Analyse fonctionnelle

Un nouvel invariant pour les algèbres de von Neumann. Note¹ de M. **Alain Connes**, présentée par M. Gaston Julia.

À toute algèbre de von Neumann M de genre dénombrable, nous associons un invariant S(M), sous-ensemble fermé de R_+ , défini comme intersection des spectres des opérateurs modulaires associés par la théorie de Tomita aux états normaux et fidèles sur M. Si M est semi-finie, $S(M) \subset \{0,1\}$.

Si M_{λ} désigne les facteurs étudiés par Powers, avec $0 < \lambda < 1/2$ nous montrons que $S(M_{\lambda}) = \{u^n, n \in Z\}, \ u = (1-2\lambda)/(1+2\lambda)$, ce qui donne une nouvelle démonstration du non-isomorphisme des M_{λ} .

M désigne une algèbre de von Neumann dans l'espace de Hilbert \mathfrak{H} , α un vecteur totalisateur et séparateur pour M; M' le commutant de M.

L'opérateur qui à $x\alpha$, où $x \in M$ associe $x^*\alpha$ (resp. qui à $y\alpha$, $y \in M'$ associe $y^*\alpha$) est préfermé [3]; nous notons S_α (resp. F_α) sa fermeture, $S_\alpha = J_\alpha \Delta_\alpha^{1/2}$ la décomposition de S_α étudiée dans [3], $\Delta_\alpha = F_\alpha S_\alpha$ est un opérateur positif.

Soit φ un état normal et fidèle sur M, soit \mathfrak{H}_{φ} , Π_{φ} , ξ_{φ} la construction de Gelfand-Segal relative à φ ; nous notons Δ_{φ} l'opérateur modulaire relatif au triplet \mathfrak{H}_{φ} , $\Pi_{\varphi}(M)$, ξ_{φ} .

Soit M une algèbre de von Neumann de genre dénombrable, nous posons $S(M) = \bigcap$ Spectre $\Delta_{\varphi}, \varphi$ état normal et fidèle. S(M) est un fermé de R_+ , et $t \neq 0, t \in S(M)$ entraı̂ne $t^{-1} \in S(M)$, car $J_{\varphi}\Delta_{\varphi}J_{\varphi} = \Delta_{\varphi}^{-1}$; de plus, $S(M_1 \times M_2) = S(M_1) \cup S(M_2)$, où $M_1 \times M_2$ désigne un produit d'algèbres de von Neumann.

Théorème 1. Soit M une algèbre de von Neumann opérant dans \mathfrak{H} , si l'ensemble \mathfrak{G} des vecteurs totalisateurs et séparateurs de norme un est non vide, l'ensemble S(M) est l'ensemble des $t \geq 0$, tels que pour tout $\varepsilon > 0$ et tout $\alpha \in \mathfrak{G}$, il existe $x \in M, y \in M'$ tels que $\|x \alpha\| = 1$, $\|t^{1/2} x \alpha - y \alpha\| < \varepsilon$, $\|x^* \alpha - t^{1/2} y^* \alpha\| < \varepsilon$.

Il résulte des lemmes suivants :

LEMME 2. Soit φ normal fidèle sur M, il existe $\alpha \in \mathfrak{G}$, et U isométrie de \mathfrak{H}_{φ} sur \mathfrak{H} tels que $U\xi_{\varphi} = \alpha, U\Delta_{\varphi}U^{-1} = \Delta_{\alpha}$.

¹Séance du 3 novembre 1971.

Comme \mathfrak{G} est non vide, l'isomorphisme Π_{φ} est spatial [1], ainsi $\Pi_{\varphi}(x) = U^{-1}x U$, posons $\alpha = U\xi_{\varphi}$; on vérifie que $US_{\varphi}U^{-1}$ est la fermeture de l'opérateur

$$\{\beta, U^{-1}\beta = \Pi_{\varphi}(x)\xi_{\varphi} \text{ pour un } x \in M, US_{\varphi}U^{-1}\beta = U\Pi_{\varphi}(x^*)\xi_{\varphi}\},$$

d'où $S_{\alpha} = U S_{\varphi} U^{-1}$ et $\Delta_{\alpha} = U \Delta_{\varphi} U^{-1}$.

