Soient my =mNm*,n; =nNn*. On a

m] =V, o =URA).
LEMME 3. my et n; commutent.
THEOREME 1. U(A) =V(Q), V(A) =UA).

PROPOSITION 1. Soit 2 une algébre hilbertienne, I’ une sous-algébre involutive de 2.

(i) A’ est une algebre hilbertienne.

(ii) Siles U,, ou x € A, sont fortement partout denses dans U (), 2’ est partout dense dans 2.
(iii) Si 2’ est partout dense dans 2, on a U(A') =U(A), V(') = V().

Dans toute la suite du livre (sauf pour I'exercice 5), il ne sera question que d’algébres hilbertiennes. On a toutefois
démontré le théoréme 1 pour les algébres quasi-hilbertiennes, parcé qu’il est utile dans certaines applications, et
parce qu’on n’abrége pas les démonstrations en se limitant aux algébres hilbertiennes.

3. Eléments bornés dans les algébres hilbertiennes.
Dans toute la fin de ce §, on suppose que 2 est une algébre hilbertienne.

PROPOSITION 2. Pour qu’un élément a € $ soit borné a gauche, il faut et il suffit qu’il soit borné
a droite. L’élément Ja posséde alors les mémes propriétés, et I'on a :

Usa=U* = JViJ, Viye=Vr=JU,J.
COROLLAIRE. Pour tout élément C' du centre commun de U () et V(2A), on a JCJ = C*.

DEFINITION 3. Un élément a € $ possédant les propriétés de la proposition 2 est dit borné relati-
vement a 2.

Remarque. Soit a € $. Pour z,y € A, on a (zyla) = (z|Vy-a). Donc, dire que @ est borné revient
a dire que la forme bilinéaire (z,y) — (xy|a) est continue par rapport aux deux variables z,y. On
voit alors qu’il revient au méme de dire que a est borné relativement a %A, ou relativement a toute
sous-algebre hilbertienne de 2 partout dense dans 2.

PROPOSITION 3. Les U, (resp. V,), a borné, forment un idéal bilatére de U (2A) [resp. V(2L)]. On a,
pour T € U(),
TU, = UTa7 UJT = UJT*Ja )

pour 7" € V(2),
T/Va = VT’aa VaT/ = Virrga-



PROPOSITION 4. Pour qu’un élément a € ) soit borné, il faut et il suffit qu’il existe une suite (z,)
d’éléments de 2 telle que ||z, — a|| = 0 et sup||U,,, || < +o0. Alors, U, tend fortement vers U,.

DEFINITION 4. On dit que 2 est achevée si tout élément borné de ) appartient a 2.

Soit 2 une algébre hilbertienne. Soit B D 2 I'espace vectoriel des éléments bornés de §. Comme
sous-espace de £, 2B est muni d’une structure préhilbertienne. Poura € B et b € B,ona U,b = Vja;
en effet, soit (z,,) une suite d’éléments de 2 tendant fortement vers b; pour tout y € 2, on a

(Uatnly) = (Va,aly) = (alyzy,) = (a|lUyzy,),

donc a la limite

(Uably) = (alUyJb) = (a|Viy) = (Vialy),

ce qui prouve notre assertion. Posons, pour a € B et b € B, ab = U,v = V,a. On définit ainsi sur
B8 une multiplication qui prolonge celle de 2 et qui fait de ‘B une algebre associative, car, pour
a€c€'B,beB ce’B,ona

a(be) = U, Vb = V.U,b = (ab)c.

Enfin, pour a € B, posons a* = Ja. On a
a’b* =Uy,Jb= JV,b= J(ba) = (ba)*;

donc B devient une algébre involutive et 2l est une sous-algebre involutive de B. On vérifie aussitot
que ‘B est une algebre hilbertienne, appelée algébre hilbertienne des éléments bornés. Un élément de
£ borné relativement a 8 est dans 8. Donc I’algebre hilbertienne des éléments bornés est achevée.

D’aprés la proposition 1 (iii), on a
UR) =UB), V) =V(B).

Ce qui précéde permet de ramener, presque toujours, les problémes relatifs aux algébres hilber-
tiennes a des problémes relatifs aux algébres hilbertiennes achevées.

