Résolution des équations de degré 3 et 4
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Introduction

Avant d’aborder la résolution des équations proprement dite, il est nécessaire de préciser de quelles
équations on parle et ce que I'on entend par “résolution”.

Qu’est-ce qu’une équation algébrique ?
Une équation algébrique (ou polynomiale) est une équation de la forme
"+ a, 2" N+t art+ag=0

ou l'inconnue est x et ou ag,aq,...,a,_1 sont des nombres connus qu’on appelle coefficients de
I’équation. On dit que I’équation est de degré n.

Par exemple, les deux équations suivantes sont algébriques, respectivement de degré 2 et 3 :
vz +2)+4=0 ; 2°+32°+20+7=0

alors que celle-ci ne I'est pas :
2

z°—sinx =0
Les mathématiciens se sont trés tot intéressés aux équations algébriques car elles figurent parmi les
plus simples que 'on puisse se poser (ce qui ne veut pas dire qu’elles sont faciles & résoudre!) mais
aussi parce qu’elles peuvent, lorsque leur degré est plus petit que 3, étre reliées & des problémes
concrets faisant intervenir des longueurs, des aires ou des volumes.

Le probléme consistant a “résoudre” ce type d’équations peut prendre différentes formes selon les
besoins. On peut par exemple chercher & trouver des solutions approchées par des méthodes nu-
mériques. Ou bien, chercher a construire géométriquement les solutions comme intersections de
certaines courbes dans le plan. Il se trouve que, historiquement, le probléme de la résolution de
telles équations a acquis, pour les algébristes et donc pour Galois, un sens trés précis, celui de la
résolution par radicaux.

Résolubilité par radicaux
Essayons de comprendre la notion de résolubilité par radicaux a travers divers exemples. Prenons
d’abord une équation de degré 1, par exemple 3x + 2 = 0. La solution est alors x = —%. Pour la

résoudre nous n’avons pas eu besoin d’autre chose que les quatre opérations de base : 4+, —, x et +.

Si nous essayons de faire la méme chose pour I’équation 22 + 2z — 1 = 0 de degré 2, nous n'y
arriverons pas. En effet, les nombres que I’on peut obtenir par les opérations de base & partir des
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coefficients de ’équation sont des nombres rationnels, c¢’est-a-dire des nombres qui sont quotients
de deux entiers. Or les solutions de cette équation sont —1 + /2 et —1 — v/2 et les grecs savaient
depuis longtemps déja que /2 n’est pas rationnel.

Comment fait-on pour trouver ces solutions de I’équation z2 42z —1 = 0 ? Plus généralement, pour
résoudre une équation de degré 2 quelconque de la forme 22+ 2bx + ¢ = 0, on peut procéder comme
suit. On remarque que x? + 2bz est le début du développement de (z+b)? = 2 + 2bx + b2. Ceci sug-
gére que l'inconnue u = x + b est plus pertinente pour notre probléme. En effet, aprés changement
de variable notre équation se réécrit alors sous la forme (on parle de forme canonique ) u?>—b*+c = 0.

Nous avons donc le systéme suivant qui est équivalent a 1’équation initiale :
u? =0 —c
r =u—>b

Remarquons que pour trouver une expression de z, il suffit alors d’écrire que u = +v/b*> — ¢ puis
d’utiliser z = —b+u = —b+ Vb?> —c.

En réalité, nous avons ainsi résolu toutes les équations de degré 2. En effet une équation de degré

2 quelconque Az? + Bz + C = 0 peut toujours se mettre sous la forme 22 + 2bz + ¢ = 0 en divisant

d’abord ’équation par A pour obtenir une équation de la forme 2% + mz + ¢ = 0, puis en rempla-

cant m par 2b. L’expression x = —b £ /b? — ¢ transcrite en fonctions de A, B et C donne alors

—B++vB?—4AC
2A

I’expression bien connue x = apprise en premiére.

Regardons enfin ’équation suivante (de degré beaucoup plus gros) :
(2 —=1)%+2b(2° — 1) +¢c=0

Si on pose v = 23 — 1, alors on remarque que v®+ 2bv* + ¢ = 0, c’est-a-dire que v* vérifie I'équation
y? + 2by + ¢ = 0 que l'on a résolu tout & I’heure. On sait alors qu’on a un systéme de la forme

uw? =0 —c
vt =u—0>

3 = v+ 1, on obtient finalement le systéme suivant

Puis, comme x

uw? =b—c
v} =u—0>
3 =v+1.

