
L’hypothèse de Riemann : passé, présent
et une lettre à travers le temps

Alain Connes

5 février 2026

Résumé

Cet article, commandé comme étude synthétique de l’hypothèse de Riemann, offre un pano-
rama complet de 165 années d’approches mathématiques de ce problème fondamental, tout
en introduisant une nouvelle perspective apparue lors de sa préparation.

L’article débute par une description détaillée de nos connaissances sur la fonction zêta de
Riemann et ses zéros, suivie d’un vaste panorama des théories mathématiques développées
pour tenter de résoudre l’hypothèse de Riemann – des approches analytiques classiques aux
méthodes géométriques et physiques modernes. Nous y abordons également plusieurs formu-
lations équivalentes de l’hypothèse.

Dans le cadre de cette étude, nous présentons une contribution originale sous la forme d’une
“Lettre à Riemann”, utilisant uniquement les mathématiques disponibles à son époque. Cette
lettre révèle une méthode inspirée de l’approche de Riemann lui-même au théorème de trans-
formation conforme : en optimisant une forme quadratique (restriction de la forme quadratique
de Weil en langage moderne), nous obtenons des approximations remarquables des zéros de la
fonction zêta. En utilisant uniquement des nombres premiers inférieurs à 13, cette procédure
d’optimisation fournit des approximations des 50 premiers zéros avec des précisions allant
de 2, 6 × 1055 à 10−3. De plus, nous démontrons un résultat général selon lequel ces valeurs
approchées se situent exactement sur la droite critique Re(z) = 1

2 .

À la suite de la lettre, nous expliquons les mathématiques sous-jacentes en termes modernes,
notamment en décrivant le lien profond qui unit la forme quadratique de Weil au monde de
la théorie de l’information. Les dernières sections développent une perspective géométrique
à l’aide de formules de trace, esquissant une stratégie de démonstration potentielle fondée
sur l’établissement de la convergence des zéros des produits eulériens finis vers les produits
eulériens infinis. Tout en complétant l’étude commandée, ces nouveaux résultats suggèrent
une piste prometteuse pour les recherches futures sur la conjecture de Riemann.

Référence : https://arxiv.org/pdf/2602.04022.
Correction de la traduction en français par outils informatiques : Denise Vella-Chemla.
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1 Introduction
L’hypothèse de Riemann (HR) demeure sans doute le problème non résolu le plus célèbre des
mathématiques, ayant résisté à toutes les tentatives de démonstration depuis que Bernhard Riemann
a fait remarquer, nonchalamment, dans son Mémoire de 1859, que “sehr wahrscheinlich” (très
probablement) tous les zéros non triviaux de sa fonction zêta se situent sur la droite critique
Re(s) = 1/2.
L’essence du présent article est une lettre de trois pages à Riemann, écrite comme s’il était possible
de communiquer à travers les années, et dans laquelle je présenterai une stratégie (vers une preuve
de HR) qui n’utilise que les mathématiques qu’il connaissait, ainsi que la grande puissance des
ordinateurs modernes.
Dans la section “Rencontre avec la fonction zêta de Riemann”, nous souhaitons présenter au lec-
teur une image saisissante du lien extraordinaire que Riemann a mis en évidence entre les zéros
complexes de la fonction zêta et la distribution des nombres premiers. Nous commençons par un
bref historique du théorème des nombres premiers, suivi de la formule explicite de Riemann pour
π(x), le nombre de nombres premiers inférieurs à x, et de ses généralisations ultérieures en formules
explicites. Nous abordons ensuite l’une des conséquences les plus marquantes : la découverte par
Littlewood que la différence π(x) − Li(x) change de signe une infinité de fois, une observation qui
a bouleversé les hypothèses antérieures d’une simple loi monotone.
Nous retraçons alors l’histoire des résultats concernant les zéros de ζ(s), depuis la démonstration
par Hardy de leur infinité sur la droite critique, en passant par la percée de Selberg en 1942, jus-
qu’aux résultats modernes relatifs à la proportion de zéros situés exactement sur la droite critique.
Pour éclairer cette théorie, nous nous appuyons également sur le riche cadre des fonctions entières,
notamment le théorème de factorisation d’Hadamard, la théorie de Nevanlinna et le remarquable
théorème de Borchsenius-Jessen, fruit du programme de Bohr-Landau sur les fonctions presque
périodiques.
Cette partie culmine avec un résultat qui aurait certainement stupéfié Riemann : le théorème d’uni-
versalité de Voronin. Ce théorème affirme que la fonction zêta, dans la bande 1/2 < Re(s) < 1,
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possède une propriété de caméléon : par translation verticale, elle peut approcher toute fonction
f(s) prédéfinie, continue, non nulle et holomorphe sur un compact simplement connexe de la bande.
Pris ensemble, ces jalons révèlent à la fois la profondeur et la subtilité de la structure analytique
de ζ(s). Ils nous préparent à comprendre pourquoi l’hypothèse de Riemann demeure si tenace : la
fonction elle-même recèle une gamme étonnante de comportements, bien plus insaisissables qu’il
n’y paraît au premier abord.

Riemann n’aurait certainement pas pu prévoir l’extraordinaire paysage mathématique qui a émergé
des tentatives de démonstration de sa conjecture. Des théories entières sont nées de cette quête,
établissant des liens entre la géométrie algébrique et la physique quantique. La section “Un siècle
et demi de construction théorique vers l’hypothèse de Riemann” est consacrée à un bref panorama
de ces théories. La première concerne l’extension du problème à la géométrie algébrique et arith-
métique. Dans ce cadre, l’analogue de la fonction zêta de Riemann en caractéristique finie a été
développé, et l’analogue correspondant de l’hypothèse de Riemann a été démontré par André Weil.
Pour contextualiser, je rappellerai brièvement les notions de schémas de Grothendieck et de coho-
mologie étale. L’essentiel est que la célèbre analogie de Weil avec la “pierre de Rosette” prend tout
son sens lorsqu’on l’envisage à travers le prisme des schémas. Sur la pierre de Rosette originale, les
inscriptions parallèles sont horizontales : les hiéroglyphes en haut, le texte démotique au milieu et le
grec en bas. Weil a proposé une comparaison similaire à trois textes pour l’hypothèse de Riemann.
En bas, correspondant au texte grec, se trouve l’œuvre de Riemann sur les surfaces riemanniennes. Il
n’y a pas d’analogue de l’hypothèse de Riemann dans ce contexte, mais cela illustre l’extraordinaire
puissance des méthodes transcendantes en géométrie. Le texte du milieu correspond à la géomé-
trie algébrique sur les corps finis : c’est ici que l’analogue de l’hypothèse de Riemann a été établi
par Weil, la fonction zêta apparaissant comme fonction génératrice comptant les points rationnels
sur les courbes définies sur les extensions de corps finis. Enfin, le texte du haut, le texte “hiéro-
glyphique”, correspond au cas arithmétique du spectre de Z, qui demeure profondément mystérieux.