Au lieu de “achevée”, on dit aussi “maximale”.
b

4. Eléments centraux dans les algébres hilbertiennes.

PROPOSITION 5. Pour un élément a € §, les conditions suivantes sont équivalentes :
(i) (alzy) = (alyz) pour z € A,y € A;
(i) Uya = Vya pour x € A;
(ili) Ta = JT*Ja pour T' € U(A) [donc pour T' € V().

DEFINITION 5. Si a € § vérifie les conditions de la proposition 5, on dit que a est central relative-
ment a 2.

Si a € 2, on retrouve la notion algébrique usuelle, d’aprés la condition (ii) de la proposition 5.
L’ensemble 3 des éléments centraux de §) est un sous-espace vectoriel fermé de §), qui ne change
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pas si 'on remplace 2l par une sous-algébre involutive de 2 partout dense dans 2l [puisque U(2l) ne
change pas|; en particulier, les éléments centraux sont les mémes relativement a 2l et relativement
a ’algébre hilbertienne des éléments bornés.

PROPOSITION 6. Soit Z = U () N V() le centre commun de U(2A) et V() :

(i) J(3)=3;

(i) Py € 2/,
(iii) Pour a € 3, EY® = g e z,
(iv) BY®™ = Y™ ¢ z.

DEFINITION 6. Le projecteur Eg{(m) = E; @ de 1a proposition 6 est appelé le projecteur caracté-
ristique de 2.

En particulier, si 2 admet un élément unité, le projecteur caractéristique de 2 est 1.

PROPOSITION 7. Pour qu’un élément borné a de $) soit central, il faut et il suffit que U, € Z, ou
que V, € Z. On a alors U, = V.

5. Opérations élémentaires sur les algébres hilbertiennes.

Soit 2 une algébre hilbertienne. Sans changer la structure préhilbertienne ni I'involution de £,
remplagons la multiplication (z,y) — xy par la multiplication (z,y) — yz. On vérifie aussitot
qu’on obtient ainsi une algébre hilbertienne 21" qui est dite I’algébre hilbertienne opposée a 2. On
a

UR) = V),  VEU) = U®L.

Soit (2A,),er une famille d’algébres hilbertiennes. Soir §), 'espace hilbertien complété de 2A,. Soit
2 la somme directe des 2, : un élément de 2 est une famille (x,),e7,0x, € 2,, et ou tous les z,
sont nuls sauf un nombre fini d’entre eux. Définissons une structure d’algébre et une structure
d’espace préhilbertien sur 2 a la maniére habituelle, et posons (z,)* = (z}). On vérifie aussitot que
2 est alors une algebre hilbertienne, appelée 1’algebre hilbertienne somme directe des 2,. L’espace
hilbertien 2 complété de 2 est la somme hilbertienne des §,. On a

=[Tuc), vy =]]va
el el
en effet, il est clair que, pour tout z € A,

U, € [Ju), donc u@)cJJuE

el el

de méme V() C H V(2,) et, par suite,
el

uR) =vEos [Jven) =JJu®)

el el



d’ou notre assertion. Si E, = Py,, les E, sont des projecteurs de U(2() N V(A), et
UA) = UX)e,  V(A) = V()e,

Réciproquement, soit 20 une algébre hilbertienne, et soit (E,),c; une famille de projecteurs de
URA) N V(A), deux & deux orthogonaux, de somme 1. Soient $, = E,(9),2A, = AN H,. Comme
$, est stable pour U(A) et V(A), on a AA, C A, AA C A. Siz € A, on a 2" € A, car
E,Jr = JE,x = Jx (corollaire de la proposition 2). Supposons 2 achevée. Pour z € A, E,z est
borné, donc E,z € 2; il en résulte que A, = E, () est partout dense dans §,. Ainsi, , est munie
d’une structure d’algébre hilbertienne, ’espace hilbertien complété étant $,. Il est immédiat que
les A, sont achevées. On a aussitot

USRL) CUR))e, VL) CVE))E,

donce

L’algebre hilbertienne somme directe des 2, est une sous-algébre involutive partout dense de 2.

PROPOSITION 8. Soit 2 une algébre hilbertienne, $ ’espace hilbertien complété de 2.
(i) Soit I un idéal bilatére de A, I son adhérence dans §. Alors Py € U(A) N V().