Encore une fois, on peut donner une expression de z en utilisant les fonctions /-, /* et /- pour
exprimer u,v puis z ['une aprés 'autre.

En conclusion, pour chacune des équations précédentes nous avons réussi a écrire un systéme de la



forme

j ZAN—
kU/r = ...

avec u, = x et ou, a chaque fois, le membre de droite s’exprime avec les quatre opérations de base
a partir des coefficients de ’équation et des inconnues wu; précédentes.

Lorsqu’on arrive & montrer que les solutions d’une équation algébrique vérifient un systéme de cette
forme, on dit que I’équation est résoluble par radicaux. Le terme “radicaux” vient du fait que I'on
peut obtenir une expression de la solution u, = x en écrivant a chaque étape 7 que u; est une racine
pi-iéme du second membre. On obtient au final une expression de x & partir des coefficients de
I'équation initiale qui n’utilise que les opérations de base et les fonctions {/- : une expression par

radicaux. Par exemple,
V1+V2+ V142
F )

Equation du troisiéme degré et quatriéme degré

Nous avons vu plus haut comment résoudre par radicaux toutes les équations de degré 1 et 2. Les
babyloniens savaient résoudre ces équations depuis déja 4000 ans. Il a fallu attendre la Renaissance
italienne pour que d’autres progres significatifs se fassent dans ce domaine : d’abord la résolution
(par radicaux) de I’équation du troisiéme degré grace aux formules de Tartaglia-Cardan, puis peu
de temps apres, celle de I’équation du quatriéme degré grace a la méthode de Ferrari.

Equation du troisiéme degré : méthode de Cardan
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FIGURE 3 : Jérome Cardan (1501-1576)

La premiére méthode connue pour résoudre une équation du troisiéme degré fut celle donnée par

I'italien Jérome Cardan. En fait, cette méthode lui aurait été confiée par un autre mathématicien

italien connu sous le nom de Tartaglia. Aprées avoir d’abord promis de la garder secréte, Cardan finit

par la publier en 1545 a la grande surprise de Tartaglia! (Les mathématiciens avaient I’habitude, a



cette époque, d’organiser des défis et des concours de résolution d’équations, celles de degré 3 entre
autres. C’est pourquoi, Tartaglia voulait garder sa méthode secréte!). Voici cette méthode.

On cherche a résoudre ’équation 23 + pz + ¢ = 0. Nous verrons plus loin pourquoi on ne s’intéresse
qu’aux équations qui sont de cette forme. L’idée de la méthode de Cardan consiste & chercher x sous
la forme x = u + v et de chercher a poser une condition sur v et v a posteriori afin d’obtenir une
équation plus simple a résoudre. En remplagant dans 1’équation on obtient (u+v)3+p(u+v)+q =0
puis, en développant et en réarrangeant les termes, il vient u® + v + (3uv + p)(u +v) + ¢ = 0. En
vue de simplifier I’équation, la condition sur u et v que I'on va imposer est 3uv + p = 0. L’équation

devient alors u® +v3 = —q et la condition sur u et v se réécrit uv = —g. On obtient donc le systéme

ud + 03 = —q
o ()
3

Or, si on connait la somme et le produit de deux nombres, ici u® et v3, on peut trouver ces nombres
comme solutions d’une équation du second degré! En effet,

suivant

3
X ) X 88 g )

3
Ainsi, u® et v? sont les solutions de 1'équation X? 4 ¢ X — (g) = 0. Comme on sait résoudre cette

équation par radicaux, on sait que u? et v* sont exprimables par radicaux a partir des coefficients g

3
et <§> , et donc a partir des coefficients p et ¢ de I’équation initiale. Finalement, comme z = u+w,

x est exprimable par radicaux a partir de p et q.

