Extrait (p. 1-37 et suiv.) de Géométrie des domaines complexes (Référence : Geometry
of complex domains, un séminaire des Professeurs Oswald Veblen et John von Neu-

mann, 1935-1936), Notes de Dr. A. H. Taub and M. J. W. Givens, IAS, Princeton,
New Jersey, Réimprimé avec des corrections en 1955.

Involutions dans P,

11. En utilisant notre régle concernant les nombres en exposants ou en indices, les équations d’un
projecteur dans P, peuvent s’écrire des 4 formes équivalentes suivantes :

(11.1) ot = PP, ot = PapyP,  pa= PP, et ot =—P"Pyp,
ot si || P3| = “ ZH =, alors
c d —d c
(1L2) Pl = |, S e =5 5] e e -
—b «a
—d c||’

respectivement. On doit observer que l'ordre des indices permet de distinguer Pj de P¥. Par la
transformation des coordonnées (voir 10.1), les équations du projecteur deviennent p4* = P#*¢)B*
ou

(11.3) P4 = T4 P§ t5 t77P,

si p et ¢ sont les poids de ¥ et ¢4, respectivement, et si leurs antipoids sont nuls. En prenant
q=p=21, P et P sont de poids nul, Pyp est de poids —1 et P4 est de poids +1. La normali-
sation |Pj| = +1 est invariante si le poids de P4 est nul.

La matrice || P4|| définira une involution si P4 PE ¢ = p ¢4 et si | P4 n’est pas un multiple de
10
01

(11.4)

. C’est-a-dire,

a’*+bc bla+d)
cla+d) be+d?

p 0
0 p

ou a + d = 0. Ceci s’exprime de maniére pratique par les équations équivalentes

(11.5) P{ =0, ou Psp= Ppa.

Le point ¢* sera invariant par le projecteur (11.1) si et seulement si ¢4 = p 14. Ceci est équivalent
av? oy =0ou

Traduction : Denise Vella-Chemla, janvier 2026.



(11.6) Pap v 8 = Pi(¢1)? + (Pra + P12 + Py (¥?)? = 0.

Tous les coefficients de cette équation quadratique s’évanouissent seulement lorsque P4p est un
multiple de €45 et dans ce cas, le projecteur est I'identité. Sinon, un projecteur a juste deux points
invariants qui sont distincts quand la matrice symétrique ||Pag + Ppa|| est non singuliére, et ils
coincident quand elle est singuliére.

On peut toujours exprimer les coefficients d’un projecteur sous la forme

1
(11.7) Pap = Qap + 5 < ean

Puisque Psp — Ppa = Pg €4B, ON &
1
(11.8) Qap = Q(PAB + Ppa) = @pa

et donc a un projecteur P est associée une involution () déterminée uniquement. Les points doubles
de P sont les mémes que ceux de Q).

Les points invariants d’une involution la déterminent complétement. Car les racines de (11.6) dé-

terminent ces coefficients selon les facteurs communs et la condition additionnelle P;5 = P5; donne
||Pag|| & un facteur prés. En effet, le projecteur défini par

(11.9) Qap = asfip +apfa

est I'involution qui laisse « et 3 invariants. Puisque
(11.10) Baap —asfBp = (B%ac) ean

I'involution est aussi donnée par

(11.11) Qap =204fp + (%) €ap
ou par
(11.12) Qap = 2Baap — (%) €ap.

Un projecteur singulier (# 0) est de la forme ||pa op|| et si ce doit étre une involution (c’est-a-dire

2
s’il doit étre symétrique), on doit avoir o = A pg. En posant as = (§> pa, I'involution générale

singuliére est

(11.13) Qap =2 aa ag,



et c’est exactement ce que I'on obtient en posant 4 = a4 dans (11.9). Cette involution singuliére
ameéne chaque point, excepté «, sur a.