(ii) Soit E un projecteur de U (A) N V(A). Alors K = E($) N2 est un idéal bilatére auto-adjoint
de A, qui est partout dense dans E(£)) si 2 est achevée.

(iii) Soit £ un autre projecteur de U () N V(A), et K’ = E'($) N2A. Supposons A achevée. Pour
que KK’ =0, il faut et il suffit que E et E’ soient orthogonaux.

Remarque. En posant, pour A, u € C, (A|p) = Az, \* = A, on munit évidemment C d’une structure
d’algébre hilbertienne de dimension 1. En faisant des sommes directes de telles algeébres, on voit
qu’il existe, pour tout espace hilbertien ), des algébres hilbertiennes partout denses dans ).

Soient 2,2, des algébres hilbertiennes. L’algébre 2l; ® 5 devient une algébre involutive lorsqu’on

pose
n * n
E ri®xy | = E ] @ Ty
i=1 =1

On sait par ailleurs qu’il existe sur 2(; ® 2, une structure préhilbertienne unique telle que (7 ®
Talyr @ y2) = (x1]y1)(w2]y2). On vérifie immeédiatement que 2A = 24 ® Ay est alors une algebre hil-
bertienne appelée algébre hilbertienne produit tensoriel des algébres hilbertiennes 2(; et 2(5. Soient
9,91, 92 les espaces hilbertiens complétés de A; @ Ay, Ay, As. Soient £, H1, Ho les espaces hilber-
tiens complétés de Ay @ Ay, A;, ™As. On a H = H; ® Ho.

PROPOSITION 9.

(1) U(Qll X 2[2) = u<22[1) ®U(Ql2),
V(Q[l X %2) = V(Q[l) X V(ng) ;



(i) Si les projecteurs caractéristiques de 2(; et 2, sont égaux a 1, le projecteur caractéristique de
A est égal a 1.

DEFINITION 7. Soient $) un espace hilbertien complexe, A une algébre de von Neumann dans $).
On dit que A est standard s’il existe une algébre hilbertienne 2 partout dense dans §) telle que

A=U).

Les résultats de ce numéro entrainent alors la proposition suivante :
PROPOSITION 10.

(i) Si.A est standard, A’ est standard ;
(ii) Si A et B sont standards, A ® B est standard ;

(iii) Soit A = H A, ; pour que A soit standard, il faut et il suffit que les A, soient standards.
el
Plus tard (§ 6; et chap. III, § 1), nous saurons caractériser complétement les algébres de von Neumann standard.

CHAPITRE 6. TRACES
1. Définition des traces.

DEFINITION 1. Soit A une algeébre de von Neumann. On appelle trace sur A™* une fonction ¢ définie
sur A", a valeurs > 0 finies ou non, possédant les propriétés suivantes :

i) SiSeAT et T € At,onap(S+T)=¢(S)+¢(T);
(ii) Si S € AT et si A est un nombre > 0, on a p(AS) = Ap(S) (on convient que 0. + oo = 0);
(iii) Si S € A" et si U est un opérateur unitaire de A, on a p(USU™1) = ¢(S).
On dit que ¢ est fidéle si les conditions S € A™, p(S) = 0 entrainent S = 0.

On dit que ¢ est finie si p(S) < 400 pour tout S € A™.

On dit que ¢ est semi-finie, si, pour tout S de AT, ¢(S) est la borne supérieure des nombres ¢(7T)
pour les T € AT tels que T' < S et ¢(T) < 400

On dit que ¢ est normale si, pour tout ensemble filtrant croissant F C A' de borne supérieure
S e AT, p(S) est la borne supérieure de p(F).

PROPOSITION 1. Soient A une algébre de von Neumann, ¢ une trace sur A". L’ensemble des
T € A" tels que ¢(T) < 400 est la partie positive d'un idéal bilatére R de A. 1l existe une forme
linéaire ¢ et une seule sur R coincidant avec  sur Rt et 'on a p(ST) = ¢(T'S) pour S € m, T € A.
Enfin, soit S € m; si ¢ est normale, la forme linéaire T' — ¢(ST') sur A est ultrafaiblement continue.

