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Introduction

Avant d’aborder la résolution des équations proprement dite, il est nécessaire de préciser de quelles
équations on parle et ce que l’on entend par “résolution”.

Qu’est-ce qu’une équation algébrique ?

Une équation algébrique (ou polynomiale) est une équation de la forme

xn + an−1x
n−1 + . . .+ a1x+ a0 = 0

où l’inconnue est x et où a0, a1, . . . , an−1 sont des nombres connus qu’on appelle coefficients de
l’équation. On dit que l’équation est de degré n.

Par exemple, les deux équations suivantes sont algébriques, respectivement de degré 2 et 3 :

x(x+ 2) + 4 = 0 ; x3 + 3x2 + 2x+ 7 = 0

alors que celle-ci ne l’est pas :
x2 − sin x = 0

Les mathématiciens se sont très tôt intéressés aux équations algébriques car elles figurent parmi les
plus simples que l’on puisse se poser (ce qui ne veut pas dire qu’elles sont faciles à résoudre !) mais
aussi parce qu’elles peuvent, lorsque leur degré est plus petit que 3, être reliées à des problèmes
concrets faisant intervenir des longueurs, des aires ou des volumes.

Le problème consistant à “résoudre” ce type d’équations peut prendre différentes formes selon les
besoins. On peut par exemple chercher à trouver des solutions approchées par des méthodes nu-
mériques. Ou bien, chercher à construire géométriquement les solutions comme intersections de
certaines courbes dans le plan. Il se trouve que, historiquement, le problème de la résolution de
telles équations a acquis, pour les algébristes et donc pour Galois, un sens très précis, celui de la
résolution par radicaux.

Résolubilité par radicaux

Essayons de comprendre la notion de résolubilité par radicaux à travers divers exemples. Prenons
d’abord une équation de degré 1, par exemple 3x + 2 = 0. La solution est alors x = −2

3
. Pour la

résoudre nous n’avons pas eu besoin d’autre chose que les quatre opérations de base : +,−,× et ÷.

Si nous essayons de faire la même chose pour l’équation x2 + 2x − 1 = 0 de degré 2, nous n’y
arriverons pas. En effet, les nombres que l’on peut obtenir par les opérations de base à partir des
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coefficients de l’équation sont des nombres rationnels, c’est-à-dire des nombres qui sont quotients
de deux entiers. Or les solutions de cette équation sont −1 +

√
2 et −1 −

√
2 et les grecs savaient

depuis longtemps déjà que
√
2 n’est pas rationnel.

Comment fait-on pour trouver ces solutions de l’équation x2+2x−1 = 0 ? Plus généralement, pour
résoudre une équation de degré 2 quelconque de la forme x2+2bx+ c = 0, on peut procéder comme
suit. On remarque que x2+2bx est le début du développement de (x+b)2 = x2+2bx+b2. Ceci sug-
gère que l’inconnue u = x+ b est plus pertinente pour notre problème. En effet, après changement
de variable notre équation se réécrit alors sous la forme (on parle de forme canonique ) u2−b2+c = 0.

Nous avons donc le système suivant qui est équivalent à l’équation initiale :{
u2 = b2 − c
x = u− b

Remarquons que pour trouver une expression de x, il suffit alors d’écrire que u = ±
√
b2 − c puis

d’utiliser x = −b+ u = −b±
√
b2 − c.

En réalité, nous avons ainsi résolu toutes les équations de degré 2. En effet une équation de degré
2 quelconque Ax2 +Bx+C = 0 peut toujours se mettre sous la forme x2 +2bx+ c = 0 en divisant
d’abord l’équation par A pour obtenir une équation de la forme x2 +mx+ c = 0, puis en rempla-
çant m par 2b. L’expression x = −b ±

√
b2 − c transcrite en fonctions de A, B et C donne alors

l’expression bien connue x =
−B ±

√
B2 − 4AC

2A
apprise en première.