Deux points, X4 et Y4 déterminent le scalaire homogéne XY, dont 1'évanouissement implique la
coincidence des points. Si le scalaire ne s’évanouit pas, sa valeur est changée quand les coordonnées
X4 sont multipliées par un facteur. Quatre points, pourtant déterminent le scalaire absolu

(o) (¥ Bi)
(eAPa) (VP as)

qui est appelé le birapport des 4 points (¢0|af). La valeur de A est invariante par transformation
des coordonnées. De plus, puisque le membre de droite de (11.14) est homogéne de degré zéro en les
coordonnées des points, la valeur de A\ dépend seulement des points et non des coordonnées choi-
sies pour les représenter. Par un projecteur, un ensemble de 4 points est transformé en un nouvel
ensemble de points qui a le méme birapport que I’ancien, mais par un antiprojecteur, le birapport
est changé en son complexe conjugué. Si ¢4 = Qap? ot Qap est donné par (11.9), on a

(6% an)(WBs) _
(645a) (VPas)

(11.14) A=

(11.15)

Quand cette relation est vérifiée, les points ¢ et ¢ sont dit étre conjugués harmoniques par rapport
a a et 3. Puisque (11.15) détermine ¢ comme une fonction de 1/ & un facteur prés, Pinvolution
avec les points « et [ invariants peut étre définie comme la transformation qui envoie tout point
sur son conjugué harmonique par rapport a la paire de points, a et .

Un projecteur qui échange deux points est une involution. Car, par un choix adéquat du systéme
de coordonnées, on peut prendre comme coordonnées covariantes des points (1,0) et (0, 1) et alors
| P les échangera seulement si P! = PZ = 0. Ceci implique la condition invariante P4 = 0 qui
caractérise une involution. En effet, le projecteur

(11.16) Qap =Aasap+ i Pa BB

avec A et u des nombres complexes arbitraires # 0, est une involution qui échange « et 5. Le
projecteur le plus général ayant cette propriété est de cette forme. Car un projecteur est déterminé
par son action sur 3 points et si A et p sont solutions des équations

(11.17) Aaa(ap £8) +p Ba(Br €%) = na

@ enverra «, 3, et & sur 8, a, et 1, respectivement, o £ et 1 sont des points arbitraires distincts a
la fois de v et de .

Un théoréme important établit que tout projecteur dans P; est le produit de deux involutions.
Nous le démontrons en considérant plusieurs cas. L’élément neutre est le carré d’une involution
et nous avons vu que tout autre projecteur posséde seulement deux points doubles, qui peuvent



coincider. Il suffit donc de considérer les projecteurs a deux points doubles distincts, les projecteurs
non singuliers & un point double et les projecteurs singuliers.

Si les points invariants distincts du projecteur P sont a et b, soient « et S une paire de points har-
moniquement conjugués par rapport a eux et définissons (); comme l'involution ayant pour points
doubles « et §. Alors, en notant Q1 P le projecteur résultant de la transformation de P par )1, on
a Q1P qui intervertit a et b et est donc une involution, Q. Puisque Q3 =1, P = QP = Q,Q> et
P est le produit de deux involutions.

Si P est non singuliére et posséde un unique point invariant a, on choisit o un point distinct de
a et on note § = Pa la transformée de a par P. Soit b le conjugué harmonique de a par rapport
a a et B, ()1 I'involution avec les points doubles a et b, et ()2 I'involution avec les points doubles
a et B. Alors Q2Q1a = a et Q2Q1a = Q2 = (. De plus, Q21 ne peut laisser invariant aucun
point v # a, car (Q2(Q)1y = v impliquerait Q17 = Q27v, et Q1 et ()2 échangeraient tous deux v et
0 = (Q16. Ceci, combiné a I'invariance de a par ()7 et par ()2 impliquerait Q1 = (J2, ce qui est faux.
Par conséquent, P et ()2(); ont chacun le point invariant a et chacun envoie « sur 3. En se référant
a un systéme de coordonnées canonique, on obtient alors facilement P = QQ2Q);.

Un projecteur singulier est donné par la matrice ||asfg||. Si a et § sont des points distincts, cette
matrice est le produit des involutions singuliéres ||asap]| et |37 Bc||. Lorsque le projecteur est une
involution singuliére, ||aaBz||, il est le produit de ||as85|| et de ||aPye +~vPac||, ot ¢ est distinct
de o.

