
Extrait (p. 1-37 et suiv.) de Géométrie des domaines complexes (Référence : Geometry
of complex domains, un séminaire des Professeurs Oswald Veblen et John von Neu-
mann, 1935-1936), Notes de Dr. A. H. Taub and M. J. W. Givens, IAS, Princeton,
New Jersey, Réimprimé avec des corrections en 1955.

Involutions dans P1

11. En utilisant notre règle concernant les nombres en exposants ou en indices, les équations d’un
projecteur dans P1 peuvent s’écrire des 4 formes équivalentes suivantes :

(11.1) φA = PA
Bψ

B, φA = PABψ
B, φA = −PB

A ψB, et φA = −PABψB,

où si ∥PA
B ∥ =

∥∥∥∥a b
c d

∥∥∥∥ =, alors

(11.2) ∥PAB∥ =

∥∥∥∥ c d
−a −b

∥∥∥∥ , ∥PB
A ∥ =

∥∥∥∥−d c
b −a

∥∥∥∥ , et ∥PAB∥ =∥∥∥∥−b a
−d c

∥∥∥∥ ,
respectivement. On doit observer que l’ordre des indices permet de distinguer PA

B de PB
A . Par la

transformation des coordonnées (voir 10.1), les équations du projecteur deviennent φA∗ = PA∗
B ψB∗

où

(11.3) PA
B

∗
= TA

C PC
D tDB tq−p,

si p et q sont les poids de ψA et φA, respectivement, et si leurs antipoids sont nuls. En prenant
q = p = 1

2
, PA

B et PB
A sont de poids nul, PAB est de poids −1 et PAB est de poids +1. La normali-

sation |PA
B | = +1 est invariante si le poids de PA

B est nul.

La matrice ∥PA
B ∥ définira une involution si PA

B PB
C ψC = ρ ψA et si ∥PA

B ∥ n’est pas un multiple de∥∥∥∥1 0
0 1

∥∥∥∥. C’est-à-dire,

(11.4)

∥∥∥∥ a2 + bc b(a+ d)
c(a+ d) bc+ d2

∥∥∥∥ =

∥∥∥∥ρ 0
0 ρ

∥∥∥∥
ou a+ d = 0. Ceci s’exprime de manière pratique par les équations équivalentes

(11.5) PA
A = 0, ou PAB = PBA.

Le point ψA sera invariant par le projecteur (11.1) si et seulement si φA = ρ ψA. Ceci est équivalent
à ψA φA = 0 ou

Traduction : Denise Vella-Chemla, janvier 2026.
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(11.6) PAB ψA ψB = P11(ψ
1)2 + (P12 + P21)ψ

1ψ2 + P22(ψ
2)2 = 0.

Tous les coefficients de cette équation quadratique s’évanouissent seulement lorsque PAB est un
multiple de ϵAB et dans ce cas, le projecteur est l’identité. Sinon, un projecteur a juste deux points
invariants qui sont distincts quand la matrice symétrique ∥PAB + PBA∥ est non singulière, et ils
coïncident quand elle est singulière.

On peut toujours exprimer les coefficients d’un projecteur sous la forme

(11.7) PAB = QAB +
1

2
PC
C ϵAB

Puisque PAB − PBA = PC
C ϵAB, on a

(11.8) QAB =
1

2
(PAB + PBA) = QBA

et donc à un projecteur P est associée une involution Q déterminée uniquement. Les points doubles
de P sont les mêmes que ceux de Q.

Les points invariants d’une involution la déterminent complètement. Car les racines de (11.6) dé-
terminent ces coefficients selon les facteurs communs et la condition additionnelle P12 = P21 donne
∥PAB∥ à un facteur près. En effet, le projecteur défini par

(11.9) QAB = αAβB + αBβA

est l’involution qui laisse α et β invariants. Puisque

(11.10) βAαB − αAβB = (βCαC) ϵAB

l’involution est aussi donnée par

(11.11) QAB = 2αAβB + (βCαC) ϵAB

ou par

(11.12) QAB = 2βAαB − (βCαC) ϵAB.