Regardons enfin l’équation suivante (de degré beaucoup plus gros) :

(x3 − 1)8 + 2b(x3 − 1)4 + c = 0

Si on pose v = x3− 1, alors on remarque que v8+2bv4+ c = 0, c’est-à-dire que v4 vérifie l’équation
y2 + 2by + c = 0 que l’on a résolu tout à l’heure. On sait alors qu’on a un système de la forme{

u2 = b2 − c
v4 = u− b

Puis, comme x3 = v + 1, on obtient finalement le système suivant
u2 = b2 − c
v4 = u− b
x3 = v + 1.

Encore une fois, on peut donner une expression de x en utilisant les fonctions
√
·, 3
√
· et 4

√
· pour

exprimer u, v puis x l’une après l’autre.

En conclusion, pour chacune des équations précédentes nous avons réussi à écrire un système de la
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forme 

up1
1 = . . .

up2
2 = . . .

...

upr
r = . . .

avec ur = x et où, à chaque fois, le membre de droite s’exprime avec les quatre opérations de base
à partir des coefficients de l’équation et des inconnues ui précédentes.

Lorsqu’on arrive à montrer que les solutions d’une équation algébrique vérifient un système de cette
forme, on dit que l’équation est résoluble par radicaux. Le terme “radicaux” vient du fait que l’on
peut obtenir une expression de la solution ur = x en écrivant à chaque étape i que ui est une racine
pi-ième du second membre. On obtient au final une expression de x à partir des coefficients de
l’équation initiale qui n’utilise que les opérations de base et les fonctions n

√
· : une expression par

radicaux. Par exemple,
3
√
1 +

√
2 +

3
√
−1 +

√
2

5
.

Équation du troisième degré et quatrième degré

Nous avons vu plus haut comment résoudre par radicaux toutes les équations de degré 1 et 2. Les
babyloniens savaient résoudre ces équations depuis déjà 4000 ans. Il a fallu attendre la Renaissance
italienne pour que d’autres progrès significatifs se fassent dans ce domaine : d’abord la résolution
(par radicaux) de l’équation du troisième degré grâce aux formules de Tartaglia-Cardan, puis peu
de temps après, celle de l’équation du quatrième degré grâce à la méthode de Ferrari.

Équation du troisième degré : méthode de Cardan

Figure 3 : Jérôme Cardan (1501–1576)

La première méthode connue pour résoudre une équation du troisième degré fut celle donnée par
l’italien Jérôme Cardan. En fait, cette méthode lui aurait été confiée par un autre mathématicien
italien connu sous le nom de Tartaglia. Après avoir d’abord promis de la garder secrète, Cardan finit
par la publier en 1545 à la grande surprise de Tartaglia ! (Les mathématiciens avaient l’habitude, à
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cette époque, d’organiser des défis et des concours de résolution d’équations, celles de degré 3 entre
autres. C’est pourquoi, Tartaglia voulait garder sa méthode secrète !). Voici cette méthode.

On cherche à résoudre l’équation x3+ px+ q = 0. Nous verrons plus loin pourquoi on ne s’intéresse
qu’aux équations qui sont de cette forme. L’idée de la méthode de Cardan consiste à chercher x sous
la forme x = u + v et de chercher à poser une condition sur u et v a posteriori afin d’obtenir une
équation plus simple à résoudre. En remplaçant dans l’équation on obtient (u+v)3+p(u+v)+q = 0
puis, en développant et en réarrangeant les termes, il vient u3 + v3 + (3uv + p)(u+ v) + q = 0. En
vue de simplifier l’équation, la condition sur u et v que l’on va imposer est 3uv+ p = 0. L’équation
devient alors u3+v3 = −q et la condition sur u et v se réécrit uv = −p