Antiinvolutions dans P;

12. Un antiprojecteur peut s’écrire des 4 formes équivalentes
(12.1) P = PP a = Pigd® Ba=-Plus et Bt =Py,

les éléments des 4 matrices étant reliés comme dans (11.2). Si P'on prend a la fois ¢* et ¢ comme
étant de poids % et d’antipoids zéro, on doit prendre Pjé‘ comme étant de poids —% et d’antipoids
+%, Pﬁ comme étant de poids —i—% et d’antipoids —%, P ;5 comme étant de poids absolu —1, et PAB
comme étant de poids absolu +1. Avec ces poids, le déterminant de chacune des 4 matrices est inva-
riant et une normalisation, comme |P§‘| = 1, est préservée par des transformations des coordonnées.

Les points invariants de 'antiprojecteur (12.1) sont donnés par
(12.2) Pigv ¢v° =0.
Si I'on pose
1 — 1 —
(12.3) Hip = 5(Pip+Ppa) et Kip=5(Lip — Ppa),

alors || H izl et || K gl sont des matrices hermitiennes et



(12.4) Pip=H,p+iK;p.

Rendre les parties réelle et imaginaire du coté gauche de (12.2) égales & zéro donne

(12.5) Hipg o' 0P =0 et Kizd o8 =0.

Représentons les points de P; par des points du plan 2y comme dans le § 2 par I’équation (cf. (2.3))
¢ _u

Pt b
Les équations de (12.5) sont les équations de deux cercles (réels, dégénérés ou imaginaires) dans le

plan zy. (Dans le cas particulier ot H ;5 = 0 ou bien ou K iz = 0, I'une des équations est satisfaite
de la méme maniére et il n’y a qu’un seul cercle.)

(12.6) =z=x+1y

Si les deux cercles ne coincident pas, ils peuvent s’intersecter en deux points, étre tangents, ou ne
pas avoir d’intersection, et I’antiprojecteur aura alors 2, 1 ou aucun points invariants, respective-
ment. De (12.4), on voit que

(12.7) (At ip)Pig = (AH 5 — pK ip) +i(AK j5 + uH i),

et donc, les composantes homogenes, ||p P;gll, d'un antiprojecteur ne déterminent pas une paire
unique de cercles (12.5) mais seulement le faisceau auquel ils appartiennent.

Si les équations (12.5) définissent un seul ou bien une paire de cercles coincidant (réels ou imagi-

naires), et seulement dans ce cas, 'antiprojecteur sera une antiinvolution. Car, si || P4 = Z dl
les antiinvolutions sont caractérisées par les équations matricielles
a b|l|la o 10
. b B
et multiplier les deux membres par = transposee|| P || donne
a b —d b
~(ad = be) C c_iH “Ple —a
en utilisant le fait que (P]l; )(Pf) = —|P1{lj |(6%) avec op symbolisant la transposition. Donc,
(_Pg) = _—p.(PCD ). En baissant I'indice D, on trouve qu’une antiinvolution non-singuliére sa-
Det(PE)

tisfait alors I’équation

(12.9) Piz=0Pg,



0
ad — be
minant des deux membres de (12.9), on voit que od = 1, de telle fagon que

ol o = et il découle de (12.3) que les deux cercles (12.5) coincident. En prenant le déter-

7*P = 0Py,

et par conséquent, ||o'/2P, | est hermitienne. La matrice définissant une antiinvolution est donc
proportionnelle & une matrice hermitienne et inversement toute matrice hermitienne définit une
antiinvolution.

Une antiinvolution non singuliére est de deux types selon que les matrices hermitiennes qui la
définissent sont indéfinies ou définies. L’étude du § 1 démontre qu'un choix approprié du systéme
de coordonnées permet d’obtenir comme équation du cercle invariant 1’équation Elzﬁl — @21&2 =0
ou l’équation E1¢1 + EQ@DQ = 0 selon que l'antiinvolution est respectivement de premiére ou de

seconde espéce. En fonction de la coordonnée non homogeéne z, ces cercles ont pour valeurs 2z = 1
1

1
et 2z = —1, et leurs antiprojecteurs respectifs sont w = — et w = ——.
z Z
Une antiinvolution singuliére (# 0) est de la forme @35, et (12.8) implique alors a3z (a?B) = 0,
soit g = p ap. Par conséquent, les matrices définissant I’antiinvolution singuliére sont proportion-
nelles a ||@aap|| et I'antiinvolution transforme tout point, sauf «, en a.