Ce qui est remarquable, c’est que, grâce à la théorie des schémas de Grothendieck, on observe
un cadre unificateur pour les trois inscriptions : dans chaque cas, il s’agit de schémas réguliers de
dimension un. C’est pourquoi j’évoquerai brièvement les schémas, la cohomologie étale et les motifs.

Une autre généralisation majeure découle de la théorie des formes automorphes et de la théorie des
représentations, où la formule de trace de Selberg et les fonctions zêta jouent un rôle central.

Je passerai ensuite à la théorie des matrices aléatoires et au chaos quantique. Une découverte re-
marquable, initiée par Montgomery et Dyson et confirmée de façon spectaculaire par les expériences
numériques à grande échelle d’Odlyzko, est que la corrélation par paires des espacements normali-
sés entre les zéros consécutifs de ζ(s) sur la droite critique coïncide avec la corrélation des valeurs
propres de l’ensemble unitaire gaussien (GUE) de la théorie des matrices aléatoires. Nicholas Katz
et Peter Sarnak ont étendu cette correspondance à des familles entières de fonctions L et ont établi
un cadre théorique systématique pour comprendre leur comportement statistique, comme expliqué
dans le § 3.4.4.

Lors de la comparaison des zéros de la fonction zêta avec les valeurs propres de l’ensemble unitaire
gaussien, il est nécessaire d’effectuer un changement d’échelle local pour compenser la densité va-
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riable des zéros. Ce besoin d’ajustement révèle l’absence d’un véritable “modèle ultraviolet” pour
la fonction zêta – une lacune qui sera comblée dans la dernière partie de cet article, dans le § 7.6.
Une avancée supplémentaire a été réalisée avec les travaux de Keating et Snaith en 2000, qui ont
utilisé la théorie des matrices aléatoires pour proposer une formule conjecturale pour les moments
de la fonction zêta de Riemann.

Je reviendrai ensuite brièvement sur mes travaux de 1998 concernant la formule de la trace. L’élé-
ment novateur réside dans le fait qu’au lieu d’étudier directement la fonction zêta, on considère
l’idéal qu’elle engendre, ce qui revient à se concentrer sur ses zéros. De manière cruciale, on peut
appréhender cet idéal et les zéros associés sans définir explicitement la fonction, ni faire appel à
son prolongement analytique. La clé est la construction d’un espace géométrique – l’espace des
classes d’adèles – qui acquiert une importance centrale en tant que quotient des adèles par l’action
multiplicative ergodique des nombres rationnels. Ce quotient révèle les zéros des fonctions L, et pas
seulement de la fonction zêta de Riemann, sous la forme d’un spectre d’absorption. Des résultats
récents soulignent une correspondance précise entre l’espace de classes d’adèles et l’homologue de la
théorie des corps de classes des schémas intimement liés à SpecZ que la théorie de Grothendieck du
site étale et du groupe fondamental étale a dévoilés comme une généralisation de la théorie de Galois.

La formule de trace correspondante est analogue à celle de Selberg, mais plus subtile, car elle fait
intervenir une coupure infrarouge et une coupure ultraviolette. C’est précisément ici que, pour la
première fois, les fonctions d’onde sphéroïdales prolates apparaissent naturellement.

Je mentionnerai diverses généralisations de la fonction zêta de Riemann, qui élargissent la perspec-
tive et suggèrent de nouvelles pistes de recherche. Par souci d’exhaustivité, j’aborderai également
les fonctions p-adiques : bien qu’aucun analogue de l’hypothèse de Riemann ne soit connu dans ces
cas, elles ont néanmoins donné lieu à de nombreux développements remarquables.

Enfin, dans la section “Formulations équivalentes”, j’examinerai le domaine des formulations équi-
valentes de l’hypothèse de Riemann. Le livre “Equivalences of the Riemann Hypothesis” de Kevin
Broughan (2017, Cambridge University Press) répertorie systématiquement plus de 100 formula-
tions équivalentes. Cet ouvrage exhaustif organise les équivalences par domaine mathématique.

- Fonctions arithmétiques élémentaires,
- Formules de dénombrement des nombres premiers,
- Équivalents analytiques,
- Critères d’analyse fonctionnelle,
- Énoncés probabilistes,
- Théorie des matrices et des opérateurs,
- Systèmes dynamiques.

Certains des énoncés équivalents à HR sont d’une simplicité remarquable : par exemple, soit Rn la
matrice de Redheffer, une matrice n × n de booléens (i.e. de 0 ou 1) avec Rij = 1 si j = 1 ou si i
divise j. Alors

HR ⇐⇒ det(Rn) = O(n1/2+ϵ), ∀ϵ > 0
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Ces formulations sont séduisantes mais trompeuses : l’histoire du sujet montre avec quelle facilité
une tentative de résolution du problème peut être aspirée par ce “trou noir” d’équivalences. Je discu-
terai de deux de ces formulations équivalentes : d’abord le critère de positivité de Weil, puis le critère
de Robin amélioré par Lagarias. Ce dernier critère montre que l’hypothèse de Riemann-Richardson
appartient à la catégorie des énoncés que Hilbert, dans son programme sur les fondements des
mathématiques, espérait voir “démontrables s’ils sont vrais”. Or, le théorème de Gödel a démontré
que, précisément pour ce type d’énoncés, la vérité n’implique pas la démontrabilité. Ce point sera
examiné en détail à l’aide de la théorie de la complexité algorithmique de Chaitin.

La partie suivante du présent article, intitulée “Lettre au professeur Bernhard Riemann”, est d’une
nature tout à fait différente. Elle se présente sous la forme d’une lettre adressée à Riemann lui-
même, dans un dialogue imaginaire à travers le temps. L’objectif de cette lettre est de souligner
une observation simple mais surprenante : une stratégie vers HR qui s’inscrit pleinement dans la
propre perspective mathématique de Riemann, comme en témoigne par exemple sa démonstration
du théorème de l’application conforme. Point important, cette stratégie ne requiert que des concepts
et outils mathématiques qui étaient disponibles en 1859.

Concrètement, cette méthode permet de retrouver les premiers zéros non triviaux de la fonction
zêta en utilisant seulement quelques facteurs du produit eulérien. Par exemple, en tronquant le
produit eulérien au nombre premier 13 et en effectuant le calcul avec la méthode décrite, on ob-
tient une approximation des 50 premiers zéros de ζ(s) dont la précision se comprend mieux en
considérant la probabilité d’obtenir une telle approximation par hasard. La probabilité qu’un tel
accord puisse se produire par pur hasard est d’environ 10−1235. Pour donner une idée de l’échelle,
cela correspond approximativement à la probabilité de deviner correctement le résultat de plus de
4000 lancers de pièce consécutifs – un exploit si improbable qu’en pratique, il exclut à la fois la
coïncidence et l’erreur de calcul.
On pourrait donc être tenté de conclure : “Il s’agit simplement d’un nouvel algorithme pour calculer
les zéros de la fonction zêta de Riemann.”. Si tel était le cas, l’hypothèse de Riemann elle-même
en découlerait, puisqu’un théorème général garantit que lorsque la plus petite valeur propre de
l’opérateur correspondant est simple et paire 1, les nombres d’approximation obtenus forment le
spectre d’un opérateur auto-adjoint et sont donc tous réels.
Cette lettre à Riemann est suivie, dans la section “Prochaines étapes”, d’une discussion plus dé-
taillée de son contenu, ainsi que d’une esquisse d’une stratégie possible pour justifier rigoureusement
que, de manière générale, les zéros d’approximation produits par cette méthode convergent vers
les zéros réels de la fonction zêta de Riemann. Bien que les preuves numériques en faveur de cela
soient convaincantes, les preuves seules ne constituent pas une démonstration. Dans cette approche
naturelle, les fonctions d’onde sphéroïdales prolates, que j’avais introduites dans ce contexte en
1998, jouent un rôle central.