3
. On obtient donc le système

suivant {
u3 + v3 = −q

u3v3 = −
(p
3

)3

Or, si on connait la somme et le produit de deux nombres, ici u3 et v3, on peut trouver ces nombres
comme solutions d’une équation du second degré ! En effet,

(X − u3)(X − v3) = X2 − (u3 + v3)X + u3v3 = X2 + qX −
(p
3

)3

Ainsi, u3 et v3 sont les solutions de l’équation X2 + qX −
(p
3

)3

= 0. Comme on sait résoudre cette
équation par radicaux, on sait que u3 et v3 sont exprimables par radicaux à partir des coefficients q

et
(p
3

)3

, et donc à partir des coefficients p et q de l’équation initiale. Finalement, comme x = u+v,
x est exprimable par radicaux à partir de p et q.

On en déduit que l’équation de degré 3, x3 + px + q = 0, est résoluble par radicaux. Une solution
générique possible est donnée par

x =

3

√√√√√−q +

√
q2 + 4

(p
3

)3

2
+

3

√√√√√−q −
√

q2 + 4
(p
3

)3

2

La méthode de Cardan pose, dans certains cas, quelques difficultés. Par exemple, si l’on cherche à
résoudre l’équation x3 − 15x− 4 = 0. Alors l’équation du second degré intermédiaire qu’il faut ré-
soudre est X2−4X+125 = 0 qui n’admet pas de solutions (son discriminant est négatif). Pourtant
l’équation initiale admet bien une solution : x = 4 ! Bombelli eut alors le premier l’idée (en 1572)
d’appliquer formellement la formule générique donnée plus haut, ce qui l’oblige à considérer une
racine carré d’un nombre négatif ! Il effectue alors les calculs sur ce nombre imaginaire avec les règles
habituelles et trouve à la fin la solution recherchée x = 4. Ce fut la naissance des nombres com-
plexes : des nombres de la forme x+

√
−1y où x et y sont des nombres réels et

√
−1 est un nombre

imaginaire vérifiant (
√
−1)2 = −1 ! Pendant longtemps, ces nombres furent considérés comme des

bizarreries dont le seul intérêt consistait à flatter l’ego des mathématiciens qui participaient à des
concours. Mais petit à petit, les nombres complexes furent acceptés et utilisés jusqu’à devenir un
outil fondamental incontournable en mathématique et même en physique. C’est loin d’être le seul
exemple, en mathématique, d’une découverte, au début sans intérêt, qui devient fondamentale au
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fil des siècles.

Expliquons enfin pourquoi nous nous sommes contentés de considérer les équations du troisième
degré du type x3 + px+ q = 0. En fait, la raison est que toute équation du troisième degré peut se
mettre sous cette forme. En effet, si l’on a une équation de la forme x3 + ax2 + bx+ c = 0 alors, en
opérant le changement de variable x = y− a

3
, le terme x3 = (y− a

3
)3 se développe en y3 − ay2 + . . .

et le terme ax2 = a(y − a
3
)2 se développe en ay2 + . . .. On voit que les deux termes −ay2 et ay2

se simplifient et il reste une équation en y de la forme y3 + py + q = 0 que l’on sait résoudre. On
retrouve ensuite x avec la relation x = y − a

3
.

Équation du quatrième degré : méthode de Ferrari

L’équation du 4ieme degré fut résolue en 1540 par Ferrari à l’âge de 18 ans. Sa solution repose sur
la méthode de Cardan dont il était d’ailleurs l’élève.

On cherche à résoudre l’équation x4 = px2 + qx + r. Comme pour l’équation de degré 3, un chan-
gement de variable permet de ramener toute équation du quatrième degré à une équation de cette
forme-là.

L’idée de Ferrari consiste à rajouter un paramètre supplémentaire t en écrivant que
x4 = (x2 + t)2 − 2x2t − t2. On obtient alors (x2 + t)2 − 2x2t − t2 = px2 + qx + r ou encore
(x2 + t)2 = (2t+ p)x2 + qx+ (t2 + r).

