Prolate wave operator and infrared and ultraviolet for zeta

Alain Connes

Thank you so much for your invitation and for this occasion to participate to this great conference,
which is a tribute to Christoph galensky who was a wonderful mathematician and physicist.

And what I want to explain is a quite surprising link between physics, when I talk about physics
I mean I will talk about the prolate spheroid which is an ellipsoid but you consider it as a three-
dimensional volume, I mean it’s filled, and the zeros of the Riemann zeta function. And when we
look at the zeros of the Riemann zeta function, when we plot them, what we find is of course a
very strong similarity with what would be if you want the spectrum of a Dirac operator. And when
you think about them spectrally, you find that there are two regimes which have to be understood
if you want : there is the ultraviolet regime in which the counting function for the zeros of the
Riemann zeta function is a very strange function ; it’s given by a formula which is due to Riemann
and which is this formula where you have, if you want, a term of the form E over 2 pi times log of E
over 2 pi minus E over to Pi and then there is a logarithmic discrepancy which arises. So this is for
the ultraviolet part. And for the infrared part, I mean, it’s very surprising what you get because, I
mean, like the first zero is around 14, and something and then okay, they behave in a very precise
manner which has to be understood. And what we shall see is that both in the ultraviolet and the
infrared, the prolate spheroid will play a crucial role.
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So I will talk about two joint papers very recent, one which was published in the Proceedings
of the National Academy of Science with Henri Moscovici on the UV Prolate Spectrum and the
second one which is in collaboration with Katia Consani and which considers this time the infrared
behavior.

Okay so we shall see quite precise result, but somehow, let’s start from the physics. Let’s start
from the prolate spheroid. So if you want, the Prolate spheroid is understood by means of a very
specific system of coordinates which are called the prolate coordinates when you see them they look
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a little bit strange I mean there are these coordinates, a, b, c. ¢ is an obvious coordinate because
of the if you want the rotation invariance of the spheroid. But the other if you want the term
which arises in front of the cosine and the sine for z and y looks rather strange. If you think a
little bit, what you will find out is that in fact, this term is there because it describes a family
of confocal ellipses so it looks like this : really what you have is there ; you have two foci ; you
have one which is the point (zero, zero, one) and the other one which is the point (zero, zero,
minus one) ; so they are both on the z-axis if you want, and the parameter b which was entering
in the coordinates is in fact verifying that 2b is the sum of the distance into the foci. You know
that an ellipse is defined by the fact that the sum of the distances to the two foci is constant
and this constant is 2b. So this is the role of the parameter b and the role of the parameter a is
just an angular parameter. So what happens then is the following : what happens is that when
you compute the Laplacian in this coordinates, the ordinal Laplacian okay, you find an expression
which then will allow you to deal with the Helmholtz equation for the three-dimensional spheroid,
the prolate spheroid (it’s called prolate because it’s elongated in the direction of the symmetry axis).

L
, Helmholtz equation A + k2 =0 .
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Okay so I mean when you look at the Laplacian, it has this form, okay, and if you look at rotation
invariant solutions (things simplified a bit because you have the differential with respect to the
variable ¢, the angular variable ¢ which is zero), and then, what you get when you write down the
Helmholtz equation, you find that there is what is called the separation of variables ; namely the
equation splits if you want as a sum of two terms, one which only involves the variable a, and the
other which only involves the variable b. And when you look a little bit more closely, what you find
out is that in fact to solve the Helmholtz equation, what do you have to do ? You have to solve
both the angular equation and the radial equation. So as equations, as differential equations, they
are the same, but the variables that you use as variables a and b and the variable a is between -1
and 1. This is if you want the angular part. And the variable b is larger than one, it goes to infinity,
and this is the radial part. Now for the solutions what the solutions will look like, the product of
two functions one function which only depends on a and one function which only depends on b so
¢(a), 1(b) but they have to be eigenvectors if you want for the same eigenvalue for the differential
equation. And it is because they will be for the same eigenvalue if you want that the terms will
cancel off and they will give you a solution of the Helmholtz equation.



Separation of variables

Angular equation = Radial equation,

but the variables have domain [-1, 1]

for the angular part and [1,00) for the

radial part. Solution ¢(a)y(b) with same
eigenvalue and @ = 0 on boundary.

Moreover of course, since you want to have Dirichlet boundary condition you have to have that

() is 0.