Des expériences informatiques révèlent un fait frappant : une fonction faisant intervenir les fonc-
tions d’onde sphéroïdales prolate fournit une excellente approximation de la fonction qui minimise
la forme quadratique de Weil. Cette observation justifie pleinement cette approche. Il est bien sûr
possible qu’une démonstration complète dans cette direction se heurte à des obstacles importants.
Cependant, quel que soit le niveau de progression, cette voie ouvre naturellement la voie à une

1. signifiant que la fonction propre associée est paire.
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exploration plus approfondie, dont le point de départ est présenté dans la section “Perspectives
géométriques” : la relation inattendue entre deux mondes mathématiques apparemment éloignés.

D’une part, il y a le monde de la forme quadratique de Weil. Le fait central ici est l’équivalence
remarquable de Weil : l’hypothèse de Riemann est équivalente à la positivité de certaines formes
quadratiques qui n’impliquent qu’un nombre fini de nombres premiers. Ceci est surprenant, car on
pourrait s’attendre à ce que la résolution de l’hypothèse de Riemann exige de contrôler l’infinité
complète des nombres premiers. Ici, cependant, le problème se réduit localement, à des ensembles
finis à la fois. De plus, dans ce contexte, comme mentionné précédemment, on peut exploiter la
construction générale des fonctions dont les zéros se trouvent entièrement sur la droite critique.

D’autre part, il y a le monde des fonctions d’ondes prolates développé par David Slepian et ses
collaborateurs, dont les racines plongent dans les travaux de Claude Shannon en théorie de la
communication. Le lien fondamental, établi dans l’ouvrage fondateur de Slepian, Landau et Pollak,
est un opérateur différentiel classique du second ordre sur la droite : l’opérateur prolate, obtenu par
confluence de l’équation de Heun – un élément parfaitement familier de l’univers mathématique de
Riemann. Cet opérateur joue un double rôle. Dans le régime infrarouge, il permet d’approximer le
vecteur propre minimal de la forme quadratique de Weil. À l’autre extrême, comme expliqué dans
la dernière section de cet article, il fournit également un modèle pour un opérateur auto-adjoint
dont le spectre reflète le comportement ultraviolet des zéros de la fonction zêta de Riemann.
Prises ensemble, ces observations soulignent l’importance de comprendre les situations où seul un
nombre fini de nombres premiers intervient, et de clarifier l’interaction entre la forme quadratique
de Weil et l’opérateur prolate. Ce lien est établi par la formule de trace, que j’ai démontrée en
1998. Dans la dernière section, je reformulerai cette formule de trace en utilisant précisément les
mêmes éléments que ceux qui apparaissent dans la théorie de la communication et dans les travaux
de Slepian et ses collaborateurs, explicitant ainsi le lien qu’elle établit entre la forme quadratique
de Weil et les fonctions prolate.
En arrière-plan se trouve un espace géométrique d’une importance fondamentale : l’espace des
classes d’adèles semi-locales YS, associé à un ensemble fini S de places de Q qui inclut la place
archimédienne. Par construction, YS est obtenu comme le quotient∏

v∈S

Qv/Γ, Γ := {±
∏
pnv

v | nv ∈ Z}

du produit fini de corps locaux par l’action diagonale du groupe Γ ⊂ Q∗ engendré par les nombres
premiers de S. Le critère de positivité de Weil montre que prouver la positivité requise dans ce
cadre semi-local est équivalent à établir l’hypothèse de Riemann (en fait, on englobe également le
cas des fonctions L à Grössen-caractères).

Un avantage majeur de cet espace semi-local, comparé à l’espace complet des classes d’adèles, est
à trouver du côté de la théorie de la mesure : ici, les mesures de Haar multiplicative et additive
ne sont plus singulières l’une par rapport à l’autre, de sorte que le quotient se comporte bien du
point de vue de la théorie de la mesure. Topologiquement, cependant, la situation est plus subtile.
Pour chaque nombre premier p ∈ S, on rencontre une orbite périodique de longueur log p, et
ces orbites encodent précisément la contribution de p à la formule explicite. Enfin, dans le § 7.6,
j’explique la récente découverte de notre travail commun avec H. Moscovici [27], où nous montrons
que les valeurs propres de l’extension auto-adjointe de l’opérateur sphéroïdal prolate reproduisent
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le comportement ultraviolet des carrés des zéros de la fonction zêta de Riemann et construisent une
famille isospectrale d’opérateurs de Dirac dont les spectres ont le même comportement ultraviolet
que les zéros de zêta.

2 Rencontre avec la fonction zêta de Riemann

2.1 Théorie analytique classique des nombres
2.1.1 Théorème des nombres premiers (TNP)

En 1852, Pafnouti Tchebychev a démontré dans [14] que le nombre π(x) de nombres premiers
inférieurs à x satisfait à la condition suivante :

A
x

log(x) < π(x) < 6A
5

x

log(x) , A ≈ 0.92129

pour x suffisamment grand, ce qui lui a permis de démontrer la convergence de la série sur les
nombres premiers p,

1
2 log 2 + 1

3 log 3 + 1
5 log 5 + 1

7 log 7 + . . .

Il a introduit deux fonctions de comptage essentielles, ϑ et ψ, définies comme les sommes suivantes :

ϑ(x) :=
∑
p<x

log p, ψ(x) := ϑ(x) + ϑ(x1/2) + ϑ(x1/3) + . . .

Il a démontré l’identité ∑x
1 ψ(x/n) = log x! puis a utilisé la formule de Stirling.