Par abus de langage, on donne parfois le nom de trace a la forme linéaire ¢ sur m. Si ¢ est finie, ¢
est une forme linéaire positive sur A, et les résultats du § 4 sont applicables. Mais il ne serait pas



suffisant pour la suite d’envisager des traces finies.

COROLLAIRE 1. Soit ¢ une fonction a valeurs > 0, finies ou non, définie sur A", telle que
(S +T) = p(S)+ @(T),p(AS) = Ap(S) pour S € AT, T € At X > 0. Pour que ¢ soit une
trace, il faut et il suffit que p(R*R) = ¢(RR*) pour tout R € A.

COROLLAIRE 2. Soit ¢ une trace normale sur A". Alors, A s’identifie canoniquement au produit de
trois algebres de von Neumann, A;, As, As, de telle sorte que ¢ induise sur A}, A3, A des traces
normales @1, pg, 3 possédant les propriétés suivantes : 1° ¢, est fidéle et semi-finie; 2° py = 0;
3°p3(S) = 400 pour tout S non nul de Aj.

Ce corollaire raméne 1'étude des traces normales a celle des traces normales fidéles et semi-finies.
Le projecteur 1 — F' s’appelle le support de . Lorsque ¢ est finie, le support de ¢ est identique au
support de ¢, au sens de la définition 3 du § 4.

COROLLAIRE 3. Soit ¢ une trace normale sur A™. Pour que ¢ soit semi-finie, il faut et il suffit que
tout élément non nul de A" majore un élément non nul 7" de A™ tel que p(T') < +oo.

PROPOSITION 2. Soit A une algeébre de von Neumann, ¢ une trace normale sur A", (7,),c; une

famille d’éléments de AT, tels que Z T, = 1 (au sens de la topologie faible). Pour tout 7' € A*,
el

o1)=3 ¢ (TL%TTL%) .

el

on a

COROLLAIRE. Soient A une algeébre de von Neumann dans §), ¢ une trace normale sur A™. Il existe

une famille (z,),e; de vecteurs de $) tels que ¢ = Z Wy, sur AT.
el

Dans certains Mémoires, on appelle traces les traces normales, ou les traces fidéles. Au lieu de “semi-finie”, on dit
parfois “essentielle”. Au lieu de “trace”, on dit parfois “pseudo-trace”.

Soient A une algébre de von Neumann, m un idéal bilatére de A, ¢ une forme linéaire positive sur m telle que

o(ST) = o(TS) pour S € met T € A. On peut alors, dans certains cas, prolonger la restriction de ¢ & m™ en une
trace normale sur AT.

Sur une algébre de von Neumann abélienne, il existe en général des traces non normales finies, comme on le voit

aisément.
2. Traces et algébres hilbertiennes.

THEOREME 1. Soient 2 une algeébre hilbertienne, ) ’espace hilbertien complété de 2A. Pour
S, URA)T [resp. S € V(A)T], posons :

©(S) = (ala) si Sz = U, (resp. Sz = V,) pour un a € § borne :

©(S) = 400 dans le cas contraire.

Alors, ¢ est une trace fidéle, semi-finie, et normale sur U ()" [resp. V(2A)T]. L’idéal bilatére des
T € UR) [resp. V()| qui peuvent se mettre sous la forme U, (resp. V) avec un a borné, est
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identique & l'idéal bilatére des T' € U(L) [resp. V()] tels que o(T*T) < +o0. Si a et b sont des
éléments bornés, on a

P(Uy Ua) = (alb)  [resp. o(Vy'Va) = (alb)].

DEFINITION 2. Etant donnée une algébre hilbertienne 2, les traces définies par le théoréme 1 sont
appelées traces naturelles sur U ()" et V(A)T.

Ces traces ne changent pas si I’'on remplace 2l par 'algébre hilbertienne des éléments bornés.

Soient A une algébre de von Neumann, ¢ une trace sur A", m l'idéal de définition de ¢. Pour
1 1
Sem2, T e€m2,onal*S € m,; posons

(S|T) = o(T75).

Il est clair qu’on définit ainsi sur m2 une structure d’espace préhilbertien. Nous emploierons tou-
jours la notation (S|T") au sens précédent (quand il n'y aura pas de confusion possible sur ¢) et
nous noterons ||S||2 la semi-norme (S|S)z correspondante (pour la distinguer de la norme habituelle
I|S|| de I'opérateur S).