So what happens, in fact, can be stated like this if you want is that there is an operator, there is a
second order a differential operator which spits out from this Laplacian and which has the following
form modulo easy rescaling which is a change of variables, the operator, the way we shall consider
it, is this operator W, which depends on the parameter A\ ; A is related to K by a very simple
equation k equals 2 Pi Lambda square, and the operator W) looks like this : it’s a differentiation
times lambda square minus x square times differentiation plus an additional term which is 2 pi
Lambda x square okay.

Prolate spheroidal operator

The second order operator W) appears
from separation of variables in the La-
placian A for the prolate spheroid :

Wy = —3p((A\2 — 22)8,) + (2mAx)?

(k = 27)2)

Now, this operator was used in a quite remarkable way by Slepian and his collaborators, who were
working in Bell Labs and I will come back to their motivation later when we shall deal with the
infrared problem. But somehow their essential discovery which is described in several papers so
their essential discovery is the following : it is that in fact this differential operator commutes with
what is called the truncated Fourier transform. And to understand this fact, I mean it’s a little bit
surprising because what you have to understand somehow is that these differential operators one I
was showing before the W), in fact commutes with a projection operator. So this looks very strange
because you know the projection operator on the interval [minus Lambda, Lambda], it’s a function
which is discontinuous I mean it takes a value 1 between minus Lambda and Lambda and takes
the value of 0 elsewhere so I mean at first it looks very strange that the differential operator could
commute with such a function, but if you think a little bit, you’ll find out that in fact, it’s not so
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surprising because the simplest case to consider would be only the operator xd by dx and to under-
stand that it commutes with the projection on functions which have support on the positive integers.

Commutation with projection operator
» xd; commutes with 1ig
> (A2 — 22)d, commutes with 1_, y

> 9z (A2 —22)d; commutes with 1[_, y

Now why is this obvious ?

It’s obvious because, if you want, the operator xd by dx generates the semi-group of the group
actually of scaling operators, the group which replaces a function f of x by f of lambda x and so,
I mean obviously you know, for lambda positive of course. So obviously it preserves the functions
which have support in zero, infinity and it commutes with this projection.

So in fact, what happens is that the first piece of the operator which is d by dx lambda square
minus x square times d by dx commutes with this projection on minus lambda, lambda and of
course, the next term which was 2 pi lambda square times x square commutes of course with the
multiplication by a function. So what happens is that not only this operator commutes with Py but
in fact direct computation shows you that it commutes with Fourier transform, that’s not difficult
to see I mean, there is a piece of the operator which is the harmonic oscillator, which commutes
with Fourier transform. So it commutes with Fourier transform, and because it commutes with
Fourier transform and with the projection P, it also commutes with the Fourier transform of Pj.
Namely, if you want, it commutes with the operator P\, which is obtained by conjugating Py by
the Fourier transform. So that’s what Slepian and his collaborators discovered, and I mean in the
90s when T got quite interested if you want in the zeroes of zeta, what I had found, I had used this
projection Py and P, to make a cutoff. And in fact, in my class in 98, I had been addressing the
problem of treating the operator W, which normally is only treated in the interval minus lambda,
lambda where it is self-adjoint as easily seen, to treat it on the full real line.



Commutation with P, and P,

» The operator
W) = —(910(()\2 — -L2)(9ac) + (271')\.’1,')2

is invariant under Fourier transform Feg.

» W, commutes with Py, and P, =
conjugate by Fep.

And when one treats it on the full real line... So what I had found at that time, I mean 98, was
that if you take for the minimal domain of this operator the Schwartz space of Schwartz functions
which have rapid decay as well as all their derivatives, then you find out that the operator is sym-
metric of course, but it’s not self-adjoint, and in fact it has deficiency indices in the sense of von
Neumann, which are both equal to four. And it has in fact a unique self-adjoint extension W,
which is requested to commute with the projection P\ and P,. That’s where I stopped in 98, and
that’s where we started, two years ago with Henri Moscovici, we started our collaboration. And
we did something which I had not dared to do many years ago in 98, mainly we really looked at
the operator W) spectrally.

And what I will explain now is that if you want when you look at this operator W), spectrally, what
you find out 7 Well, of course, you find that it commutes with Fourier but this is this is sort of
almost built in but to our great surprise with Henri, what we found is that the self-adjoint operator
Wy, on the full line now, not in the interval minus lambda, Lambda has a discrete spectrum.

. Self-adjoint extension

» The minimal domain is the Schwartz
space S(R)

» The deficiency indices are (4,4).