LEMME 3. Soit $t \geq 0, \varepsilon > 0, \alpha \in \mathfrak{G}$:

(a) Distance $(t^{1/2}, \text{Spectre } \Delta_{\alpha}^{1/2}) < \varepsilon$ si et seulement s'il existe $x \in M$,

$$||x \alpha|| = 1, \quad \left\| \left(\Delta_{\alpha}^{\frac{1}{2}} - t^{\frac{1}{2}} \right) x \alpha \right\| < \varepsilon ;$$

(b) $x \in M, \|(\Delta_{\alpha}^{1/2} - t^{1/2})x\alpha\| < \varepsilon$ entraı̂ne l'existence de $y \in M'$ tel que

$$||t^{\frac{1}{2}}x \alpha - y \alpha|| < \varepsilon, \quad ||x^*\alpha - t^{\frac{1}{2}}y^*\alpha|| < \varepsilon;$$

(c) $x \in M, y \in M', \|t^{1/2}x \ \alpha - y \ \alpha\| < \varepsilon, \|x^*\alpha - t^{1/2}y^*\alpha\| < \varepsilon \ entraîne$

$$\left\| (\Delta_{\alpha}^{\frac{1}{2}} - t^{\frac{1}{2}}) x \ \alpha \right\| < 2 \ \varepsilon$$

- (a) Résulte de la densité de $M\alpha$ dans le domaine de $\Delta_{\alpha}^{1/2}$.
- (b) Soit $y = J_{\alpha}x^*J_{\alpha}$; on a $y \in M', y \alpha = \Delta^{1/2}x \alpha$; de plus,

$$||x^*\alpha - t^{\frac{1}{2}}y^*\alpha|| = ||J_\alpha(x^*\alpha - t^{\frac{1}{2}}y^*\alpha)|| \quad \text{et} \quad J_\alpha y^*\alpha = x\alpha.$$

(c) Soit $\beta=x$ $\alpha,\gamma=\Delta_{\alpha}^{-1/2}y$ α ; γ et β sont dans le domaine de $\Delta_{\alpha}^{1/2}$ et $\|t^{1/2}\beta-\Delta_{\alpha}^{1/2}\gamma\|<\varepsilon$, $\|\Delta_{\alpha}^{1/2}\beta-t^{1/2}\gamma\|<\varepsilon$, soit, comme $\Delta_{\alpha}^{1/2}(t^{1/2}+\Delta_{\alpha}^{1/2})^{-1}$ et $t^{1/2}(t^{1/2}+\Delta_{\alpha}^{1/2})^{-1}$ sont des contractions

$$||t(t^{\frac{1}{2}} + \Delta_{\alpha}^{\frac{1}{2}})^{-1}\beta - t^{\frac{1}{2}}\Delta_{\alpha}^{\frac{1}{2}}(t^{\frac{1}{2}} + \Delta_{\alpha}^{\frac{1}{2}})^{-1}\gamma|| < \varepsilon, ||\Delta_{\alpha}^{\frac{1}{2}}(t^{\frac{1}{2}} + \Delta_{\alpha}^{\frac{1}{2}})^{-1}\beta - t^{\frac{1}{2}}\Delta_{\alpha}^{\frac{1}{2}}(t^{\frac{1}{2}} + \Delta_{\alpha}^{\frac{1}{2}})^{-1}\gamma|| < \varepsilon.$$

La conclusion résulte de $(\Delta_{\alpha}^{1/2} - t^{1/2}) = (\Delta_{\alpha} - t)(\Delta_{\alpha}^{1/2} + t^{1/2})^{-1}$.