THEOREME 2. Soient 4 une algébre de von Neumann, w une trace normale fidéle semi-finie sur
AT, m I'idéal de définition de w. Muni du produit scalaire (S|T) = &(T*S), m2 est une algebre
hilbertienne achevée. Soient PR 'espace hilbertien complété de m%, J linvolution de PR définie
canoniquement par mz. Pour R € A, Papplication S — RS (resp. S — SR) de m? dans m? se
prolonge par continuité en un opérateur ®(R) [resp. U(R)| de L£(R). L’application ® (resp. ¥) est
un isomorphisme (resp. antiisomorphisme) de A sur 2/ (m2) [resp. V(m?2)] qui prolonge 'application
canonique de l'algébre hilbertienne mz dans U(mz) [resp. V(m2)], et lon a W(R) = JO(R*)J.

+ +
Enfin, soient ¢ et 1 les traces naturelles sur U (m%) et V (m%> ;pour R € A" on a

w(R) = p(®(R)) = P (V(R)).

3. Eléments-trace.

DEFINITION 3. Soit A une algébre de von Neumann dans $. Un élément a de $ est appelé élément-
trace pour A si w, est une trace sur A, autrement dit si (7175ala) = (T2T1ala) quels que soit
T, T, € A.

PROPOSITION 3. Soient 2 une algébre hilbertienne, $ 'espace hilbertien complété. Tout élément
central de $ est élément-trace pour U(2() et V().

Soient A une algébre de von Neumann, a un élément-trace pour A. Alors E{l“', qui est le support
de w,(§ 4, section 6) est un projecteur du centre Z de A. Comme EX et E/ ont méme support
central (§ 1, proposition 7, corollaire 2), E* admet E;“' pour support central. En particulier, si a est
totalisateur (cyclique) pour A, a est séparateur pour A. Posons alors, pour 7' € A, ®(T) =Ta: &
est une application bijective de A sur 2 = ®(A), et I'on a la proposition suivante :



PROPOSITION 4 :

(i) Si l'on transporte a A par @ la structure d’algébre involutive de A, 2 devient une algébre
hilbertienne achevée.

(ii) Ona A=U),: A =V();

L’¢lément a est élément unité pour 2A (donc est central).

COROLLAIRE 1 : Si a est élément-trace et totalisateur pour A, a est élément-trace et totalisateur
pour A’.

COROLLAIRE 2 : Soit A une algébre de von Neumann abélienne. S’il existe un élément totalisateur

pour A, ona A = A.
4. Relation d’ordre dans ’ensemble des traces.

Le présent numéro éclaircira les questions d’unicité relatives aux traces. Les n® 6 et 7 seront consa-
crés aux questions d’existence.

DEFINITION 4. Soient A une algébre de von Neumann, ¢ et ¢’ deux traces sur A". On dit que ¢
majore ¢, et 'on écrit ¢ > ¢, si o(T') > ¢'(T) pour tout T € A™.

THEOREME 3. Soient Z le centre de A, et ¢ une trace normale semi-finie sur A*. Pour tout S € Z
tel que 0 < S < 1, la fonction T +— (ST sur AT est une trace normale pg majorée par @, et toute
trace normale majorée par ¢ est de ce type. Si ¢ est fidele, 'application S — (g est injective.

COROLLAIRE. Sur un facteur, deux traces normales fidéles et semi-finies sont proportionnelles.

Soient A une algébre de von Neumann, ¢ une trace sur A", ¢’ une forme linéaire positive sur A.
Disons que ¢ majore ¢’ si o(T) > ¢'(T) pour T € A*. Alors, la méthode de démonstration du
théoréme 3 fournit aussi le résultat suivant :

PROPOSITION 5. Soient ¢ une trace normale semi-finie sur A", m I'idéal de définition de ¢. Pour
tout S € m tel que 0 < S <1, la fonction T'+— ¢ (S%TS%) = ¢(ST) sur A est une forme linéaire

positive normale g majorée par ¢, et toute forme linéaire positive normale majorée par ¢ est de
ce type. Si ¢ est fidéle, 'application S +— g est injective.