» Unique self-adjoint extension W, com-
muting with Py and Pj.

And what I will explain later is that this discrete spectrum will fit perfectly the ultraviolet behav-
ior of zeroes of zeta. And what happens is that apparently nobody had looked at this spectrum,
because this spectrum turns out to have both a positive part, and a negative part. And the reason
why people were only interested in the positive part of the spectrum is that they wanted to fit with



the separation of variables and they wanted to fit with the spectrum, which was corresponding to
the finite interval and which is positive by construction. So nobody looked at the negative piece of
the spectrum, and as we shall see, I mean, very roughly, the positive spectrum will correspond to
the trivial zeroes of zeta and the negative spectrum will correspond now to the non trivial zeroes
and to the ultraviolet behaviour of zeroes, it doesn’t give exactly positions of zeroes but it gives
the ultraviolet behaviour.

» W, commutes with Fourier

» The selfadjoint operator W) has dis-
crete spectrum.

» ¢ eigenfunction of W, =
sin(2w\x)
P(z) ~c :
xTr
_if ¢ is even and °5(2™\2) if 4 is odd.

So I mean to find the self-adjoint extension, one has to give a boundary condition at infinity, and
the boundary condition at infinity is in fact the request, if you want, that when you look at the
even part of the spectrum, so the even function, which is the one we shall restrict to, then the
function has to behave like a sine, it has to have this oscillatory behaviour of having many zeros of
course, as you approach infinity, and to be equivalent to sine two pi lambda x over x when x goes
to infinity. In the odd case, you have to replace the sine by a cosine.

Semiclassical approximation &

Hy(p,q) = (»® — X?)(¢* — A?)
Wy = —4n?H) + 47224

Q\(E) :={(g,p) | ¢ > X\, p > X\, Hy(p,q) < a}
E 2
- o= (1)

Okay. So if you want to understand the spectrum of this operator as a physicist instead, it’s very
natural to look at the semi-classical approximation, and to express the operator W) in terms of
an Hamiltonian, which you write classically because, okay, at this point, you don’t care about
non-commutativity of p and q ; so what you write is that W), is in fact expressed as minus 4 pi
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square times H, where H), is written above, it’s p square minus lambda square times q square
minus omega square, plus a constant which is not important. And then, when you want to look
at the behavior of the spectrum, you have to compute an area and by computing this area, if you
want, the area which is bounded by the value of Hy, by computing this area, in fact, you will be
able to estimate the number of eigenvalues of the operator. And when you do that, okay, you find
this picture :

20

10

(P*-A%)(q*-A?)s(E/2 r)*+A*
pzAqzA

Q,(E)

So you find a picture where, if you want, the thing which looks like an hyperbola is defined by
the way in p square minus lambda square times ¢ square minus lambda square equals E over to pi
square plus lambda four, okay, and plus, we have these two conditions that p is larger than lambda
and ¢ is larger than lambda ; this is because of the positivity of the operator. Okay so that’s what
you have, and you make the computation

The area o(FE) of Q,(F) is given, with

a= (%)2 by the convergent integral
oo (Va4 X222 — 24
I\(a) = |y ( 22 — A dx

o(E) ~ % (Iog (i) —1+1log(4) -2 Iog(/\))

+2? +0(1)

of the area okay I solved a difficult computation so you get an integral from lambda to infinity of
a certain square root and so on, and what you find is that this integral in fact is given by elliptic
integrals not elliptic functions, but elliptic integrals, in the sense of Legendre. And then, when
you expand them with the correct idea I mean the idea that the operator in question will not be



the Dirac operator but that it will be like the Laplacian, so you deal with a square of the Dirac
operator, so you deal with that, and then, you find amazingly that the formula that you get for
the number of eigenvalues begins to resemble extremely strongly the Riemann formula. It’s E over
2 Pi times log of E over 2 Pi minus a term of order one which you would like to be minus one, so
you would have to fit the lambda, so that it’s minus one, and then plus lambda square plus a little

o(1).

Okay. On the other hand, one knows that when making a semi-classical approximation, one has to
be quite aware that it will give you a first idea but that you have to work much more in order to
really give an estimate, and one can see that you know it couldn’t really be completely right this
way because you don’t get the term in capital O of log E.

So in fact one has to push the analysis much further

In fact one has
Iy(a) = A°I1(aA™%)
and in terms of elliptic integrals

Ii(a)=aK(l1—a)—FE(1—-a)+1

~ ;\/E(Iog(a) —2+2109(4)) +1+o0(1)

and okay so this is easy
Liouville transform

V() (y) := AY2f(Acosh(y))sinh(y)l/?