Dans la suite, ${\mathfrak M}$ désigne l'algèbre des matrices d'ordre 2, H l'espace de Hilbert obtenu en posant

$$(\alpha, \beta) = \text{Trace } \beta^* \alpha \text{ pour } \alpha \in \mathfrak{M}, \beta \in \mathfrak{M}.$$

On pose

$$\eta = \begin{bmatrix} \left(\frac{1}{2} - \lambda\right)^{\frac{1}{2}} & 0\\ 0 & \left(\frac{1}{2} + \lambda\right)^{\frac{1}{2}} \end{bmatrix}, \quad \text{où} \quad 0 < \lambda < \frac{1}{2} \quad ; \quad \text{on a} \quad \|\eta\| = 1.$$

 \mathfrak{H} désigne l'espace de Hilbert produit tensoriel d'une infinité dénombrable de couples $(H,\eta)_n,\ n\in N.$

L'on note Π_n (resp. Π'_n) la représentation (resp. antireprésentation) de \mathfrak{M} dans \mathfrak{H} qui à x associe $\Pi_n(x)$ [resp. $\Pi'_n(x)$] telle que

$$\Pi_n(x)(\alpha_1 \otimes \ldots \otimes \alpha_{n-1} \otimes \alpha_n \otimes \alpha_{n+1} \otimes \ldots) = \alpha_1 \otimes \ldots \otimes \alpha_{n-1} \otimes x \alpha_n \otimes \alpha_{n+1} \otimes \ldots$$

(resp. $\alpha_n x$ au lieu de $x \alpha_n$).

 M_{λ} désigne l'algèbre de von Neumann engendrée par les $\Pi_n(\mathfrak{M})$.

THÉORÈME 4. (a) Si M est de genre dénombrable, semi-finie, alors $S(M) \subset \{0, 1\}$. (b) $S(M_{\lambda}) = \{u^n, n \in Z\}, u = (1 - 2\lambda)/(1 + 2\lambda)$.

(a) Soit τ une trace normale fidèle semi-finie sur M, \mathfrak{H}_{τ} l'espace des opérateurs de Hilbert-Schmidt, Π (resp. Π') la représentation (resp. antireprésentation) de M dans \mathfrak{H}_{τ} par multiplication à gauche (resp. à droite).

Soit $h \in \mathfrak{H}_{\tau}$ positif, non singulier, Δ_h l'opérateur modulaire relatif à $(\mathfrak{H}_{\tau}, \Pi(M), h)$.

Lemme 5. Soit $\nu \in R$, alors $\Delta_h^{i\nu} = \Pi(h^{2i\nu})\Pi'(h^{-2i\nu})$.

D'après [3], le groupe modulaire σ_{ν} est

$$\sigma_{\nu}(x) = h^{2i\nu}x \ h^{-2i\nu}, \quad \text{d'où} \quad \Delta_h^{i\nu}xh = h^{2i\nu}xhh^{-2i\nu}.$$

Comme $\Pi(M)$ et $\Pi'(M)$ commutent l'on a Spectre $\Delta_h^{1/2}$ inclus dans (Spectre h).(Spectre h^{-1}).

L'assertion (a) résulte de l'existence de h_1 (resp. h_2) positif non singulier, élément de \mathfrak{H}_{τ} dont le spectre ne contient que des $(1/2)^k$, $k \in N$ [resp. des $(1/3)^k$, $k \in N$].

(b) Soit δ l'opérateur modulaire relatif au triplet (H, \mathfrak{M}, η) ; soit

$$z = \begin{bmatrix} 0 & (\frac{1}{2} + \lambda)^{-\frac{1}{2}} \\ 0 & 0 \end{bmatrix} ;$$

on a $\|z\,\eta\|=1,\ u^{1/2}\,z\,\eta=\eta\,z$ et $u^{1/2}\,\eta\,z^*=z^*\,\eta$; d'après les lemmes 3, 5, Spectre $\delta=\{u,1,u^{-1}\}.$

LEMME 6. Le vecteur $\alpha_0 = \eta \otimes \eta \otimes ... \otimes \eta \otimes ...$ est séparateur et totalisateur pour M_{λ} dans \mathfrak{H} , Spectre $\Delta_{\alpha_0} = \{u^n, n \in Z\}$.