On choisit alors une valeur de t convenable de telle sorte que la quantité (2t+ p)x2 + qx+ (t2 + r)
se factorise sous la forme (αx+ β)2. Or, dire que ax2 + bx+ c se factorise sous la forme (αx+ β)2

revient à dire que son discriminant b2 − 4ac est nul. Dans notre cas, la condition sur t est donc
q2− 4(2t+ p)(t2+ r) = 0. Ceci donne lieu à une équation du troisième degré en t. Pour la résoudre,
Ferrari utilise la méthode de Cardan. Il trouve alors t puis calcule α et β et obtient finalement
(x2 + t)2 = (αx+ β)2 où α et β sont exprimés par radicaux en fonction de p, q et r.

Comme A2 = B2 équivaut à A = ±B, on en déduit que x vérifie l’une des deux équations suivantes{
x2 + t = αx+ β
x2 + t = −αx− β

Toutes deux sont des équations de degré 2 que l’on sait résoudre par radicaux. On en déduit que
l’équation de degré 4, x4 = px2 + qx+ r est résoluble par radicaux.

Fonctions symétriques et méthode de Lagrange

La résolution des équations du troisième et quatrième degré donna un élan considérable à l’algèbre
au cours des siècles qui suivirent. Pourtant, malgré tous les efforts déployés par les mathématiciens,
il a fallu attendre près de 300 ans pour qu’Abel puis Galois apportent enfin la réponse (négative !)
à la question de la résolubilité par radicaux des équations de degré supérieur. Entre temps, des
progrès importants furent accomplis incluant l’apparition des notations algébriques modernes et
l’utilisation systématique des nombres négatifs, voire complexes.
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Figure 4 : Niels Henrik Abel (1802-1829)

Figure 5 : Évariste Galois (1811-1832)

Une propriété importante des nombres complexes fut découverte (quoique la preuve, apportée par
Gauss, tarda à venir) : toute équation de degré n admet exactement n solutions dans l’ensemble
des nombres complexes. On peut alors toujours mettre une équation

xn + an−1x
n−1 + . . .+ a1x+ a0 = 0

sous la forme
(x− r1)(x− r2) . . . (x− rn) = 0

où les ri sont les nombres complexes solutions de l’équation qu’on appellera les racines du polynôme
P (x) = xn + an−1x

n−1 + . . .+ a1x+ a0. Notons que les ri ne sont pas forcément distincts, dans ce
cas on parle de racines multiples.

On remarque alors des identités reliant les racines xi aux coefficients ai. En effet, si l’on met par
exemple un polynôme du second degré x2 + bx + c sous la forme (x − r1)(x − r2), on trouve en
développant x2 + bx+ c = x2 − (r1 + r2)x+ r1r2 d’où{

r1 + r2 = −b
r1r2 = c

Nous avons d’ailleurs déjà utilisé ces relations pour la méthode Cardan afin de calculer u3 et v3.

De même, pour un polynôme de degré 3, on écrit x3 + bx2 + cx + d = (x − r1)(x − r2)(x − r3) et
on obtient 

r1 + r2 + r3 = −b
r1r2 + r2r3 + r1r3 = c
r1r2r3 = −d
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On a des relations similaires quelque soit le degré n. On les appelle relations coefficients-racines.

Il est intéressant de noter que les expressions r1+ r2+ r3, r1r2+ r2r3+ r1r3, r1r2r3 sont symétriques
en les racines. Cela signifie que si l’on permute les racines entre elles, alors ces quantités restent
inchangées. Par exemple, (r1 + r2)r

2
3 + (r1 + r3)r

2
2 + (r2 + r3)r

2
1 est aussi symétrique, alors que

(r1−r2)(r1−r3)(r2−r3) n’est pas symétrique car si l’on échange r2 et r3, l’expression se transforme
en son opposée.