On en déduit que I'équation de degré 3, 3 + pz + ¢ = 0, est résoluble par radicaux. Une solution
générique possible est donnée par

3 3
oo i) oo
T = 5 + 5

La méthode de Cardan pose, dans certains cas, quelques difficultés. Par exemple, si 'on cherche &
résoudre I'équation 2% — 152 — 4 = 0. Alors 1’équation du second degré intermédiaire qu’il faut ré-
soudre est X? —4X +125 = 0 qui n’admet pas de solutions (son discriminant est négatif). Pourtant
I'équation initiale admet bien une solution : x = 4! Bombelli eut alors le premier I'idée (en 1572)
d’appliquer formellement la formule générique donnée plus haut, ce qui I'oblige & considérer une
racine carré d’un nombre négatif! Il effectue alors les calculs sur ce nombre imaginaire avec les régles
habituelles et trouve a la fin la solution recherchée x = 4. Ce fut la naissance des nombres com-
plexes : des nombres de la forme z + v/—1y oi1 = et y sont des nombres réels et v/—1 est un nombre
imaginaire vérifiant (v/—1)? = —1! Pendant longtemps, ces nombres furent considérés comme des
bizarreries dont le seul intérét consistait a flatter I’ego des mathématiciens qui participaient a des
concours. Mais petit a petit, les nombres complexes furent acceptés et utilisés jusqu’a devenir un
outil fondamental incontournable en mathématique et méme en physique. C’est loin d’étre le seul
exemple, en mathématique, d’'une découverte, au début sans intérét, qui devient fondamentale au
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fil des siécles.

Expliquons enfin pourquoi nous nous sommes contentés de considérer les équations du troisiéme
degré du type 23 + px + ¢ = 0. En fait, la raison est que toute équation du troisiéme degré peut se
mettre sous cette forme. En effet, si I'on a une équation de la forme 2 + az? 4+ bz + ¢ = 0 alors, en
opérant le changement de variable z = y — £, le terme 2* = (y — %) se développe en y* —ay*+ . ..
et le terme az? = a(y — %)2 se développe en ay® + .... On voit que les deux termes —ay? et ay?
se simplifient et il reste une équation en y de la forme y® + py 4+ ¢ = 0 que l'on sait résoudre. On

retrouve ensuite = avec la relation x =y — £.
Equation du quatriéme degré : méthode de Ferrari

L’équation du 4%™¢ degré fut résolue en 1540 par Ferrari a 1’age de 18 ans. Sa solution repose sur
la méthode de Cardan dont il était d’ailleurs 1’éléve.

On cherche & résoudre I'équation z* = pz? + gz + r. Comme pour I'équation de degré 3, un chan-
gement de variable permet de ramener toute équation du quatriéeme degré a une équation de cette
forme-la.

L’idée de Ferrari consiste a rajouter un paramétre supplémentaire ¢ en écrivant que
zt = (2? 4+ t)* — 22%t — t*. On obtient alors (2 + t)* — 22%t — t* = px?® + qx + r ou encore
(22 +1)* = (2t + p)a® + qx + (2 + 7).

On choisit alors une valeur de ¢ convenable de telle sorte que la quantité (2t + p)x? + qz + (£ + 1)
se factorise sous la forme (ax + 38)2. Or, dire que az?® + bz + ¢ se factorise sous la forme (az + 3)?
revient & dire que son discriminant > — 4ac est nul. Dans notre cas, la condition sur ¢ est donc
q* —4(2t +p)(t* +r) = 0. Ceci donne lieu a une équation du troisiéme degré en ¢. Pour la résoudre,
Ferrari utilise la méthode de Cardan. Il trouve alors ¢ puis calcule o et 3 et obtient finalement
(22 +t)? = (ax + B)? ol a et 3 sont exprimés par radicaux en fonction de p,q et r.

Comme A% = B? équivaut & A = +B, on en déduit que z vérifie I'une des deux équations suivantes

>+t =axr+p
P+t =—ar—pf

Toutes deux sont des équations de degré 2 que 'on sait résoudre par radicaux. On en déduit que
I'équation de degré 4, z* = pz? + qx + r est résoluble par radicaux.

Fonctions symétriques et méthode de Lagrange

La résolution des équations du troisiéme et quatriéme degré donna un élan considérable a ’algébre
au cours des siécles qui suivirent. Pourtant, malgré tous les efforts déployés par les mathématiciens,
il a fallu attendre prés de 300 ans pour qu’Abel puis Galois apportent enfin la réponse (négative!)
a la question de la résolubilité par radicaux des équations de degré supérieur. Entre temps, des
progrés importants furent accomplis incluant ’apparition des notations algébriques modernes et
I'utilisation systématique des nombres négatifs, voire complexes.