Un projecteur singulier ( ̸= 0) est de la forme ∥ρA σB∥ et si ce doit être une involution (c’est-à-dire

s’il doit être symétrique), on doit avoir σB = λ ρB. En posant αA =

(
λ

2

) 1
2

ρA, l’involution générale

singulière est

(11.13) QAB = 2 αA αB,
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et c’est exactement ce que l’on obtient en posant βA = αA dans (11.9). Cette involution singulière
amène chaque point, excepté α, sur α.

Deux points, XA et Y A déterminent le scalaire homogène XAYA dont l’évanouissement implique la
coïncidence des points. Si le scalaire ne s’évanouit pas, sa valeur est changée quand les coordonnées
XA sont multipliées par un facteur. Quatre points, pourtant déterminent le scalaire absolu

(11.14) λ =
(φAαA)(ψ

BβB)

(φAβA)(ψBαB)

qui est appelé le birapport des 4 points (ϕψ|αβ). La valeur de λ est invariante par transformation
des coordonnées. De plus, puisque le membre de droite de (11.14) est homogène de degré zéro en les
coordonnées des points, la valeur de λ dépend seulement des points et non des coordonnées choi-
sies pour les représenter. Par un projecteur, un ensemble de 4 points est transformé en un nouvel
ensemble de points qui a le même birapport que l’ancien, mais par un antiprojecteur, le birapport
est changé en son complexe conjugué. Si φA = QABψ

B où QAB est donné par (11.9), on a

(11.15)
(ϕAαA)(ψ

BβB)

(ϕAβA)(ψBαB)
= −1.

Quand cette relation est vérifiée, les points φ et ψ sont dit être conjugués harmoniques par rapport
à α et β. Puisque (11.15) détermine φA comme une fonction de ψA à un facteur près, l’involution
avec les points α et β invariants peut être définie comme la transformation qui envoie tout point
sur son conjugué harmonique par rapport à la paire de points, α et β.

Un projecteur qui échange deux points est une involution. Car, par un choix adéquat du système
de coordonnées, on peut prendre comme coordonnées covariantes des points (1, 0) et (0, 1) et alors
∥PB

A ∥ les échangera seulement si P 1
1 = P 2

2 = 0. Ceci implique la condition invariante PA
A = 0 qui

caractérise une involution. En effet, le projecteur

(11.16) QAB = λ αA αB + µ βA βB

avec λ et µ des nombres complexes arbitraires ̸= 0, est une involution qui échange α et β. Le
projecteur le plus général ayant cette propriété est de cette forme. Car un projecteur est déterminé
par son action sur 3 points et si λ et µ sont solutions des équations

(11.17) λ αA(αB ξB) + µ βA(βB ξB) = ηA ,

Q enverra α, β, et ξ sur β, α, et η, respectivement, où ξ et η sont des points arbitraires distincts à
la fois de α et de β.

Un théorème important établit que tout projecteur dans P1 est le produit de deux involutions.
Nous le démontrons en considérant plusieurs cas. L’élément neutre est le carré d’une involution
et nous avons vu que tout autre projecteur possède seulement deux points doubles, qui peuvent
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coïncider. Il suffit donc de considérer les projecteurs à deux points doubles distincts, les projecteurs
non singuliers à un point double et les projecteurs singuliers.

Si les points invariants distincts du projecteur P sont a et b, soient α et β une paire de points har-
moniquement conjugués par rapport à eux et définissons Q1 comme l’involution ayant pour points
doubles α et β. Alors, en notant Q1P le projecteur résultant de la transformation de P par Q1, on
a Q1P qui intervertit a et b et est donc une involution, Q2. Puisque Q2

1 = 1, P = Q2
1P = Q1Q2 et

P est le produit de deux involutions.