Le fait que la relation asymptotique π(x) ∼ x/ log x soit équivalente à ϑ(x) ∼ x était certainement
connu de Tchebychev et faisait partie des connaissances mathématiques de l’époque. En effet, dans
leurs articles respectifs [54], [106], Hadamard et de la Vallée Poussin démontrent tous deux ϑ(x) ∼ x
sans mentionner explicitement le résultat équivalent π(x) ∼ x/ log x. Leurs démonstrations indé-
pendantes ont établi de manière cruciale la non-annulation de ζ(s) sur la droite Re(s) = 1, en
utilisant des techniques d’analyse complexe, notamment la théorie des fonctions entières de Hada-
mard. Le lien avec l’hypothèse de Riemann est profond : alors que la théorie des nombres premiers
exige seulement que ζ(s) ̸= 0 pour Re(s) = 1, le terme d’erreur π(x) − Li(x) dans la fonction de
comptage des nombres premiers est directement contrôlé par la position des zéros. Sous l’hypothèse
de Riemann, le terme d’erreur s’améliore à O(x1/2 log x). L’approximation par le logarithme intégral
diffère sensiblement de son premier terme ; on a

Li(x) ∼ x

log x + x

log2 x
+ 2x

log3 x
+ · · ·

La démonstration de Hadamard selon laquelle ζ(s) ̸= 0 pour Re(s) = 1 recèle une idée élégante
qui se comprend grâce aux phases des puissances premières et se réduit à (−1)2 = 1. En effet,
si pour un certain nombre réel t on avait ζ(1 + it) = 0, les nombres complexes p−it tendraient à
s’accumuler en −1, d’après le développement de − log 1−p−it+ϵ. Mais alors les nombres complexes
p−2it tendraient à s’accumuler en 1, créant ainsi un pôle de la fonction zêta en 1 + 2it, ce qui est
impossible sauf si 2t = 0.
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L’étape suivante de la démonstration du théorème fondamental des nombres premiers (TNP) par
Hadamard et de la Vallée Poussin découlait de leur besoin d’extraire des informations asympto-
tiques précises sur la distribution des nombres premiers à partir des propriétés analytiques de la
fonction zêta. Ils employèrent des techniques sophistiquées issues de la théorie des fonctions entières,
ce qui nécessitait des estimations détaillées du comportement de la fonction zêta dans différentes
régions du plan complexe. Bien que ces méthodes fussent mathématiquement rigoureuses et aient
révélé des intuitions mathématiques brillantes, elles masquaient la relation conceptuelle entre les
données analytiques et le résultat arithmétique, c’est-à-dire la formule asymptotique.
Edmund Landau a apporté la première simplification conceptuelle majeure en introduisant les mé-
thodes taubériennes pour démontrer le théorème des nombres premiers, travaux parus dans son
ouvrage influent de 1909, “Handbuch der Lehre von der Verteilung der Primzahlen”. L’innovation
de Landau résidait dans la reconnaissance du fait que le lien entre les propriétés analytiques de la
fonction zêta et les informations arithmétiques sur la distribution des nombres premiers pouvait
être établi grâce à une classe générale de théorèmes connus sous le nom de résultats taubériens.
Ces théorèmes fournissent des conditions sous lesquelles les propriétés asymptotiques des fonctions
génératrices se traduisent par des propriétés asymptotiques de leurs suites de coefficients. La pro-
gression de l’approche taubérienne initiale de Landau à travers le théorème de Wiener-Ikehara1

jusqu’à la présentation simplifiée de Newman montre comment la compréhension mathématique
peut s’approfondir grâce au développement de cadres plus généraux et conceptuellement transpa-
rents.
La démonstration élémentaire du théorème fondamental du nombre premier (TNP) par Selberg et
Erdös en 1949 a montré que l’analyse complexe n’est pas logiquement nécessaire à sa démonstration.
Le crible de Selberg, initialement développé pour cette démonstration élémentaire [97], est devenu
un outil fondamental en théorie analytique des nombres. La formule de symétrie de Selberg :∑

p≤x

log2 p+
∑

pq≤x

log p log q = 2x log x+ O(x)

illustre sa capacité à trouver des simplicités inattendues dans la distribution des nombres premiers.

2.1.2 Formule de Riemann, article de von Mangoldt

Dans son article fondamental 2 [90], Riemann prit soin de définir précisément la branche du loga-
rithme intégral qu’il utilisait et d’énoncer la convergence conditionnelle 3 dans sa formule pour la
fonction f(x) obtenue comme la somme des fonctions de comptage π(x1/n).

f(x) = Li(x) −
∑

α

(
Li
(
x

1
2 +αi

)
+ Li

(
x

1
2 −αi

))
+
∫ ∞

x

1
t2 − 1

dt

t log t − log 2 (1)

où les 1
2 + α i sont les zéros non triviaux de ζ à partie imaginaire positive et l’ordre des termes

correspond aux valeurs croissantes de Re(α).

2. qu’il envoya à Tchebychev.
3. Il maîtrisait parfaitement la convergence conditionnelle et a fourni la première démonstration rigoureuse que les

séries conditionnellement convergentes peuvent être réarrangées pour converger vers n’importe quelle valeur prescrite
ou pour diverger complètement. Le théorème de réarrangement de Riemann est issu de sa thèse d’habilitation de 1854,
“Über die Darstellbarkeit einer Function durch eine trigonometrische Reihe”, un ouvrage principalement consacré à
l’extension de la théorie des séries de Fourier à des classes de fonctions plus générales, et publié à titre posthume en
1867, [91], grâce au travail éditorial de Dedekind.
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Comme je le mentionnerai brièvement au début de ma lettre à Riemann, il est regrettable que
l’attention portée aux différentes branches du logarithme intégral ait disparu dans certains traités
modernes, tels que l’ouvrage classique d’Edwards [44], ou dans certains articles techniques, où (1)
est écrit comme ci-dessus alors qu’il n’existe aucune fonction Li(z) ou Li(z) + Li(z) pour laquelle le
terme général de la série tend vers 0. Le problème réside dans la notation, car si l’on suit attenti-
vement Riemann, on constate que la valeur qu’il considère dépend non seulement de xρ, mais aussi
de ρ log x. En fait, dans son article [107], von Mangoldt définit correctement la signification qu’il
attribue non pas à la fonction Li(z), mais à la fonction Li(ew). Voici ce qu’il écrit :

En posant w = u+ iv, où u et v désignent des nombres réels, et en considérant à nouveau h
comme une variable réelle positive, il suffit de poser les définitions suivantes :
1. Si v > 0 , alors

Li (ew) = lim
h→∞

∫ w

−h+w

ez

z
dz + iπ

2. Si v = 0, alors

Li (ew) = lim
h→0

∫ −h

−∞

ez

z
dz +

∫ w

h

ez

z
dz

3. Si v < 0 , alors
Li (ew) = lim

h→∞

∫ w

−h+w

ez

z
dz − iπ

Il est facile de vérifier que la fonction Li (ew) ainsi définie possède bien les propriétés souhaitées.

Ainsi, von Mangoldt était pleinement conscient du défaut de la notation Li(xρ), qui, malheureu-
sement, est restée utilisée sans précaution, même si la plupart des auteurs sont (probablement)
conscients du problème.

On peut tester la formule de Riemann, reformulée en utilisant la fonction Ei(ρ log x) au lieu de Li(xρ)
(voir (7)) à l’aide d’un ordinateur, et l’on constate une assez bonne concordance en effectuant la
somme sur quelques milliers de zéros de zêta.