Figure 6 : Isaac Newton (1643-1727)

Les coefficients d’un polynôme s’expriment ainsi comme des fonctions symétriques des racines. Il
en est, par suite, de même pour toutes les quantités que l’on peut former en additionnant et/ou en
multipliant ces coefficients.

Newton fit alors une découverte remarquable : si, réciproquement, on considère une quantité qui
est fonction symétrique des racines d’un polynôme, alors celle-ci peut être exprimée en fonction des
coefficients de ce polynôme par sommes et produits. Par exemple, toujours dans le cas du polynôme
de degré 3, prenons la quantité symétrique r31 + r32 + r33. Un peu de calcul montre que l’on a alors :

r31 + r32 + r33
= (r1 + r2 + r3)

3 − 3(r1r
2
2 + r2r

2
1 + r1r

2
3 + r3r

2
1 + r2r

2
3 + r3r

2
2)− 6r1r2r3

= (r1 + r2 + r3)
3 − 3(r1 + r2 + r3)(r1r2 + r2r3 + r1r3) + 3r1r2r3

Donc d’après les relations coefficients-racines données plus haut, on a r31 + r32 + r33 = −b3+3bc−3d.
Ainsi, la quantité r31+r32+r33, et plus généralement, toute quantité qui est symétrique en les racines,
peut être exprimée directement à l’aide des coefficients du polynôme sans avoir à trouver les ra-
cines au préalable ! Ce théorème fondamental, que l’on admettra ici, est d’une importance capitale
et constitue la pierre fondatrice de la théorie de Galois. C’est aussi le point de départ des travaux
de Lagrange.
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La méthode de Lagrange

Figure 7 : Joseph-Louis Lagrange (1736-1813)

Les idées de Lagrange peuvent être considérées comme les prémices de la théorie de Galois. Ga-
lois trouva d’ailleurs certainement son inspiration en lisant les écrits de Lagrange : son mémoire
Réflexions sur la résolution algébrique des équations publié en 1771 ou, plus probablement, une
note sur ce mémoire qu’il aurait écrite plus tard. Lagrange développe une réflexion générale sur
la résolution des équations en étudiant comment se transforment certaines quantités exprimées en
fonctions des racines d’un polynôme lorsqu’on permute ces racines. Grâce à cela, Lagrange donne
une méthode très générale de résolution des équations qui permet notamment d’unifier les méthodes
connues de résolution des équations du troisième et quatrième degré. C’est ce que nous allons voir.

Lagrange fait la remarque suivante : lorsqu’on cherche à résoudre une équation dont les racines sont
r1, r2, . . . , rn et que l’on forme une certaine quantité t en fonction de ces racines t = f(r1, r2, . . . , rn)
alors t est très facile à calculer en fonctions des coefficients de l’équation lorsque, d’après la pro-
priété vue plus haut, f est symétrique en les racines ri. Dans ce cas, lorsqu’on permute les racines
ri entre elles, l’expression t = f(r1, r2, . . . , rn) garde une valeur constante. Parallèlement, lorsque f
est très peu symétrique, par exemple lorsque t = r1 − r3, alors t peut être très difficile à calculer.
Cette fois, lorsqu’on permute les racines ri, t peut potentiellement prendre de nombreuses valeurs
différentes. Par exemple, pour n = 3, t peut prendre les valeurs r1−r3, r2−r3, r1−r2, r2−r1, r3−r1
et r3 − r2.

Nous avons peu d’espoir d’arriver à calculer directement une quantité t peu symétrique (typique-
ment lorsque t est une racine) et calculer des quantités totalement symétriques est certes facile, mais
ne fait pas vraiment avancer le problème. L’idée de Lagrange est d’essayer de former une quantité
qui soit à la fois assez symétrique, dans l’espoir qu’elle ne prenne qu’un nombre petit de valeurs
et donc qu’elle soit assez facilement calculable, et à la fois pas trop symétrique, dans l’espoir que
les racines pourront être exprimées à partir de cette quantité. De telles quantités sont appelées des
résolvantes de Lagrange. Regardons tout de suite comment s’articule ce principe avec l’équation de
degré 3.