Si P est non singulière et possède un unique point invariant a, on choisit α un point distinct de
a et on note β = Pα la transformée de α par P . Soit b le conjugué harmonique de a par rapport
à α et β, Q1 l’involution avec les points doubles a et b, et Q2 l’involution avec les points doubles
a et β. Alors Q2Q1a = a et Q2Q1α = Q2β = β. De plus, Q2Q1 ne peut laisser invariant aucun
point γ ̸= a, car Q2Q1γ = γ impliquerait Q1γ = Q2γ, et Q1 et Q2 échangeraient tous deux γ et
δ = Q1δ. Ceci, combiné à l’invariance de a par Q1 et par Q2 impliquerait Q1 = Q2, ce qui est faux.
Par conséquent, P et Q2Q1 ont chacun le point invariant a et chacun envoie α sur β. En se référant
à un système de coordonnées canonique, on obtient alors facilement P = Q2Q1.

Un projecteur singulier est donné par la matrice ∥αAβB∥. Si α et β sont des points distincts, cette
matrice est le produit des involutions singulières ∥αAαB∥ et ∥βBβC∥. Lorsque le projecteur est une
involution singulière, ∥αAβB∥, il est le produit de ∥αAβB∥ et de ∥αBγC + γBαC∥, où γC est distinct
de α.

Antiinvolutions dans P1

12. Un antiprojecteur peut s’écrire des 4 formes équivalentes

(12.1) φA = P Ȧ
B ψB, φA = PȦB ψB, φA = −PB

Ȧ
ψB, et φA = −P ȦBψB,

les éléments des 4 matrices étant reliés comme dans (11.2). Si l’on prend à la fois φA et ψA comme
étant de poids 1

2
et d’antipoids zéro, on doit prendre P Ȧ

B comme étant de poids −1
2

et d’antipoids
+1

2
, PB

Ȧ
comme étant de poids +1

2
et d’antipoids −1

2
, PȦB comme étant de poids absolu −1, et P ȦB

comme étant de poids absolu +1. Avec ces poids, le déterminant de chacune des 4 matrices est inva-
riant et une normalisation, comme |P Ȧ

B | = 1, est préservée par des transformations des coordonnées.

Les points invariants de l’antiprojecteur (12.1) sont donnés par

(12.2) PȦB ψ
A
ψB = 0.

Si l’on pose

(12.3) HȦB =
1

2
(PȦB + P ḂA) et KȦB =

1

2
(PȦB − P ḂA),

alors ∥HȦB∥ et ∥KȦB∥ sont des matrices hermitiennes et
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(12.4) PȦB = HȦB + iKȦB.

Rendre les parties réelle et imaginaire du côté gauche de (12.2) égales à zéro donne

(12.5) HȦB ψ
A
ψB = 0 et KȦB ψ

A
ψB = 0.

Représentons les points de P1 par des points du plan xy comme dans le § 2 par l’équation (cf. (2.3))

(12.6) − ψ2

ψ1
=
ψ1

ψ2

= z = x+ iy

Les équations de (12.5) sont les équations de deux cercles (réels, dégénérés ou imaginaires) dans le
plan xy. (Dans le cas particulier où HȦB = 0 ou bien où KȦB = 0, l’une des équations est satisfaite
de la même manière et il n’y a qu’un seul cercle.)

Si les deux cercles ne coïncident pas, ils peuvent s’intersecter en deux points, être tangents, ou ne
pas avoir d’intersection, et l’antiprojecteur aura alors 2, 1 ou aucun points invariants, respective-
ment. De (12.4), on voit que

(12.7) (λ+ iµ)PȦB = (λHȦB − µKȦB) + i(λKȦB + µHȦB),

et donc, les composantes homogènes, ∥ρ PȦB∥, d’un antiprojecteur ne déterminent pas une paire
unique de cercles (12.5) mais seulement le faisceau auquel ils appartiennent.