L'espace vectoriel E engendré par les vecteurs de la forme

$$x_1 \eta \otimes ... \otimes x_n \eta \otimes \eta \otimes ... \text{ (resp. } \eta y_1 \otimes ... \otimes \eta y_n \otimes \eta \otimes ...),$$

où $x_i \in \mathfrak{M}$ (resp. $y_i \in \mathfrak{M}$) est dense dans \mathfrak{H} .

 S_{α_0} (resp. F_{α_0}) est une extension de l'opérateur qui à l'élément ci-dessus de E associe $x_1^* \eta \otimes ... \otimes x_n^* \eta \otimes \eta \otimes ...$ (resp. ηy_j^*); ainsi $\Delta_{\alpha_0} = F_{\alpha_0} S_{\alpha_0}$ est une extension de l'opérateur produit tensoriel algébrique de δ , noté $\otimes \delta$, qui a un sens car $\delta(\eta) = \eta$.

Comme $(1+\Delta_{\alpha_0})E = E$ est dense dans \mathfrak{H} , Δ_{α_0} est la fermeture de $\otimes \delta$, d'où la conclusion.

Lemme 7. Soit $k \in N, \varepsilon > 0, \alpha \in \mathfrak{H}, \|\alpha\| = 1$; il existe $x \in M_{\lambda}, y \in M'_{\lambda}$ tels que

$$||x\alpha|| > 1 - \varepsilon$$
; et $||u^{\frac{k}{2}}x\alpha - y\alpha|| < \varepsilon$, $||x^*\alpha - u^{\frac{k}{2}}y^*\alpha|| < \varepsilon$.

Soit E_n le sous-espace de \mathfrak{H} engendré par les vecteurs

$$\alpha_1 \otimes ... \otimes \alpha_n \otimes \eta \otimes ...$$
, où $\alpha_i \in H$ $(i = 1, 2, ..., n)$;

comme $E = \bigcup_{1}^{\infty} E_n$ il existe $n \in N$ et $\alpha' \in E_n$ tels que

$$\|\alpha'\| = 1$$
 et $\|\alpha' - \alpha\| < \varepsilon \ 2^{-\frac{k}{2}} \left(u^{\frac{k}{2}} + 1 \right)^{-1}$.

Soit $x = \Pi_{n+1}(z)...\Pi_{n+k}(z), y = \Pi'_{n+1}(z)...\Pi'_{n+k}(z)$; on a

$$u^{\frac{k}{2}}x \ \alpha' = y \ \alpha', \quad x^*\alpha' = u^{\frac{k}{2}}y^*\alpha', \quad \text{donc} \quad ||x\alpha|| > 1 - \varepsilon,$$

$$\left\|u^{\frac{k}{2}}x\ \alpha-y\ \alpha\right\|<\varepsilon,\quad \left\|u^{\frac{k}{2}}y^*\alpha-x^*\alpha\right\|<\varepsilon,$$

car

$$|x| \le |z|^k$$
 et $|z| = \left(\frac{1}{2} + \lambda\right)^{-\frac{1}{2}} \le 2^{\frac{1}{2}}$.

Référence

- [1] J. DIXMIER, Les algèbres d'opérateurs dans l'espace hilbertien, Gauthier-Villars, Paris, 2e édition, 1969.
- [2] J. T. Schwartz, *Recent progress in the structure theory of factors* (Proceedings of a Symposium, Ed. by C. O. Wilde, New York, Academic Press, 1970).
- [3] M. Takesaki, Tomita's theory of modular Hilbert algebras and its applications, Springer, Berlin, Lecture Notes in Mathematics, no 128.
- 1, avenue Mathilde, 95-Saint-Gratien, Val-d'Oise.