2.1.3 Formules explicites

Elles relient les fonctions de comptage des nombres premiers et les zéros non triviaux de ζ(s),
précisant ainsi l’influence de ces zéros sur les fonctions arithmétiques. Von Mangoldt [107] a ri-
goureusement démontré la formule explicite originale de Riemann, déduite de l’égalité plus simple
suivante :

ψ(x) = x−
∑

ρ

xρ

ρ
− log 2π − 1

2 log(1 − x−2)

où ψ(x) = ∑
pk≤x log p est la fonction de Tchebychev, et la somme porte sur les zéros non tri-

viaux ρ. Comme dans le cas de Riemann, ∑ρ est prise comme la limite des sommes partielles
pour −T ≤ Im(ρ) ≤ T et n’est pas absolument convergente. Le terme d’erreur est de l’ordre de
(log T )2/T (voir le théorème 12.5 de [81]).
Guinand [52] et Weil [109] ont ensuite développé des formules explicites plus générales reliant les
fonctions tests et leurs transformées de Fourier aux distributions de zéros, offrant ainsi une pers-
pective d’analyse harmonique sur la relation entre les nombres premiers et les zéros. La formulation
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usuelle de la fonction zêta de Riemann fait intervenir des fonctions tests f : R∗
+ → C satisfaisant

des conditions de régularité appropriées 4

et leur transformée de Mellin définie comme

f̃(s) :=
∫ ∞

0
f(x)xs−1dx (2)

Elles prennent la forme ∑
ρ

f̃(ρ) = f̃(0) + f̃(1) −
∑

v

Wv(f), (3)

où la somme du membre de gauche porte sur tous les zéros complexes ρ de la fonction zêta de
Riemann et n’est en général que conditionnellement convergente, tandis que la somme du membre
de droite porte sur toutes les places rationnelles v de Q. Les distributions non archimédiennes Wp

sont définies, à l’aide de f ♯(x) := x−1f(x−1), comme suit :

Wp(f) := (log p)
∞∑

m=1

(
f(pm) + f ♯(pm)

)
(4)

tandis que la distribution archimédienne est donnée par

WR(f) := (log 4π + γ)f(1) +
∫ ∞

1

(
f(x) + f ♯(x) − 2

x
f(1)

)
dx

x− x−1 . (5)

2.1.4 Changements de signe de π(x) − Li(x)

Le célèbre résultat de Littlewood de 1914 [75], selon lequel π(x)−Li(x) change de signe une infinité
de fois (en supposant HR), a démontré que le terme d’erreur dans la théorie des perturbations pério-
diques (TPP) présente un comportement oscillatoire complexe, remettant en question l’observation
empirique selon laquelle π(x) < Li(x) pour toutes les valeurs calculées. La première borne effective
pour un tel changement de signe a été donnée par Skewes [100], qui a montré (en supposant HR)
qu’un croisement se produit avant

B = 10101034

Cette borne considérable a été grandement améliorée par Lehman [71], qui a introduit l’idée-clé de
dériver une formule explicite pour ue−u/2 (π (eu) − Li (eu)) moyennée par un noyau gaussien. Elle
a ensuite été améliorée par te Riele [105] (à environ 6, 69 × 10370), Bays et Hudson [2] (à environ
1, 4 × 10316), et plus récemment par Chao et Plymen [15] et Saouter, Demichel et Trudgian ([93],
[94]).

4. Elles sont continues et admettent une dérivée continue, sauf en un nombre fini de points où f(x) et f ′(x)
présentent au plus une discontinuité de première espèce, et où leurs valeurs sont définies comme la moyenne de leurs
limites à droite et à gauche. De plus, on suppose que pour un certain δ > 0, on a

f(x) = O(xδ), pour x → 0+, f(x) = O(x−1−δ), pour x → +∞,
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2.1.5 Hardy et Littlewood

La preuve de Hardy de 1914 [56] selon laquelle une infinité de zéros se trouvent sur la droite critique
utilisait l’équation fonctionnelle et une analyse minutieuse de Z(t) = eiθ(t)ζ(1/2 + it), où θ(t) est
choisi pour rendre Z(t) réel pour t réel,

θ(t) = Im
(

log Γ
(1

4 + i
t

2

))
− t

2 log π

En étudiant les changements de signe de Z(t), il a montré qu’il existe une infinité de zéros avec
Re(s) = 1/2.

Les travaux de Hardy et Littlewood [57] sur les résultats conditionnels ont démontré que l’hypothèse
de Riemann (HR) a de nombreuses conséquences sur les écarts entre nombres premiers et sur
d’autres problèmes additifs. Leur approche s’appuie sur les travaux antérieurs de Hardy, mais
intègre des techniques analytiques plus raffinées pour l’estimation des intégrales oscillatoires et des
développements asymptotiques. Leurs travaux ultérieurs portent sur une analyse approfondie de
l’équation fonctionnelle approchée de la fonction zêta 5, qui fournit une représentation explicite de
ζ(s) valable dans toute la bande critique. En étudiant les annulations et les oscillations dans cette
représentation, ils ont pu démontrer que le nombre de changements de signe de la fonction Z de
Hardy, et donc le nombre de zéros de ζ(s) qui sont sur la droite critique lorsque la partie imaginaire
appartient à [0, T ], croît au moins linéairement avec T . Il restait cependant à déterminer si une
fraction positive du nombre N(T ) de zéros non triviaux de partie imaginaire dans [0, T ], estimé par
Riemann à N(T ) ∼ 1

2π
T log T , se situe sur la droite critique.

2.1.6 Les contributions pionnières de Selberg (1940–1950)

La percée qui a permis de résoudre cette question fondamentale est survenue en 1942 grâce aux
travaux pionniers d’Atle Selberg, qui a introduit la technique novatrice de l’adoucissement et a
démontré pour la première fois qu’une proportion positive de zéros non triviaux se situe sur la
droite critique. L’idée essentiel de la preuve de Selberg 2 consiste à multiplier la série pour ζ(s)
par le carré des sommes partielles de la série de ζ(s)−1/2. La contribution majeure de Selberg a été
de démontrer que le nombre N0(T ) de zéros sur la droite critique satisfait N0(T ) ≫ T log T , ce
qui implique immédiatement que le rapport N0(T )/N(T ) est strictement positif, établissant ainsi
qu’une fraction positive de tous les zéros se situe sur la droite critique. Les travaux de Selberg [96],
[97] ont révolutionné l’étude de la fonction zêta grâce à plusieurs innovations fondamentales. Ses
travaux sur la distribution de log |ζ(1/2 + it)| ont montré qu’elle suit une loi normale de moyenne
et de variance spécifiques, préfigurant ainsi les liens avec la théorie des matrices aléatoires.