FIGURE 4 : Niels Henrik Abel (1802-1829)
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FIGURE 5 : Evariste Galois (1811-1832)

Une propriété importante des nombres complexes fut découverte (quoique la preuve, apportée par
Gauss, tarda a venir) : toute équation de degré n admet exactement n solutions dans ’ensemble
des nombres complexes. On peut alors toujours mettre une équation

"t ap 2" . ez +a=0
sous la forme
(x—r)(x—re)...(x—1,) =0

ol les 7; sont les nombres complexes solutions de I’équation qu’on appellera les racines du polyndéme
P(x) = 2"+ ap,_12" ' + ... + a1z + ap. Notons que les r; ne sont pas forcément distincts, dans ce
cas on parle de racines multiples.

On remarque alors des identités reliant les racines x; aux coefficients a;. En effet, si 'on met par
exemple un polynéme du second degré 2% + bz + ¢ sous la forme (z — r1)(x — ry), on trouve en
développant 2% + bz + ¢ = 22 — (ry + ro)x + ryry d’ott

{T1+T2 =-b

r17ro =C

Nous avons d’ailleurs déja utilisé ces relations pour la méthode Cardan afin de calculer u? et v3.

De méme, pour un polynome de degré 3, on écrit @ + bz + cx +d = (v —r1)(z — r2)(x — r3) et
on obtient

™ + T9 + T3 = —b
T1T2+T2T3+T1T3 =C
r1raT3 = —d



On a des relations similaires quelque soit le degré n. On les appelle relations coefficients-racines.

Il est intéressant de noter que les expressions 1y + 1o+ 13, 1179 + 17913+ 1173, 717273 sont symétriques
en les racines. Cela signifie que si I'on permute les racines entre elles, alors ces quantités restent
inchangées. Par exemple, (ry + ro)r3 + (r1 + r3)rs + (ro + r3)r? est aussi symétrique, alors que
(r1 —rg)(r1 —r3)(rg —r3) n’est pas symétrique car si 'on échange 5 et r3, 'expression se transforme
en son opposée.

FIGURE 6 : Isaac Newton (1643-1727)

Les coefficients d’un polynéme s’expriment ainsi comme des fonctions symétriques des racines. Il
en est, par suite, de méme pour toutes les quantités que I'on peut former en additionnant et/ou en
multipliant ces coefficients.

Newton fit alors une découverte remarquable : si, réciproquement, on considére une quantité qui
est fonction symétrique des racines d’un polynoéme, alors celle-ci peut étre exprimée en fonction des
coefficients de ce polynome par sommes et produits. Par exemple, toujours dans le cas du polyndéme
de degré 3, prenons la quantité symétrique r$ + 3 + r5. Un peu de calcul montre que I'on a alors :

ri” + 7‘% + rg
= (r1 + 1o +13)% — 3(r1r3 + ror? 4+ 102 + r3ri 4+ rord + rari) — 6117973
= (’1"1 +7”2+T'3)3 —3(7”1 + 1o +7”3)<7“17"2 +?"2T3+7“1’1“3) +37”1?"2T3

Donc d’apreés les relations coefficients-racines données plus haut, on a r§ +r3 +7r3 = —b* + 3bc — 3d.
Ainsi, la quantité r$ 473 473, et plus généralement, toute quantité qui est symétrique en les racines,
peut étre exprimée directement a l'aide des coefficients du polynéme sans avoir & trouver les ra-
cines au préalable! Ce théoréme fondamental, que 'on admettra ici, est d’'une importance capitale
et constitue la pierre fondatrice de la théorie de Galois. C’est aussi le point de départ des travaux
de Lagrange.



La méthode de Lagrange

FIGURE 7 : Joseph-Louis Lagrange (1736-1813)

Les idées de Lagrange peuvent étre considérées comme les prémices de la théorie de Galois. Ga-
lois trouva d’ailleurs certainement son inspiration en lisant les écrits de Lagrange : son mémoire
Réflexions sur la résolution algébrique des équations publié en 1771 ou, plus probablement, une
note sur ce mémoire qu’il aurait écrite plus tard. Lagrange développe une réflexion générale sur
la résolution des équations en étudiant comment se transforment certaines quantités exprimées en
fonctions des racines d'un polynome lorsqu’on permute ces racines. Grace a cela, Lagrange donne
une méthode trés générale de résolution des équations qui permet notamment d’unifier les méthodes
connues de résolution des équations du troisiéme et quatriéme degré. C’est ce que nous allons voir.