Équation du troisième degré

On cherche à résoudre une équation de degré 3 dont les racines (pour l’instant inconnues) sont
r1, r2 et r3. En vue de résoudre l’équation, la quantité intermédiaire que l’on va considérer est
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u = r1 + jr2 + j2r3 où j est un nombre complexe différent de 1 vérifiant j3 = 1 (un tel nombre
existe car l’équation x3 = 1 admet trois solutions dans l’ensemble des nombres complexes, dont
deux sont différentes de 1).

Première étape

Quelles sont les valeurs que prend u lorsqu’on permute les racines r1, r2 et r3 ? Représentons r1, r2
et r3 par les sommets A,B et C d’un triangle équilatéral. Permuter les racines r1, r2 et r3 revient
alors à appliquer une isométrie au triangle ABC. Ces isométries sont soit des rotations (d’angle
0o, 120o, ou -120o), soit des symétries d’axe l’une des médiatrices du triangle. Commençons par
les rotations. La rotation qui envoie A sur B, B sur C et C sur A peut être représentée par le tableau(

A B C
B C A

)
où la deuxième ligne indique les images des points de la première ligne. Les trois rotations sont
donc données par : (

A B C
A B C

) (
A B C
B C A

) (
A B C
C A B

)
Les valeurs respectives que prend u sont alors

u = r1 + jr2 + j2r3
u′ = r2 + jr3 + j2r1
u′′ = r3 + jr1 + j2r2

On remarque alors que u = ju′ = j2u′′ grâce à la relation j3 = 1 ! Donc si on élève au cube, on a
u3 = u′3 = u′′3. Ainsi, effectuer une rotation des racines laisse la quantité u3 invariante !

Maintenant, regardons les symétries axiales. Elles sont décrites par les tableaux suivants :(
A B C
A C B

) (
A B C
C B A

) (
A B C
B A C

)
Par ces transformations, u prend encore trois valeurs qui sont v = r1+jr3+j2r2, v

′ = r3+jr2+j2r1
et v′′ = r2 + jr1 + j2r3. Encore une fois, on remarque que v3 = v′3 = v′′3. Ainsi, lorsqu’on applique
une symétrie axiale quelconque à u3 alors u3 se transforme en v3.

En conclusion, u3 est inchangée par les rotations et se transforme en v3 par les symétries axiales.
Donc, finalement lorsqu’on effectue une permutation quelconque des racines, u3 ne prend que les
deux valeurs u3 = (r1 + jr2 + j2r3)

3 et v3 = (r1 + jr3 + j2r2)
3. Ceci va nous permettre d’exprimer

u3 et v3 à partir des coefficients de l’équation initiale. En effet, les deux quantités S = u3 + v3 et
P = u3v3 sont totalement symétriques en les racines car appliquer une permutation des racines
ne fait qu’échanger u3 et v3. Par conséquent, d’après la propriété fondamentale que l’on a vue
plus haut, S et P peuvent être exprimées directement en fonction des coefficients de l’équation de
départ sans avoir à calculer les racines au préalable. Mais une fois S et P connues, on a affaire à un
système somme-produit, d’où on trouve que u3 et v3 sont solutions de l’équation du second degré
y2 − Sy + P = 0. Ceci permet donc d’affirmer que u3 et v3 sont exprimables par radicaux à partir
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des coefficients de l’équation initiale ! C’est la première étape.