The operator V is a unitary isomorphism V : L2([A, c0) —
L2([0,00)) which conjugates the operator W with the
operator

S()(w) == 026(y) — Q(y)d(y)

QW) = ~(27A%)? cosh(y)? — ; (coth’(y) - 2)

So what one has to do, first of all, one has to do a Liouville transform to transform the operator, this
prolate operator into if you want the usual Sturm-Liouville form and when you do that, okay, you
get a potential, you get a potential which is very tricky because it’s neither positive nor negative.
You get this strange potential Q(y) and then



" Hamiltonian H = p? + Q(q) .

(i) The Hamiltonian H = —S is in the limit circle case
at oo.

(i) The Hamiltonian H is in the limit circle case at O.
Case A = /2 we get for the function h = —Q

h(y) = 1672 cosh?(y) + % (COthz(y) - 2)

M. Nursultanov, G. Rozenblum, Eigenvalue asymptotics
for the Sturm-Liouville operator with potential having
a strong local negative singularity. Opuscula Mathema-
tica 37(1) :109

you have to apply so you have this hamiltonian now which is you know of strength p square because
you're putting it in this form, okay, and it has this potential, and then one has to apply quite tricky
estimates on the eigenvalue asymptotics from the Sturm-Liouville operator. Well, for the potential
which had, if you want, a singularity.

So I mean these estimates exist, you do the calculations, and when you do the calculation, what
you obtain,

Eigenvalue asymptotics for the Sturm-Liouville operator. . . 113

hip(p)) = p, are

x
1

N(H,(0,N) =7 ! /|(.\ + hix))? -

0

h(z)?|dr + O(1), A > 0, (1.4)

pin) x
N(H, (—p,0)) = 7! /h(.r')j‘d.r b [I’J(J‘}; (h(x) }t)i‘](l'.i" +O(1). (1.5)

0 pl)

so there are formulas if you want for each variable, available to compute this number of eigenvalues.
And when you do that,

Formula for N(a)

N@ =" [ (a+ hw)'2 = 1)) dy

At the level of the Dirac operator one has a = (E/2)2
Np(E) = —log — — — + O(log(E))
27 27 27

The logarithmic term is —2% log E. The numerical value
of the coefficient is 0.159155 which is of the same order
as the constant involved in the estimate of Trudgian for
Zeta

E E E
N:(E —( lo -
[N (E) o 109

) | <0.112 log(E)+0O(loglog E)
2 2w



what you find now is much more complicated integrals. However, the amazing fact is that you find
the correct E over 2 Pi log E over 2 Pi minus E over to Pi but you find that there is an additional
term in Big O of log E as you would expect. And when you compute it you find that the relative
term is in fact -1 over 2 pi times log E. And when you look at the numerical value of this coefficient
you find that it is of the same order as a constant which is the one in the Riemann zeta function
for the difference between the Riemann formula and something of 7777

So there is this very tantalizing fact and then of course, you know, this is not enough because I
was taking the Laplacian

Dirac operator

» We found Dirac operator, with square
two copies of W), using the Darboux

method.

» We explore associated geometry.

so we had to find the Dirac operator, we had to find the kind of square root, if you want, the
kind of Dirac squareroot of this prolate spheroidal operator. And then, we wanted to explore the
associated geometry.

So, how did we find the Dirac operator of the square root, if you want, of this prolate spheroidal
operator. Well, we did it using the Darboux method.

Darboux method

p(z) = 22— X2, V(z) = 4727222, W), = d(p(x)d) 4+ V(z),
U : L2([\, 00), dz) — L2([\, 00), p(z) 1/ 2dz)
U€)(z) :=p(z)/%(z), (6f)(x) = p(x)}/20f(x)

V@) )
4 16p(z)

sw(z)+w(z)? = —V(z)—}-( ) ,  Vz e[ o00)

Wy=U"(+w)(d—w)U

The Darboux method is a very general method which is quite old and which allows you when you
have a second order operator to write it not as a square but as a product of something of the form
the operator of order one plus W and the operator of order one, the same operator of order one
minus W. So one can do that, but in order to do that, you have to solve a Ricatti equation. So we
have to find a solution of a non-linear equation which is delta W plus W square equals a certain

Yo(1) ?
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function of the potential which is given which is given to you from the start. And this can be done
in our case, because what one has to do, one has to find solution of the prolate operator which
don’t vanish.