Lagrange fait la remarque suivante : lorsqu’on cherche a résoudre une équation dont les racines sont
1,79, ..., s €t que I'on forme une certaine quantité ¢ en fonction de ces racines t = f(ry,7q,...,7y)
alors t est trés facile a calculer en fonctions des coefficients de ’équation lorsque, d’aprés la pro-
priété vue plus haut, f est symétrique en les racines r;. Dans ce cas, lorsqu’on permute les racines
r; entre elles, 'expression t = f(ry,r,...,r,) garde une valeur constante. Parallélement, lorsque f
est trés peu symétrique, par exemple lorsque t = r; — r3, alors t peut étre trés difficile & calculer.
Cette fois, lorsqu’on permute les racines r;, t peut potentiellement prendre de nombreuses valeurs
différentes. Par exemple, pour n = 3, ¢ peut prendre les valeurs r| —rs, 1o — 73,71 — 19,70 — 71,73 — 11
et r3 — 7ro.

Nous avons peu d’espoir d’arriver a calculer directement une quantité ¢ peu symétrique (typique-
ment lorsque ¢ est une racine) et calculer des quantités totalement symétriques est certes facile, mais
ne fait pas vraiment avancer le probléme. L’idée de Lagrange est d’essayer de former une quantité
qui soit a la fois assez symétrique, dans 'espoir qu’elle ne prenne qu'un nombre petit de valeurs
et donc qu’elle soit assez facilement calculable, et a la fois pas trop symétrique, dans 1’espoir que
les racines pourront étre exprimées a partir de cette quantité. De telles quantités sont appelées des
résolvantes de Lagrange. Regardons tout de suite comment s’articule ce principe avec ’équation de
degré 3.

Equation du troisiéme degré

On cherche a résoudre une équation de degré 3 dont les racines (pour instant inconnues) sont
r1, 79 et r3. En vue de résoudre 1’équation, la quantité intermédiaire que 1'on va considérer est



u = 71 + jre + j?rs ou j est un nombre complexe différent de 1 vérifiant j° = 1 (un tel nombre
existe car 1’équation 23 = 1 admet trois solutions dans l’ensemble des nombres complexes, dont
deux sont différentes de 1).

Premiere étape

Quelles sont les valeurs que prend u lorsqu’on permute les racines r1, 75 et r3 7 Représentons ry, ry
et r3 par les sommets A, B et C' d’un triangle équilatéral. Permuter les racines r1,ry et r3 revient
alors & appliquer une isométrie au triangle ABC'. Ces isométries sont soit des rotations (d’angle
0°, 120°, ou -120°), soit des symétries d’axe I'une des médiatrices du triangle. Commengons par
les rotations. La rotation qui envoie A sur B, B sur C' et C' sur A peut étre représentée par le tableau

A B C
B C A

ou la deuxiéme ligne indique les images des points de la premiére ligne. Les trois rotations sont

donc données par :
A B C A B C A B C
A B C B C A C A B

Les valeurs respectives que prend u sont alors

u :T1+jT2+j27”3

u’ :T2—|—jT3+j2T1

"

u' =134 jr+ 57

On remarque alors que u = ju’ = j2u” egrace a la relation 72 = 1! Donc si on éléve au cube, on a
)

u? = u = . Ainsi, effectuer une rotation des racines laisse la quantité u? invariante !

Maintenant, regardons les symétries axiales. Elles sont décrites par les tableaux suivants :
A B C A B C A B C
A C B C B A B A C

Par ces transformations, u prend encore trois valeurs qui sont v = r 4+ jrs+ j2rq, v = 13+ jre +5°%r;

et v = ry + jr; + j%r3. Encore une fois, on remarque que v® = v'3 = v”3. Ainsi, lorsqu’on applique

une symétrie axiale quelconque a u?® alors u® se transforme en v3.