2.1.7 Proportion de zéros sur la droite critique

Comme expliqué précédemment, le théorème de Hardy (1914) [56] a été quantifié par Selberg (1942)
[96], qui a démontré qu’une proportion positive de zéros a une partie réelle égale à 1/2. La percée

5. L’article de Siegel de 1932 sur les carnets de Riemann montre que, bien que Hardy et Littlewood aient re-
découvert indépendamment le terme principal de ce développement en 1920 grâce à leur “équation fonctionnelle
approchée” utilisant des méthodes similaires (la méthode du point-selle), les travaux de Riemann apportent des
idées supplémentaires.
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de Levinson en 1974 [73] a prouvé qu’au moins 1/3 des zéros non triviaux se situent sur la droite
critique, grâce à des techniques de lissage qui réduisent la partie réelle de la fonction zêta au
voisinage de cette droite. L’amélioration apportée par Conrey en 1989 [34] (la proportion passant
de 1/3 à 2/5) a utilisé des techniques de lissage plus sophistiquées et une analyse asymptotique. Le
résultat de 2011 de Bui, Conrey et Young [12], atteignant 41 %, a employé plusieurs polynômes de
Dirichlet et des techniques d’optimisation issues de la théorie des fonctions extrémales, représentant
l’état de l’art actuel dans cette approche. Pratt et al. [88] ont le record actuel de 41,7 % basé sur le
modificateur de Feng [46].

2.1.8 Régions sans zéros et estimation de la répartition des zéros

Les régions classiques sans zéros, telles que celle démontrée par de la Vallée Poussin [106] montrant
que ζ(s) ̸= 0 pour Re(s) ≥ 1−c/ log(|Im(s)|+2), fournissent des bornes explicites sur la distribution
des nombres premiers dans les progressions arithmétiques. Les estimations de densité de zéros,
initiées par Bohr et Landau, bornent le nombre N(σ, T ) de zéros tels que Re(s) ≥ σ
et |Im(s)| ≤ T . Les meilleurs résultats connus montrent que N(σ, T ) ≪ T c(1−σ) pour différentes
valeurs de c dépendant de σ, avec une amélioration

N(σ, T ) ≪ T
3(1−σ)

2−σ (log T )5

Montgomery et d’autres ont fourni des bornes de plus en plus précises lorsque σ → 1. Le résultat
de densité nulle de Guth-Maynard [53] constitue la première amélioration du théorème d’Ingham
au voisinage de σ = 3/4 en 85 ans.

2.1.9 Hypothèse de Lindelöf

L’hypothèse de Lindelöf stipule que |ζ(1/2 + it)| ≪ tϵ pour tout ϵ > 0. Si σ est réel, alors µ(σ) est
défini comme l’infimum de tous les nombres réels α tels que |ζ(σ + it)| = O (tα). On a µ(σ) = 0
pour σ > 1, et l’équation fonctionnelle implique que µ(σ) = µ(1 − σ) − σ + 1/2. Le théorème de
Phragmén-Lindelöf implique que µ est une fonction convexe. L’hypothèse de Lindelöf stipule que
µ(1/2) = 0, ce qui, combiné aux propriétés de µ mentionnées précédemment, implique que µ(σ)
vaut 0 pour σ ≥ 1/2 et 1/2 − σ pour σ ≤ 1/2. Bien que moins forte que l’hypothèse de Riemann,
cette hypothèse aurait néanmoins des applications importantes aux moments des fonctions L et
aux problèmes de sous-convexité.

2.2 Théorie des fonctions entières et méromorphes
2.2.1 Théorème de factorisation de Hadamard

Une fonction entière f est d’ordre σ si :

σ = lim sup
r→∞

log logM(r)
log r

où M(r) = max|z|=r |f(z)|. La formule du produit de Hadamard stipule qu’une fonction entière f
d’ordre 1 peut s’écrire :

f(z) = eA+Bz
∏
ρ

(
1 − z

ρ

)
ez/ρ
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où le produit porte sur tous les zéros ρ de f , et A et B sont des constantes.
La fonction zêta complète

ξ(s) = 1
2s(s− 1)π−s/2Γ(s/2)ζ(s) (6)

est une fonction entière d’ordre un munie de la représentation du produit de Hadamard 6 [55, 5, 72]

ξ(z) = ξ(0)
∏
ρ

(
1 − z

ρ

)

Riemann considère la fonction (il la notait ξ(s), mais, depuis Hardy, on utilise Ξ(s)).

Ξ(s) = ξ(1/2 + is) (7)

L’équation fonctionnelle ξ(s) = ξ(1 − s) implique Ξ(s) = Ξ(−s), donc la fonction Ξ est paire et
ses zéros sont groupés par paires ±α. De plus, Ξ est entière d’ordre 1. Pour chaque paire de zéros
±α, les facteurs exponentiels es/α et e−s/α s’annulent et la factorisation de Hadamard de Ξ prend
la forme particulièrement simple suivante :

Ξ(s) = Ξ(0)
∏

Re(α)>0

(
1 − s2

α2

)

où le produit porte uniquement sur les zéros à partie réelle positive. Les deux représentations du
produit sont identiques 7 à l’exception du facteur constant et, tandis que ξ(0) = 1

2 , on a

Ξ(0) = −
ζ
(

1
2

)
Γ
(

5
4

)
2 4
√
π

∼ 0.497121

Cette nuance est à l’origine de la seule “erreur” dans la formule de Riemann pour le nombre de
nombres premiers inférieurs à x, où il a utilisé log Ξ(0) au lieu de log ξ(0).

2.2.2 Théorie de Nevanlinna

Cette théorie de la distribution des valeurs [82, 83, 68] étudie la croissance et la distribution des
valeurs des fonctions méromorphes à travers les fonctions caractéristiques et les relations de dé-
ficience. Il est à noter que la caractéristique de Nevanlinna est étroitement liée à la formule de
Jensen.
Pour une fonction analytique f dont les zéros ak appartiennent à |z| ≤ r, la formule de Jensen
affirme que, pourvu que f(0) ̸= 0,

log |f(0)| +
∑

k

log r

|ak|
= 1

2π

∫ 2π

0
log |f(reiθ)| dθ.

6. Le produit infini est défini ici comme la limite, lorsque T tend vers l’infini, du produit sur ρ avec |ρ| < T .
7. en utilisant l’identité 1 −

1
2 +is
1
2 +ia

= 1− s
a

1− i
2a

.
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Cette relation entre la croissance moyenne au bord de f et la distribution de ses zéros est précisément
ce que la théorie de Nevanlinna systématise pour les fonctions méromorphes.
La caractéristique T (r, f) = m(r, f) +N(r, f), r > 0, peut ainsi être vue comme une version affinée
des quantités apparaissant dans la formule de Jensen, la fonction de comptage N(r, f) enregistrant
les pôles et la fonction de proximité m(r, f) enregistrant la croissance au bord. Pour la fonction
zêta, on peut définir la caractéristique de Nevanlinna T (r, ζ) et étudier sa croissance 3. La théorie
fournit des outils tels que les premier et deuxième théorèmes principaux qui relient la distribution
des a-points (solutions de f(z) = a) à la croissance de la fonction. Bien que les applications directes
pour démontrer HR n’aient pas abouti, la théorie de Nevanlinna éclaire le caractère exceptionnel
de la valeur 0 pour ζ(s), comme le montre le théorème de Borchsenius-Jessen présenté ci-dessous,
et offre des analogies avec les théorèmes de type Picard [49]. Des travaux récents ont exploré les
liens entre la théorie de Nevanlinna et les propriétés d’universalité de ζ(s).