Solution of Riccati equation

For z € C and u = u1+zup the solution
u has no zero in (A\,00) if z¢ R and an
infinity of zeros otherwise.

Solutions of the Riccati equation

(a:2 _ >\2)1/48 ((3;2 _ )\2)1/4u(m)>

where v = uq + zuo and z € C\ R.

wy(x) =

Now of course as I showed you I mean the ordinary solutions vanish but when you combine two
independent solutions with complex coefficients, then you find out that it vanishes nowhere.

So when it vanishes nowhere, what you can do is solve the Ricatti equation by a kind of logarithmic
derivative which I have written as this w,(z) and for each complex number which is not in the reals,
you find a solution of the Ricatti equation you find the corresponding Dirac operator.

Dirac operator

Dz(a—i(x) 5+g($))

Then the square of D is diagonal with
each diagonal term spectrally equiva-
lent to W,

* 277 — W)\ 0
UDU_( 0 W)‘+25w(w))

And all these Dirac operators are isospectral which means that you don’t care which one you choose
as far as the spectrum is concerned. So I mean, this is what we found, we found the Dirac operator,
when you square it, it’s of course a two by two matrix because it’s acting something like spinors,
okay, so it’s a two by two matrix and when you square it, you find two copies of the prolate opera-
tor, namely first the prolate operator itself and then something which is isospectral to the prolate
operator, okay (which it differs by a pair of prolate operators).

So that’s what we found, and then if you want, by the previous computations because of course
this Dirac operator having the square which is two copies of the prolate operator, you can compute
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its spectrum you can compute the number of eigenvalues and then we find, for that one, we find
exactly the correct estimate for the number of eigenvalues.

And T will show you very shortly how you do concrete computations and you compare with zeroes
of zeta.

Ultraviolet~Zeta

The operator 2D has discrete simple
spectrum contained in RUzR. Its imagi-
nary eigenvalues are symmetric under
complex conjugation and the counting
function N(FE) counting those of posi-
tive imaginary part less than E fulfills

N(E N£ log . — 1)+ O(log E)

But how is this done okay ? This is done by, if you want, computing the negative eigenvalues of
the prolate operator, and to compute these eigenvalues what you do is if you want, you expand
the solution which satisfies a boundary condition at lambda, and you expand the solution for the
eigenvalue which is minus 65 and you expand the solution which satisfies the boundary condition
at infinity. And you try to match them, of course here they don’t match, but when you move if
you want the value minus 65, when you keep going, okay, you can see for instance at -38, they
match except that there is a change of sign but of course this is not seen because you can al-
ways multiply one by minus one, so this is an eigenvalue minus 38 for the W, and the fact that
they have opposite signs tells you that the function will be its opposite when you Fourier transform.

-65 -1+ Ay +

0.2

0.1

97. 98. 98. 99. 99. 000.0

-01
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Now for the value minus 93, you can see that there is exact coincidence and this time, the function
will be its own Fourier transform. So you keep going like that keep going like that, so this is minus
1 hundred 50, the next one, and what you see with the computer is that when you move the eigen-
value like around minus 150, the two sinusoids, if you want, the two oscillating pieces, they move
with respect to each other. So after a while they coincide or they are strictly opposite to each other.

-65 -+ Ay «
0.2
0.1
97. 98. 98. 99. 99. 000.0
-0.1
-0.2
m
-38 -+ Ay +

I
wATAIATAAN

-150 -+ ]y «

IR
SIVAIARY
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The first approximate negative eigenvalues of W are
—-39,-94,-152, -211,-279, 342, ~416, —489, —561, 639, —718, —800, —887, —971,

—1058, -1148, -1242, 1337, -1433, -1528, -1627, 1728, - 1834, — 1940, —2044, 2155,
2262, 2375, 2491, 2606, 2723, 2842, 2964, 3084, 3205, 3330, 3461, 3586,
~3716, -3845, 3977, -4112, -4245, ~4381, 4523, -4662, -4803, -4943, -5088, ~5232,
~5382, -5527, 5677, 5823, -5977, -6129, 6287, -6440, -6600, -6753, ~6915, ~7075,
—7240,-7402,-7562,-7730,-7902, —8064, —8237, —8408, —8581, —8748, —8924, —9100,
—9278, -9456, -9638, -9816, —10000, -10179, —~10363, — 10549, -10734, ~10923, -11114,
—11299,-11491,-11681,-11876, 12066, —12267, —12459, —12660, —12860, —13059,
—13254,-13464, -13660, —13865, —14069, —14279, —14484, —14694, —14900, —15113,
—15326, -15543, -15753, —~15967