En conclusion, u? est inchangée par les rotations et se transforme en v3 par les symétries axiales.
Donc, finalement lorsqu’on effectue une permutation quelconque des racines, u® ne prend que les
deux valeurs u® = (11 + jra + j%r3)® et v® = (r1 4 jrs + j*r2)3. Ceci va nous permettre d’exprimer
u? et v® A partir des coefficients de 1’équation initiale. En effet, les deux quantités S = u® + v> et
P = u3v3 sont totalement symétriques en les racines car appliquer une permutation des racines
ne fait qu’échanger u?® et v®. Par conséquent, d’aprés la propriété fondamentale que 'on a vue
plus haut, S et P peuvent étre exprimées directement en fonction des coefficients de 1’équation de
départ sans avoir a calculer les racines au préalable. Mais une fois S et P connues, on a affaire 4 un
systéme somme-produit, d’oit on trouve que u® et v3 sont solutions de I’équation du second degré
y? — Sy + P = 0. Ceci permet donc d’affirmer que u?® et v* sont exprimables par radicaux & partir



des coefficients de I’équation initiale! C’est la premiére étape.
Deuziéme étape

Maintenant que ’on connait u? et v3, il faut pouvoir retrouver les racines! Pour cela, on va utiliser
l'identité 1+ j+ 52 = 0. Elle est bien vraie car de 5 = 1, on déduit j>—1 = (j—1)(1+j+35?) = 0 puis
1+j+j% = 0 étant donné que j # 1. Maintenant, rappelons que u = ri+jro+7j2rs, v = r1+jrs+75°rs.
De plus, la somme o = 1+ 19+ 173 est symétrique en les racines, donc connue. On a alors le systéme

o =ri+ra+T3
w =71+ jro+ jirs
v :7’1—|—j7'3—|—j27"2

En sommant membre & membre, on obtient
crut+v=3r 4+ (1+j+5)rs+ (1 +5+7%)rs =3

L. o+u+v ) Co+u +v" o4 Pu+tju o+ u'+v o4 ju+ v
d’oir; = ——— . Deméme, ry = 3 = 3 etry = 3 = .

3

Nous avons bien réussi a exprimer les solutions de I’équation a l'aide de u et v. Comme u® et v3
sont exprimables par radicaux a partir des coefficients de ’équation initiale, alors les racines aussi.

Remarquons que comme pour la méthode Cardan, la résolution de I’équation a nécessité la réso-
lution d'une équation du second degré intermédiaire puis I'extraction de deux racines cubiques a
partir de u?® et v3. Les méthodes sont fondamentalement identiques mais comme nous allons le voir,
I'idée de Lagrange s’adapte pour I’équation de degré 4.

Equation du quatriéme degré

Le principe est le méme. On cherche a résoudre une équation dont les racines sont r1, ro, 73 et ry.
Cette fois-ci, la quantité que 'on va former est x = riry + r374.

Premiere étape

b
B .
FIGURE 8 : un tétraédre
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Quelles sont les valeurs prises par x lorsqu’on permute les racines ry, 79, r3 et r4 7 Cette fois-
ci, on peut représenter chaque permutation des racines par une isométrie d’'un tétraedre régu-
lier de sommets A, B, C et D. Le tétraédre ABCD posséde trois paires d’arétes opposées :
{AB,CD}, {AC,BD} et {AD,BC}. En outre, chaque isométrie du tétraédre transforme une

paire d’arétes opposées en une autre. Par exemple 'isométrie

A B C D
B C D A

transforme {AB,CD} en {AD, BC} et laisse {AC, BD} inchangée. Si l'on fait correspondre au
point A la racine 71, au point B la racine ry, etc., a 'aréte AB le produit 179, etc. et & la paire
d’aréte {AB,CD} la quantité rry + r3ry, etc., on déduit de ce qui préceéde que toute permutation
des racines transforme la quantité x = ryry + r3r4 en l'une des quantités suivantes (qui corres-
pondent aux trois paires d’arétes) : x = rire 4 r3ry, y = r173+rory oOu 2 = 174 +12r3. Comme pour
le cas du degré 3, on en déduit que les trois quantités S =z +y+ 2, T =2y +yz+z2z et P = zyz
sont symétriques. Elle sont donc connues, et on peut déterminer x, y et z comme solutions de
I’équation du troisiéme degré X2 — SX? +TX — P = 0.