Deuxième étape

Maintenant que l’on connait u3 et v3, il faut pouvoir retrouver les racines ! Pour cela, on va utiliser
l’identité 1+j+j2 = 0. Elle est bien vraie car de j3 = 1, on déduit j3−1 = (j−1)(1+j+j2) = 0 puis
1+j+j2 = 0 étant donné que j ̸= 1. Maintenant, rappelons que u = r1+jr2+j2r3, v = r1+jr3+j2r2.
De plus, la somme σ = r1+r2+r3 est symétrique en les racines, donc connue. On a alors le système

σ = r1 + r2 + r3
u = r1 + jr2 + j2r3
v = r1 + jr3 + j2r2

En sommant membre à membre, on obtient

σ + u+ v = 3r1 + (1 + j + j2)r2 + (1 + j + j2)r3 = 3r1

d’où r1 =
σ + u+ v

3
. De même, r2 =

σ + u′ + v′′

3
=

σ + j2u+ jv

3
et r3 =

σ + u′′ + v′

3
=

σ + ju+ j2v

3
.

Nous avons bien réussi à exprimer les solutions de l’équation à l’aide de u et v. Comme u3 et v3

sont exprimables par radicaux à partir des coefficients de l’équation initiale, alors les racines aussi.

Remarquons que comme pour la méthode Cardan, la résolution de l’équation a nécessité la réso-
lution d’une équation du second degré intermédiaire puis l’extraction de deux racines cubiques à
partir de u3 et v3. Les méthodes sont fondamentalement identiques mais comme nous allons le voir,
l’idée de Lagrange s’adapte pour l’équation de degré 4.

Équation du quatrième degré

Le principe est le même. On cherche à résoudre une équation dont les racines sont r1, r2, r3 et r4.
Cette fois-ci, la quantité que l’on va former est x = r1r2 + r3r4.

Première étape

Figure 8 : un tétraèdre
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Quelles sont les valeurs prises par x lorsqu’on permute les racines r1, r2, r3 et r4 ? Cette fois-
ci, on peut représenter chaque permutation des racines par une isométrie d’un tétraèdre régu-
lier de sommets A, B, C et D. Le tétraèdre ABCD possède trois paires d’arêtes opposées :
{AB,CD}, {AC,BD} et {AD,BC}. En outre, chaque isométrie du tétraèdre transforme une
paire d’arêtes opposées en une autre. Par exemple l’isométrie(

A B C D
B C D A

)
transforme {AB,CD} en {AD,BC} et laisse {AC,BD} inchangée. Si l’on fait correspondre au
point A la racine r1, au point B la racine r2, etc., à l’arête AB le produit r1r2, etc. et à la paire
d’arête {AB,CD} la quantité r1r2 + r3r4, etc., on déduit de ce qui précède que toute permutation
des racines transforme la quantité x = r1r2 + r3r4 en l’une des quantités suivantes (qui corres-
pondent aux trois paires d’arêtes) : x = r1r2+ r3r4, y = r1r3+ r2r4 ou z = r1r4+ r2r3. Comme pour
le cas du degré 3, on en déduit que les trois quantités S = x+ y + z, T = xy + yz + xz et P = xyz
sont symétriques. Elle sont donc connues, et on peut déterminer x, y et z comme solutions de
l’équation du troisième degré X3 − SX2 + TX − P = 0.

Deuxième étape

Il s’agit maintenant de trouver les racines r1, r2, r3 et r4, connaissant les quantités
x = r1r2 + r3r4, y = r1r3 + r2r4 et z = r1r4 + r2r3. Pour cela, posons p12 = r1r2 et p34 = r3r4. On a
alors p12 + p34 = x mais il se trouve aussi que p = p12p34 = r1r2r3r4 est symétrique en les racines.
Donc p est connue et, par conséquent, on aboutit encore une fois à un système somme-produit :{

x = p12 + p34
p = p12p34

duquel on déduit les valeurs de p12 et p34 en résolvant une équation de degré 2. Notons maintenant
s12 = r1+ r2 et s34 = r3+ r4. Alors s = s12+ s34 = r1+ r2+ r3+ r4 est symétrique donc connue. Et