The comparison of 2y/~z with the zeros of zeta then gives

( 102.098 101.318 '\
104.365 103.726
106.621 105.447
108.885 107.169
111.068 111.03
113.225 111875
115.412 114.32
117.661 116.227
119.766 118.791
121.918 121.37
124.016 122.947
126.127 124257
128.25 127.517
130.307 129.579
132.378 131.088
134.507 133.498
136.558 134.757
138.607 138.116
140.613 139.736
142.66 141.124
144,665 143.112
146.724 146.001
148.688 147.423
150.692 150.054
152,617 150.925
154.622 153.025
156.576 156.113
158,581 157.598
160.499  158.85
k 162.481 161.189 )

So you compute like this the first approximate negative eigenvalues of W so you plot them, okay this
is a lot of work, and now, okay, you pass to the corresponding Dirac operator and you compare it
with the zeros of zeta. So you see, the first one is 12.49 instead of 14, yeah, and you keep going like
that okay so you compare them, you compare them, and each time, the n-th one is very close to the
n-th zero, it’s not, you know, that time, changing the elements, no, the n is the same, okay, so keep
going quite far, and when you plot them, so this is a plot where if you want the red spot represent
the zeros of zeta and the blue spots that presents what we get spectrally and when you see only one
spot it means that it’s hiding so, it means, you know, that they really are pretty close to each other.
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\Geometry= spectral triple

The metric associated to the spectral
triple is

1 dz?
a(z)
Geometry is compactification of 2D-
Black Hole space with periodic t

1
ds? = —4d.’1:2/(:1:2 —2\2) =

ds® = —a(z)dt? + id:c2
a(z)

So we kept going up to the 60s first eigenvalues, up to the 100s eigenvalues and so on. And of course,
so this really says that this self-adjoint operator, W, because I mean remember okay I mean you
know it’s an extremely tantalizing hint that there should be an operator that will actually exactly
deal with them. The next step of course would be to deal with the other part I mean with precise
values and infrared part of the spectrum. But before I do that, what is very quite important in
non-commutative geometry is that geometry is given spectrally. When you speak about a geome-
try, you can define it by means of the Dirac operator, what replaces the Dirac operator, and what
replaces of course the functions, and so on, so here, it’s not so difficult to find which functions are
and, I mean because they are like you know functions on this half line and to look at the metric
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: the metric is obtained from the symbol of the Dirac operator and here, the metric that you find
is given by a dx square, there is one force over x square minus lambda square. But what is quite
amazing is that when you look at the spectrum as I said before, so there are negative eigenvalues
for the Laplacian but there are also positive eigenvalues. So this means that when you pass to the
Dirac operator, it will have purely imaginary eigenvalues like for the zeroes of zeta, but it will also
have real eigenvalues. And what we checked, with Henri, is that you know the these real eigenval-
ues, they have exactly the same behavior as a trivial zeroes of zeta. But the fact that you have
both things, namely the negative and the positive eigenvalues tells you that you are not dealing
with a Riemanian problem, you are dealing with a Lorentz problem, I mean with a Minkowski-type
metric. And so, I mean we used in order to have a first idea of the geometry which is behind it, we
used to view it, simply, as a compactification of a two-dimensional Lorentzian geometry. And okay
it turns out that, you know, there is a way to do that, where you make the variable t-periodic, and
this corresponds to a black hole in two dimensions.

which after changing coordinates to
v=1t—t(xz) with

1
t(x) = _ log((A+z)/(z—A))
8\
becomes smooth (black hole trick)
ds® = 4 (2% — \?) dv® — 2dvdz
Okay and I mean, you can do the usual trick, which is to see that the metric of the black hole is
in fact smooth. So you can really rewrite the metric by a suitable change of variables to make it
smooth. And I mean there is, if you want, a way to embed this in Minkowski-three space, and

when you embed in Minkowski-3-space, what is quite interesting is that in order to construct the
embedding, you have to use again elliptic integrals. And it will give you this picture
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so if you want the the part which is above which is looking like a cone and corresponds to the
interesting piece of the prolate operator. The part which is in between corresponds to what happens
on the interval, and the part which is below, okay, is of course the symmetric of the upper part.
And when you look at the geodesics, they have the usual stuff the suspected.
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