Les antiinvolutions qui laissent deux points, par exemple « et [, invariants correspondent aux
cercles passant par a et 3. Ces cercles sont linéairement dépendants de deux quelconques d’entre
eux, de sorte que

(12.10) Pip = M@ + Baap) +i w(@aBp — Baap).

est, pour un choix approprié des nombres réels A et p, 'involution qui laisse « et [ invariants.

L’involution qui a pour points invariants « et 3 est le produit des antiinvolutions (ai48p + B48)
et i(@afp — Baag), pour :

(12.11) i(aABB + ﬁAaB)(aBﬁc — BBOéC) = i(aBgB)(OéAﬁc + ﬁAOéc).

De plus, I'involution singuliére aqap est le produit de @ 85 + B a0p et de aqap. Par conséquent,
toute involution est le produit de deux antiinvolutions.

Nous avons vu dans la section précédente que tout projecteur était le produit de deux involutions et
donc tout projecteur est le produit de quatre antiinvolutions. Sachant que tous les antiprojecteurs
sont obtenues en multipliant les projecteurs par une seule antiinvolution, on obtient le résultat que
les antiinvolutions géneérent ’ensemble du groupe antiprojectif.



Réflexions point-plan dans R?

13. L’antiinvolution

(13.1) Pa=Pipd?  avec Pip= Py,
induit dans R?® I'involution

(13.2) Yi= P! X7,

ou (cf. (5.7))

(13.3) p;'- = giAB P.p Pip g]-CD.

Puisque Psp P;ip — PigPep est antisymétrique a la fois par rapport aux indices (AC) et par
rapport aux indices (BD), on a :

(13.4) PepPip = PigPep +p €ic €8,

En multipliant par ACBD

stituant (13.4) dans (13.3), on obtient :

1 .
et en sommant, on obtient : p = —§PEF Py, ». Par conséquent, en sub-

. . 1 ,
(13.5) ﬂzpﬂ—?ﬁﬂw,

ol Pi = ¢g"BP; - est le point de R? correspondant a P, selon (4.5).

L’involution (13.2) laisse P et chaque point de son plan polaire P; invariant. Car, de (13.5), on a
PiPi = L(P*P)P' et, si X'P; = 0, PIX7 = —1(P*P,)X". Une involution de ce type est appelée
réflexion point-plan. Pour trouver la transformée d’un point quelconque X, on observe, d’apreés
(13.2), que la droite déterminée par P et X coupe le plan P; en un point invariant, disons Q.
Par conséquent, (13.2) établit une involution sur cette droite avec les points doubles P et Q. La
transformée de X est alors sa conjuguée harmonique par rapport a P et Q.

Deux points de la quadrique sont intervertis par l'involution si et seulement s’ils sont alignés avec

le centre P de la réflexion point-plan. Il existe donc un faisceau réel d’antiinvolutions qui interver-
tissent deux points ay et (4, et les éléments de ce faisceau sont :

(13.6) Pjip = Naaap + pfBs,

ou A and p sont des paramétres réels, aucun d’eux n’étant nul.



Réflexions par rapport a une droite dans R?

14. Dans les équations (12.11), nous avons exprimé une involution quelconque comme le produit

de deux antiinvolutions. De plus, puisque (@*3? + BAozB )(@aBp — Baap) = 0, les antiinvolutions
correspondent & des points de R? conjugués par rapport a la quadrique. Par conséquent, une invo-
lution dans P; correspond au produit de deux réflexions point-plan dans R?, le point et le plan de
I'une étant respectivement incidents au plan et au point de 'autre.

Notons P, et P, les deux réflexions point-plan, C' et D leurs centres respectifs, et ¢ et d leurs plans.
Puisque les réflexions point-plan laissent la quadrique invariante, c est le plan polaire de C' et d celui
de D. L’intersection de c et d est une droite, cd, dont les points sont invariants par P, et P, et donc
par leur produit, PP, = (). De plus, P; et P5 induisent la méme involution sur la droite invariante
CD, et par conséquent @ laisse chaque point de C'D invariant. Une involution de R? qui laisse cha-
cune des deux droites non coplanaires ponctuellement invariante est appelée une réflexion de droite.