g = p34s12 + p12s34
= r3r4(r1 + r2) + r1r2(r3 + r4)
= r1r2r3 + r1r2r4 + r1r3r4 + r2r3r4

est aussi symétrique donc connue. Les deux inconnues s12 et s34 vérifient donc le système suivant{
s12 + s34 = s
p34s12 + p12s34 = g

qui est un système linéaire (on rappelle que p12 et p34 ont déjà été déterminées plus haut). On peut
facilement le résoudre, par exemple en écrivant s34 = s− s12 et en remplaçant s34 dans la deuxième
équation pour avoir une équation du premier degré en s12. Après avoir calculé s12, on retrouve s34
avec s34 = s − s12. Nous y sommes presque ! On connaît s12 et p12, c’est-à-dire la somme et le
produit de r1 et r2 ! Donc en résolvant une deuxième équation du second degré, on peut trouver
r1 et r2. Enfin, pour trouver r3 et r4, on peut remarquer qu’ils sont solutions du système linéaire
suivant {

r3 + r4 = s34
r1r3 + r2r4 = y
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Nous avons bel et bien montré que l’équation de degré 4 est résoluble par radicaux.

On remarque encore une fois que la méthode de Lagrange possède beaucoup de points communs
avec celle de Ferrari. En particulier, dans chacune des deux méthodes, nous avons dû calculer une
quantité intermédiaire en résolvant une équation du troisième degré, ce qui nous permettait ensuite
de trouver les 4 racines de l’équation initiale en résolvant deux autres équations du second degré.
Les résultats de la théorie de Galois montrent en fait, qu’on ne peut y échapper, quelle que soit la
méthode utilisée.

Lagrange ne s’arrête pas là et sa méthode permet même de résoudre des équations de degré plus
grand que 4 mais dans des cas très particuliers. Il pressent que les équations de degré supérieur ne
sont pas résolubles en général et développe même quelques arguments en faveur de cette hypothèse.
C’est Abel et Galois qui, s’appuyant tous les deux sur les travaux de Lagrange, finiront par montrer
indépendamment l’un de l’autre que l’équation de degré 5 n’est pas résoluble par radicaux. Galois
va plus loin et répond complètement à la question de la résolubilité en donnant une condition né-
cessaire et suffisante pour qu’une équation soit résoluble par radicaux.

Conclusion : vers la théorie de Galois

On peut au moins retenir deux choses de ce qui a été fait. D’abord que les équations de degré plus
petit que 4 sont résolubles. Puis, que dans cette résolution, les permutations des racines jouent un
rôle central mais mystérieux mis en avant par Lagrange. Mais Galois est le premier à vraiment
considérer l’ensemble des permutations de n éléments (en l’occurrence n racines) comme un objet
mathématique à part entière dont on peut étudier les propriétés et la structure. Cette structure
prend, grâce à Galois, le nom de groupe. Galois montre alors que chaque propriété d’une équation
se traduit par une propriété du groupe correspondant (groupe de Galois) et vice versa. Cette
démarche lui permet alors de formuler un critère de résolubilité d’une équation à l’aide de son
groupe de Galois !

Cet article a été écrit en partenariat avec Bicentenaire de la naissance d’Évariste Galois.

Figure 1 : Logo du Bicentenaire de la naissance de Galois en 2011

Ce texte - qui reprend un exposé du séminaire Mathematic Park donné par l’auteur en octobre 2011
à l’occasion des célébrations du bicentenaire de la naissance d’Évariste Galois - propose de montrer
quelques aspects de la résolution des équations algébriques de degré 3 et 4 à travers une petite
promenade mathématique qui commence au xvie siècle avec les mathématiciens de la Renaissance
italienne et se termine au xviiie siècle avec les travaux de Lagrange.
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Figure 2 : Annonce de l’exposé Mathematic Park d’Amine Marrakchi
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