2.2.3 Comportement moyen de log |ζ(s)| et zéros de ζ(s) − x

Le théorème de Borchsenius-Jessen [7] offre un contraste frappant avec HR. Alors que tous les zéros
non triviaux de ζ(s) sont conjecturés comme appartenant à la droite critique Re(s) = 1/2, les zéros
de ζ(s) − x pour tout x ̸= 0 se regroupent densément près de la droite critique par la droite. Plus
précisément :

- Pour x ̸= 0, l’équation ζ(s) = x admet une infinité de solutions dans toute bande
1/2 < Re(s) < σ.

- La densité des solutions croît indéfiniment lorsque Re(s) → 1/2+.
- Si Nx(T ) compte les zéros de ζ(s) − x tels que Re(s) > 1/2 et 0 < Im(s) < T , alors
Nx(T )/T → ∞ lorsque T → ∞.

Ce phénomène met en évidence le caractère exceptionnel de la valeur x = 0 et montre que HR est
instable sous l’effet de perturbations : l’ajout d’une constante quelconque à ζ(s) détruit l’alignement
des zéros sur la droite critique. Ce résultat est lié aux théorèmes de la moyenne pour log ζ(s) dans
la bande critique et aux propriétés ergodiques du flot s 7→ s+ it sur la distribution des valeurs de
ζ(s). Le théorème de Borchsenius-Jessen peut être considéré comme le couronnement du programme
de Bohr-Landau sur les fonctions presque périodiques et les séries de Dirichlet. Alors que Bohr et
Landau ont établi le cadre général pour comprendre la distribution des valeurs des séries de Dirichlet
par le biais de la quasi-périodicité, Borchsenius et Jessen ont obtenu le résultat définitif pour la
fonction zêta de Riemann elle-même, démontrant que log ζ(σ + it) admet une distribution limite
continue 4.

2.2.4 Théorème d’universalité de Voronin, zeta le caméléon mathématique

Ce remarquable théorème de 1975 [108] stipule que la fonction zêta de Riemann peut approcher
arbitrairement bien toute fonction holomorphe non nulle dans la bande critique. Le théorème ori-
ginal de Voronin a établi l’universalité pour les disques : si 0 < r < 1/4, si f(s) est continue sur
|s| ≤ r, holomorphe sur |s| < r avec f(s) ̸= 0 sur |s| ≤ r, et si ϵ > 0, alors il existe t0 tel que :

max
|s|≤r

∣∣∣∣f(s) − ζ
(
s+ 3

4 + it0

)∣∣∣∣ < ϵ

À la suite des travaux pionniers de Voronin, Reich et Bagchi ont démontré que si K est un sous-
ensemble compact de la bande {s : 1/2 < Re(s) < 1} muni d’un complément connexe, si f est
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continue sur K et holomorphe à l’intérieur de K avec f(s) ̸= 0 sur K, et si ϵ > 0, alors il existe t0
tel que

max
s∈K

|ζ(s+ it0) − f(s)| < ϵ

De plus, l’ensemble de tels t0 possède une densité inférieure positive. Ainsi, la fonction zêta de
Riemann dans la bande critique 1

2 < Re(z) < 1 se comporte comme un caméléon mathématique :
elle peut approcher toute fonction holomorphe non nulle sur les ensembles compacts par simple
translation verticale dans le plan complexe. Ce résultat utilise, comme dans le cadre presque pé-
riodique de Bohr-Landau, les propriétés ergodiques du flot de Kronecker sur le tore de dimension
infinie, dual compact du groupe discret Q∗ des nombres rationnels non nuls. Nous allons maintenant
aborder l’ingrédient-clé, qui est de nature différente.
Comme nous l’avons brièvement mentionné plus haut dans la note de bas de page no 3, Riemann,
dans son Mémoire sur les séries trigonométriques, a montré, dans son étude du noyau de Dirichlet,
qu’une série de nombres réels conditionnellement convergente peut prendre la valeur de n’importe
quelle somme C après un réarrangement approprié de ses termes. Ce qui est remarquable, c’est que
cette généralisation du fait principal est au cœur de la démonstration de Voronin. Le résultat-clé
est le suivant ([70], Théorème 1.16).

Soit H un espace de Hilbert, et {xm} une suite dans H satisfaisant les deux conditions suivantes :
∞∑

m=1
∥xm∥2 < ∞;

∞∑
m=1

|(xm, x)| = ∞ ∀x ∈ H, x ̸= 0

Alors l’ensemble de toutes les séries convergentes ∑∞
m=1 amxm, |am| = 1, m = 1, 2, . . . est

dense dans H.

La preuve de ce résultat témoigne de la puissance du théorème de Hahn-Banach5, en utilisant l’en-
semble convexe des sommes ∑ bmxm où |bm| ≤ 1.

Le théorème de Voronin a été étendu au point d’atteindre l’universalité pour les fonctions L de
Dirichlet et d’autres classes de fonctions L, révélant ainsi un phénomène général pour les fonctions
avec produits eulériens. L’essence de la démonstration est de montrer que, en tant qu’éléments
d’un espace H approprié de type Bergman/Hardy, le système {log (1 − p−s)}, où p parcourt les
nombres premiers, satisfait les deux conditions du théorème précédent. Ceci permet d’approcher le
logarithme de la fonction f(s) (ce qui est logique puisque K est simplement connexe).

3 Un siècle et demi de construction de théories vers HR
Depuis le Mémoire de Riemann de 1859, “Über die Anzahl der Primzahlen unter einer gegebenen
Grösse”, l’hypothèse qu’il a formulée concernant les zéros de la fonction zêta a inspiré certains des
développements les plus importants en mathématiques.
La poursuite de l’hypothèse de Riemann, qu’elle soit explicite ou qu’elle serve d’idéal motivant, a
conduit à l’émergence de théories entières et a profondément transformé de nombreux domaines.
Cette section présente un aperçu des principaux cadres et idées mathématiques développés dans le
cadre de cette quête permanente.
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3.1 Analyse harmonique et analyse fonctionnelle
3.1.1 Espaces de Hilbert et théorie spectrale

La démonstration du théorème de Voronin, évoquée précédemment, illustre la puissance des tech-
niques des espaces de Hilbert. L’inclusion par Hilbert de HR comme huitième problème de sa liste
de 23 problèmes en 1900 coïncide avec le développement de la théorie spectrale. La conjecture de
Hilbert-Pólya (années 1910) suggère l’existence d’un opérateur auto-adjoint H tel que les solutions
non triviales de ζ(1/2 + it) = 0 soient les valeurs propres de H. Ceci impliquerait immédiatement
HR, puisque les valeurs propres des opérateurs auto-adjoints sont réelles.