Si les équations (12.5) définissent un seul ou bien une paire de cercles coïncidant (réels ou imagi-

naires), et seulement dans ce cas, l’antiprojecteur sera une antiinvolution. Car, si ∥P Ȧ
B ∥ =

∥∥∥∥a b
c d

∥∥∥∥,

les antiinvolutions sont caractérisées par les équations matricielles

(12.8)

∥∥∥∥a b
c d

∥∥∥∥∥∥∥∥a b

c d

∥∥∥∥ = ρ

∥∥∥∥1 0
0 1

∥∥∥∥
et multiplier les deux membres par

∥∥∥∥−d b
c −a

∥∥∥∥ = transposee∥PB
Ȧ
∥ donne

−(ad− bc)

∥∥∥∥a b

c d

∥∥∥∥ = ρ

∥∥∥∥−d b
c −a

∥∥∥∥
en utilisant le fait que (̃PD

Ḃ
)(P Ḃ

A ) = −|P Ė
F |(δDA ) avec õp symbolisant la transposition. Donc,

(P
Ḋ

C ) =
−ρ

Det(P Ė
F )

(P̃D
Ċ
). En baissant l’indice D, on trouve qu’une antiinvolution non-singulière sa-

tisfait alors l’équation

(12.9) P ȦB = σPḂA
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où σ =
−ρ

ad− bc
et il découle de (12.3) que les deux cercles (12.5) coïncident. En prenant le déter-

minant des deux membres de (12.9), on voit que σσ = 1, de telle façon que

σ1/2P ȦB = σ1/2PḂA

et par conséquent, ∥σ1/2PȦB∥ est hermitienne. La matrice définissant une antiinvolution est donc
proportionnelle à une matrice hermitienne et inversement toute matrice hermitienne définit une
antiinvolution.

Une antiinvolution non singulière est de deux types selon que les matrices hermitiennes qui la
définissent sont indéfinies ou définies. L’étude du § 1 démontre qu’un choix approprié du système
de coordonnées permet d’obtenir comme équation du cercle invariant l’équation ψ

1
ψ1 − ψ

2
ψ2 = 0

ou l’équation ψ
1
ψ1 + ψ

2
ψ2 = 0 selon que l’antiinvolution est respectivement de première ou de

seconde espèce. En fonction de la coordonnée non homogène z, ces cercles ont pour valeurs zz = 1

et zz = −1, et leurs antiprojecteurs respectifs sont w =
1

z
et w = −1

z
.

Une antiinvolution singulière ( ̸= 0) est de la forme αAβB, et (12.8) implique alors αAβB(α
BβC) = 0,

soit βB = ρ αB. Par conséquent, les matrices définissant l’antiinvolution singulière sont proportion-
nelles à ∥αAαB∥ et l’antiinvolution transforme tout point, sauf α, en α.

Les antiinvolutions qui laissent deux points, par exemple α et β, invariants correspondent aux
cercles passant par α et β. Ces cercles sont linéairement dépendants de deux quelconques d’entre
eux, de sorte que

(12.10) PȦB = λ(αAβB + βAαB) + i µ(αAβB − βAαB).

est, pour un choix approprié des nombres réels λ et µ, l’involution qui laisse α et β invariants.

L’involution qui a pour points invariants α et β est le produit des antiinvolutions (αAβB + βAαB)
et i(αAβB − βAαB), pour :

(12.11) i(αAβB + βAαB)(α
BβC − β

B
αC) = i(αBβB)(αAβC + βAαC).

De plus, l’involution singulière αAαB est le produit de αAβB + βAαB et de αAαB. Par conséquent,
toute involution est le produit de deux antiinvolutions.

Nous avons vu dans la section précédente que tout projecteur était le produit de deux involutions et
donc tout projecteur est le produit de quatre antiinvolutions. Sachant que tous les antiprojecteurs
sont obtenues en multipliant les projecteurs par une seule antiinvolution, on obtient le résultat que
les antiinvolutions génèrent l’ensemble du groupe antiprojectif.
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Réflexions point-plan dans R3

13. L’antiinvolution

(13.1) φA = PȦB ψB, avec P ȦB = PḂA,

induit dans R3 l’involution

(13.2) Y i = P i
j X

j,

où (cf. (5.7))

(13.3) pij = giȦB PĊB PȦD gĊD
j .