Pour trouver la transformée d’un point X n’appartenant ni & C'D ni a cd, on considére 'intersection
du plan formé par X et C'D avec le plan formé par X et cd. Cette intersection est une droite qui
coupe CD et cd respectivement aux points F et F'. Puisque E et F' sont invariants, la droite EF
I'est également, et la réflexion sur cette droite induit I'involution de E et F'. Par conséquent, la
transformée de X est la conjuguée harmonique de X par rapport & E et F. La réflexion sur cette
droite est donc entiérement déterminée par les deux droites qu’elle laisse ponctuellement invariantes.

En voyant R?® comme un espace euclidien, et la quadrique comme une sphére a l'intérieur de cet
espace, la réflexion par rapport a une droite laisse invariant tout plan de faisceaux sur cd et C'D et
donc laisse invariant deux faisceaux de cercles sur la sphére. Par notre construction initiale, ¢ et d
coupent la sphére en cercles qui s’intersectent en les points A et B correspondant aux points inva-
riants A et B de 'involution dans P;. Les plans sur cd coupent donc la sphére en les cercles en A et
B et les plans sur C'D coupent la sphére en le faisceau de cercles orthogonaux aux cercles en A et B.

On peut exprimer les composantes, Q;, de la réflexion par rapport & une droite en fonction des
coordonnées g¢;;, de cd par la formule

) - 1 ;
(14.1) Q= a7 gjr + 7 ¢ dpq .
En effet, si on choisit un systéme de coordonnées dans lequel les points invariants a4 et S4 ont
comme coordonnées (1,0) et (0,1), les points correspondants A* et B* dans R? sont, par (1.8),
\%(0, 0,1,1), et \%(O, 0,—1,1). Les coordonnées de cd et C'D sont donc

o O O

(14.2) ¢ =

0
0
et gl =
0

o O OO
o O OO
o O OO
o O OO
_— o O O
]

En substituant dans (14.1), on obtient



0 00O 1 000 -1 0 00
PR 1T EIE IR EY
0 0 01 00 01 0O 0 01
et donc la colinéation Y* = 2 Q% X7 est
(14.4) Ylo X! y2—_X2 y3_—x3 yi_xt

qui est clairement la réflexion par rapport a une droite de droites invariantes X' = X2 = 0 et
X3=X*=0.

Factorisation de la forme quadratique fondamentale

15. On commence cette section en observant que les matrices hermitiennes d’ordre 2 constituent
un espace linéaire de 4 dimensions réelles. Si 'on combine ce résultat, comme exprimé dans (4.7),
avec le théoréme (démontré en section 12) qu’une matrice hermitienne définit une antiinvolution,
on voit que (g,i5 X*)(¢7° X7) est un multiple de 62 pour toutes les valeurs des variables X'. Par

conséquent,

(15.1) (Fian X)(gPC Xj) = piy X X7 6.

Pour évaluer p;; X* X7, on rend A égal & C' et on somme; on obtient

(15.2) gij X" X7 =2p;; X' X9,

puisque g, ip = 9ipa €t

(15.3) 9iBa ngA = ij>

grace a (4.8). Les équations (15.1) sont alors

(15.4) 2Giap X9 XJ) = g X' X7 65.

Rendre égaux les coefficients dans (15.4) donnent les équations importantes

(15.5) 9idB QJBC +9;in gP¢ = 9ij 0%-

Les équations (15.4) peuvent étre interprétées comme une factorisation de la forme quadratique
9:; X X7 en produit de deux formes linéaires v/2 g, ;5 X' et /2 950 X © avec les coefficients matri-

ciels. On peut alors écrire g;; X* X7 comme le carré une forme linéaire unique si on combine ||g, izl
et [|g/2|| en les matrices 4 x 4,



0 0

ng‘ABH

(15.6) y=vz| Y
e
v 0 0

et on observe alors que (15.5) et son conjugué implique
(15.7) VY Y = 26i51.

Alors on peut écrire (15.4) ainsi
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