5. Application : isomorphismes des algébres de von Neumann standard.
LEMME 1. Soient A une algeébre de von Neumann standard dans $), ¢ une trace normale fidéle semi-
finie sur A™. Il existe une algebre hilbertienne 2( partout dense dans $) telle que : 1° A =U () ; 2°

¢ est la trace naturelle correspondante sur A™.

THEOREME 4. Soient A et A; des algébres de von Neumann standard. Tout isomorphisme de A
sur A; est spatial.
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6. Traces normales sur L($)).

THEOREME 5. Soient §) un espace hilbertien complexe, (e,),c; une base orthonormale de . Pour
T € L($H)", posons

o(T) = 3 (Tele,).

el

Alors ¢ est une trace normale fidéle et semi-finie sur £($)", indépendante du choix de la base
orthonormale (e,), € I. Si E est un projecteur, ¢(E) est la dimension hilbertienne de E($)).

(Dans la derniére assertion, on convient d’identifier tous les cardinaux infinis & +o0.)

D’aprés le corollaire du théoréme 3, toute trace normale sur L£($))* est proportionnelle & la trace
¢ précédente, ou identiquement infinie sur les opérateurs non nuls de £($)*.

COROLLAIRE. L’ensemble n des T € L($)) tels que

YolTel? = [(Tees) < +oo

el vxel

est un idéal bilatere de £($)), indépendant de la base orthonormale (e,),cs, et formé d’opérateurs

compacts. Tout matrice (t;,) telle que Z |tm]2 < 400 représente par rapport a (e,),e7 un opérateur
i,x€l
de n. Si l'on pose, pour T' e net T" € n,

(TIT") =) (Te|T'e,) = Y tial,,,

el v,x€el

on définit sur n une structure d’espace hilbertien indépendante de la base orthonormale (e,). L’idéal
bilatére f des opérateurs de rang fini est partout dense dans n au sens de cette structure hilbertienne.

On dit que les opérateurs de n sont les opérateurs d’Hilbert-Schmidt.

Soit §' I'espace hilbertien conjugué de $), c’est-a-dire, rappelons-le, 'espace $) muni des opérations
(A, z) = Az, (x,y)— x4y, et du produit scalaire (x,y) — (y|z). Pour la forme bilinéaire (z,y)
(x|y) sur $H x §', )’ s’'identifie au dual de $. (Nous n’identifierons pas $) a son dual dans la fin de

ce numéro). Tout élément T' de f est de la forme y — Z(y|yj)xj et I'application 7" — Z Y ®

j=1 j=1
permet d’identifier ’espace vectoriel § a 'espace vectoriel produit tensoriel algébrique de $’ et §.
On peut, en outre, supposer les y; orthonormaux et les x; orthogonaux, auquel cas

(TT) = Z ;1% =

ceci prouve que 'application précédente est isométrique pour les structures préhilbertiennes des
espaces vectoriels considérés. Il en résulte qu’elle se prolonge en un isomorphisme canonique de
I’espace hilbertien n sur 'espace hilbertien ' ® $. Soit S € n. Comme S est compact, on a

I
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o o
Sy = Z(y|uj)vj les u; étant orthonormaux et les v; étant orthogonaux; alors (S|5) = Z ;|17 ;
j=1 j=1
on voit donc que S est limite au sens de la structure hilbertienne de n de 'opérateur y +— Zn
j=1
n o
(y|u;)v;, opérateur qu’on a identifié & Z u; ® v;. Finalement, S s’identifie a I’élément Zuj ® v;

=1 j=1

de ' ® 9.

PROPOSITION 6.

(i) L’application T'+— T™ de n sur n s’identifie a 'application linéaire isométrique de $' ® $) sur
H ® $H qui transforme u ® v en v ® u.

(i) Si S € L(H), 'application T' — ST de n dans n s’identifie & 1g ® S, et 'application T' +— T'S
de n dans n s’identifie & S* ® I.

COROLLAIRE. Si §) est un espace hilbertien, les algébres de von Neumann £($)) ® Cy et Cy @ L($)
dans $H ® $ sont des algebres de von Neumann standard.

7. Une premiére classification des algébres de von Neumann.

]
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