Puisque PĊB PȦD − PȦBPĊD est antisymétrique à la fois par rapport aux indices (ȦĊ) et par
rapport aux indices (BD), on a :

(13.4) PĊBPȦD = PȦBPĊD + ρ ϵȦĊ ϵBD,

En multipliant par ϵȦĊϵBD et en sommant, on obtient : ρ = −1

2
P ĖFPĖF . Par conséquent, en sub-

stituant (13.4) dans (13.3), on obtient :

(13.5) P i
j = P iPj −

1

2
(P kPk)δ

i
j,

où P i = giȦBPȦB est le point de R3 correspondant à PȦB selon (4.5).

L’involution (13.2) laisse P i et chaque point de son plan polaire Pi invariant. Car, de (13.5), on a
P i
jP

j = 1
2
(P kPk)P

i et, si X iPi = 0, P i
jX

j = −1
2
(P kPk)X

i. Une involution de ce type est appelée
réflexion point-plan. Pour trouver la transformée d’un point quelconque X, on observe, d’après
(13.2), que la droite déterminée par P et X coupe le plan Pi en un point invariant, disons Q.
Par conséquent, (13.2) établit une involution sur cette droite avec les points doubles P et Q. La
transformée de X est alors sa conjuguée harmonique par rapport à P et Q.

Deux points de la quadrique sont intervertis par l’involution si et seulement s’ils sont alignés avec
le centre P de la réflexion point-plan. Il existe donc un faisceau réel d’antiinvolutions qui interver-
tissent deux points αA et βA, et les éléments de ce faisceau sont :

(13.6) PȦB = λαAαB + µβAβB,

où λ and µ sont des paramètres réels, aucun d’eux n’étant nul.
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Réflexions par rapport à une droite dans R3

14. Dans les équations (12.11), nous avons exprimé une involution quelconque comme le produit
de deux antiinvolutions. De plus, puisque (αAβB + β

A
αB)(αAβB − βAαB) = 0, les antiinvolutions

correspondent à des points de R3 conjugués par rapport à la quadrique. Par conséquent, une invo-
lution dans P1 correspond au produit de deux réflexions point-plan dans R3, le point et le plan de
l’une étant respectivement incidents au plan et au point de l’autre.

Notons P1 et P2 les deux réflexions point-plan, C et D leurs centres respectifs, et c et d leurs plans.
Puisque les réflexions point-plan laissent la quadrique invariante, c est le plan polaire de C et d celui
de D. L’intersection de c et d est une droite, cd, dont les points sont invariants par P1 et P2, et donc
par leur produit, P1P2 = Q. De plus, P1 et P2 induisent la même involution sur la droite invariante
CD, et par conséquent Q laisse chaque point de CD invariant. Une involution de R3 qui laisse cha-
cune des deux droites non coplanaires ponctuellement invariante est appelée une réflexion de droite.

Pour trouver la transformée d’un point X n’appartenant ni à CD ni à cd, on considère l’intersection
du plan formé par X et CD avec le plan formé par X et cd. Cette intersection est une droite qui
coupe CD et cd respectivement aux points E et F . Puisque E et F sont invariants, la droite EF
l’est également, et la réflexion sur cette droite induit l’involution de E et F . Par conséquent, la
transformée de X est la conjuguée harmonique de X par rapport à E et F . La réflexion sur cette
droite est donc entièrement déterminée par les deux droites qu’elle laisse ponctuellement invariantes.