Deuziéme étape

Il s’agit maintenant de trouver les racines ry, ry, r3 et ry, connaissant les quantités
T =11Tg + 1374,y = 1173 + 19Ty €t 2 = 111y + 1ror3. Pour cela, posons pis = r119 et p3y = r3ry. On a
alors p1s + p34 = x mais il se trouve aussi que p = piop3s = r1791r374 €st symétrique en les racines.
Donc p est connue et, par conséquent, on aboutit encore une fois & un systéme somme-produit :

T = P12 + P34
P = P12P34

duquel on déduit les valeurs de pio et p34 en résolvant une équation de degré 2. Notons maintenant
S19 =T1+ 71y et s34 = r3+1ry. Alors s = s19 4 S34 = r1 + 1o+ 13 + 14 est symétrique donc connue. Et

g = DP3aSi2 + P12534
= 7'37’4(7'1 + 7“2) + 7"17’2(7”3 + 7“4)
= TTorg + r1rely + 117374 + ToT37y

est aussi symétrique donc connue. Les deux inconnues si5 et s34 vérifient donc le systéme suivant

S12 + S34 = S
D34S12 + D12S34 = ¢

qui est un systéme linéaire (on rappelle que pio et p3q ont déja été déterminées plus haut). On peut
facilement le résoudre, par exemple en écrivant s3y; = s — s12 et en remplacant s34 dans la deuxiéme
équation pour avoir une équation du premier degré en sio. Aprées avoir calculé si9, on retrouve ssy
avec Sz = S — S1o. Nous y sommes presque! On connait sip et pia, c’est-a-dire la somme et le
produit de 71 et r5! Donc en résolvant une deuxiéme équation du second degré, on peut trouver
r1 et ro. Enfin, pour trouver r3 et r4, on peut remarquer qu’ils sont solutions du systéme linéaire
suivant
T3+ Ty = S34
{ Tirg +rery =Y
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Nous avons bel et bien montré que I'équation de degré 4 est résoluble par radicaux.

On remarque encore une fois que la méthode de Lagrange posséde beaucoup de points communs
avec celle de Ferrari. En particulier, dans chacune des deux méthodes, nous avons da calculer une
quantité intermédiaire en résolvant une équation du troisiéme degré, ce qui nous permettait ensuite
de trouver les 4 racines de 1’équation initiale en résolvant deux autres équations du second degré.
Les résultats de la théorie de Galois montrent en fait, qu’on ne peut y échapper, quelle que soit la
méthode utilisée.

Lagrange ne s’arréte pas la et sa méthode permet méme de résoudre des équations de degré plus
grand que 4 mais dans des cas trés particuliers. Il pressent que les équations de degré supérieur ne
sont pas résolubles en général et développe méme quelques arguments en faveur de cette hypothése.
C’est Abel et Galois qui, s’appuyant tous les deux sur les travaux de Lagrange, finiront par montrer
indépendamment 1'un de 'autre que ’équation de degré 5 n’est pas résoluble par radicaux. Galois
va plus loin et répond complétement a la question de la résolubilité en donnant une condition né-
cessaire et suffisante pour qu’une équation soit résoluble par radicaux.

Conclusion : vers la théorie de Galois

On peut au moins retenir deux choses de ce qui a été fait. D’abord que les équations de degré plus
petit que 4 sont résolubles. Puis, que dans cette résolution, les permutations des racines jouent un
role central mais mystérieux mis en avant par Lagrange. Mais Galois est le premier a vraiment
considérer l’ensemble des permutations de n éléments (en I'occurrence n racines) comme un objet
mathématique a part entiére dont on peut étudier les propriétés et la structure. Cette structure
prend, grace a Galois, le nom de groupe. Galois montre alors que chaque propriété d’une équation
se traduit par une propriété du groupe correspondant (groupe de Galois) et vice versa. Cette
démarche lui permet alors de formuler un critére de résolubilité d’une équation & l’aide de son
groupe de Galois!

Cet article a été écrit en partenariat avec Bicentenaire de la naissance d’Evariste Galois.

7 ‘:—"7 Bicentenaire de la naissance
&), @' aEvariste Galois

FIGURE 1 : Logo du Bicentenaire de la naissance de Galois en 2011

Ce texte - qui reprend un exposé du séminaire Mathematic Park donné par I’auteur en octobre 2011
a l'occasion des célébrations du bicentenaire de la naissance d’Evariste Galois - propose de montrer
quelques aspects de la résolution des équations algébriques de degré 3 et 4 a travers une petite
promenade mathématique qui commence au XVie siécle avec les mathématiciens de la Renaissance
italienne et se termine au XVliile siécle avec les travaux de Lagrange.
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