En voyant R3 comme un espace euclidien, et la quadrique comme une sphère à l’intérieur de cet
espace, la réflexion par rapport à une droite laisse invariant tout plan de faisceaux sur cd et CD et
donc laisse invariant deux faisceaux de cercles sur la sphère. Par notre construction initiale, c et d
coupent la sphère en cercles qui s’intersectent en les points Ai et Bi correspondant aux points inva-
riants A et B de l’involution dans P1. Les plans sur cd coupent donc la sphère en les cercles en A et
B et les plans sur CD coupent la sphère en le faisceau de cercles orthogonaux aux cercles en A et B.

On peut exprimer les composantes, Qi
j, de la réflexion par rapport à une droite en fonction des

coordonnées qij, de cd par la formule

(14.1) Qi
k = qij qjk +

1

4
qpq qpq δ

i
k.

En effet, si on choisit un système de coordonnées dans lequel les points invariants αA et βA ont
comme coordonnées (1, 0) et (0, 1), les points correspondants Ai et Bi dans R3 sont, par (1.8),
1√
2
(0, 0, 1, 1), et 1√

2
(0, 0,−1, 1). Les coordonnées de cd et CD sont donc

(14.2) ∥qij =

∥∥∥∥∥∥∥∥
0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0

∥∥∥∥∥∥∥∥ , et ∥qij∥ =

∥∥∥∥∥∥∥∥
0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

∥∥∥∥∥∥∥∥ .
En substituant dans (14.1), on obtient
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(14.3) ∥Qi
k∥ =

∥∥∥∥∥∥∥∥
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

∥∥∥∥∥∥∥∥− 1

2

∥∥∥∥∥∥∥∥
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

∥∥∥∥∥∥∥∥ =
1

2

∥∥∥∥∥∥∥∥
−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

∥∥∥∥∥∥∥∥
et donc la colinéation Y i = 2 Qi

j X
j est

(14.4) Y 1 = −X1, Y 2 = −X2, Y 3 = X3, Y 4 = X4,

qui est clairement la réflexion par rapport à une droite de droites invariantes X1 = X2 = 0 et
X3 = X4 = 0.

Factorisation de la forme quadratique fondamentale

15. On commence cette section en observant que les matrices hermitiennes d’ordre 2 constituent
un espace linéaire de 4 dimensions réelles. Si l’on combine ce résultat, comme exprimé dans (4.7),
avec le théorème (démontré en section 12) qu’une matrice hermitienne définit une antiinvolution,
on voit que (giȦB X i)(gḂC

j Xj) est un multiple de δAC pour toutes les valeurs des variables X i. Par
conséquent,

(15.1) (giȦB X i)(gḂC
j Xj) = ρij X

i Xj δCA .

Pour évaluer ρij X i Xj, on rend A égal à C et on somme ; on obtient

(15.2) gij X
i Xj = 2 ρij X

i Xj,

puisque giȦB = giḂA et

(15.3) giḂA g
ḂA
j = gij,

grâce à (4.8). Les équations (15.1) sont alors

(15.4) 2(giȦB X i)(gḂC
j Xj) = gij X

i Xj δCA .

Rendre égaux les coefficients dans (15.4) donnent les équations importantes

(15.5) giȦB gḂC
j + gjȦB gḂC

i = gij δ
C
A .

Les équations (15.4) peuvent être interprétées comme une factorisation de la forme quadratique
gijX

iXj en produit de deux formes linéaires
√
2 giȦB X i et

√
2 gjḂC X

i avec les coefficients matri-
ciels. On peut alors écrire gij X i Xj comme le carré une forme linéaire unique si on combine ∥giȦB∥
et ∥gȦB

i ∥ en les matrices 4× 4,
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(15.6) γi =
√
2

∥∥∥∥∥∥∥∥
0 0
0 0

∥giȦB∥

∥gȦB
i ∥ 0 0

0 0

∥∥∥∥∥∥∥∥
et on observe alors que (15.5) et son conjugué implique

(15.7) γiγj + γjγi = 2gij1.

Alors on peut écrire (15.4) ainsi

(15.8) (γiX
i)2 = gijX

iXj1.
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