3.1.2 Théorie de la diffusion et interprétation spectrale

L’approche par diffusion, développée par Faddeev et Pavlov, interprète les zéros de ζ(s) comme
des résonances (pôles de la matrice de diffusion) d’un certain système quantique. La conjecture de
Berry-Keating [3] suggère des liens avec des systèmes hamiltoniens chaotiques classiques dont la
quantification pourrait fournir l’opérateur recherché. Parmi les propositions spécifiques, on trouve
H = 1

2(xp+ px) (où x est la position et p l’impulsion) avec des conditions aux limites appropriées,
bien que des constructions rigoureuses restent à ce jour difficiles à établir. Le lien avec le chaos
quantique est renforcé par la correspondance des propriétés statistiques des zéros avec celles des
systèmes chaotiques quantiques.

3.2 Géométrie algébrique et arithmétique
Comme tout mathématicien le sait, une des stratégies éprouvées face à un problème difficile consiste
à en élargir le champ d’application : généraliser la question puis examiner des cas particuliers où
les caractéristiques essentielles apparaissent plus clairement. C’est dans ce cadre qu’André Weil
a réalisé une avancée décisive en résolvant l’analogue de l’hypothèse pour les corps globaux de
caractéristique finie.

3.2.1 Preuve de Weil pour les corps de fonctions

La démonstration de l’hypothèse de Riemann pour les courbes sur des corps finis par Weil dans les
années 1940 utilisait la théorie de l’intersection sur le produit C ×C d’une courbe avec elle-même.
Pour une courbe projective lisse C sur Fq, la fonction zêta

ZC(t) = exp
( ∞∑

n=1

Nn

n
tn
)

avec Nn = |C(Fqn)|, satisfait une équation fonctionnelle et est de la forme

ZC(t) = P (t)
(1 − t)(1 − qt) ,

où P (t) est un polynôme dont les racines ont pour valeur absolue q−1/2. Ceci est l’analogue de HR.
La démonstration de Weil utilisait l’appariement des intersections sur les diviseurs et le théorème
de l’indice de Hodge, établissant une approche géométrique des problèmes de type HR. Les simplifi-
cations successives de la démonstration de Weil par Mattuck-Tate et Grothendieck représentent un
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exemple paradigmatique de la façon dont la compréhension mathématique évolue grâce au dévelop-
pement de cadres théoriques plus puissants. La réussite originale de Weil nécessitait une virtuosité
technique pour surmonter l’absence d’outils théoriques-clés. Les simplifications ultérieures ont dé-
montré comment la disponibilité de résultats généraux – le théorème de Riemann-Roch pour les
surfaces6 et la théorie systématique de l’intersection – permet de transformer des constructions spé-
cialisées en applications de techniques standard. Si le théorème classique de Riemann-Roch pour
les surfaces a été formulé par Castelnuovo dans les années 1890, la version basée sur la théorie
des faisceaux, qui a permis la simplification de Mattuck-Tate, a été développée par Serre et la
théorie de l’intersection adaptée à ce cadre représente un effort collectif impliquant les travaux fon-
dateurs d’André Weil en 1946, la théorie locale de Claude Chevalley, la formulation algébrique de
Serre en 1958, et les développements ultérieurs qui ont abouti au cadre moderne des multiplicités
d’intersection utilisant les foncteurs Tor et la cohomologie des faisceaux.

3.2.2 Schémas de Grothendieck et cohomologie étale

Grothendieck a révolutionné la géométrie algébrique en introduisant les schémas et la cohomologie
étale [1], notamment dans le but de démontrer les conjectures de Weil en dimension arbitraire.
Les groupes de cohomologie étale H i

ét(X,Qℓ) d’une variété X sur Fq sont munis d’une action du
morphisme de Frobenius, et la fonction zêta s’exprime comme suit :

ZX(t) =
2 dim X∏

i=0
Pi(t)(−1)i+1

où Pi(t) = det(1 − tF |H i
ét(X,Qℓ)). La preuve de Deligne (1974) des conjectures de Weil a montré

que les valeurs propres de Frobenius sur H i ont une valeur absolue qi/2, établissant HR pour les
variétés sur les corps finis.

Ce qui est particulièrement stimulant dans l’étude du site étale de Spec(Z), c’est l’analogie frap-
pante, due à David Mumford et Barry Mazur, entre le rôle des idéaux premiers en géométrie
arithmétique et celui des nœuds dans la sphère tridimensionnelle. Dans cette perspective, chaque
idéal premier peut être vu comme l’analogue d’un nœud, et la manière complexe dont les idéaux
premiers sont imbriqués au sein de Spec(Z) muni de la topologie étale reflète la façon dont les nœuds
peuvent être entrelacés dans S3. Cette vision a ouvert de nouvelles perspectives topologiques à la
théorie des nombres, suggérant que la géométrie des idéaux premiers pourrait être appréhendée à
travers des concepts plus proches de la topologie de basse dimension que de l’analyse classique. Au
cœur de cette analogie se trouve l’extension considérable de la théorie de Galois par Grothendieck,
des corps aux schémas généraux, réalisée grâce à l’introduction du groupe fondamental étale. Elle
fournit le langage naturel permettant d’interpréter l’arithmétique des nombres premiers en termes
d’espaces de recouvrement, offrant ainsi un cadre conceptuel dans lequel l’analogie de Mazur et
Mumford a pu prendre forme et se développer [77]. Nous reviendrons brièvement sur ce point dans
le § 3.5.2.

3.2.3 Motifs

L’invention des motifs par Grothendieck vise à fournir une théorie cohomologique universelle expli-
quant les schémas communs aux différentes théories cohomologiques (de de Rham, étale, cristalline,
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etc.). Dans ce cadre, les fonctions zêta et les fonctions L sont associées à des motifs, et leurs proprié-
tés analytiques incluant potentiellement HR) découlent des propriétés géométriques des motifs. Le
formalisme motivique suggère une interprétation cohomologique de l’égalité de de Rham classique,
considérant Spec(Z) comme une courbe arithmétique et recherchant une théorie cohomologique ap-
propriée. Si la théorie complète des motifs mixtes demeure conjecturale, des cas particuliers comme
les motifs d’Artin et les motifs de formes modulaires ont été largement développés.

3.3 Formes automorphes et théorie de la représentation
Dans l’œuvre d’André Weil, l’hypothèse de Riemann est naturellement reformulée dans le cadre plus
large des corps globaux. Weil a démontré l’analogue de HR pour les corps globaux de caractéristique
finie, et son ouvrage Basic Number Theory (Springer, 1967) illustre la puissance de cette approche
unificatrice de la théorie des nombres. Une intuition fondamentale est que, bien que les corps globaux
soient dénombrables et discrets, chacun admet un compagnon naturel : un anneau localement
compact et non discret qui contient le corps global comme sous-groupe cocompact discret. Ce
compagnon est l’anneau des adèles, introduit initialement dans le contexte de la théorie des corps de
classes. L’anneau des adèles fournit une structure harmonique-analytique riche, et la reformulation
par Weil des formules explicites dans ce cadre représente une étape décisive vers l’exploitation de
cette structure comme outil en théorie analytique des nombres. L’ouvrage de Weil, Basic Number
Theory, fut la première exposition systématique de l’utilisation des adèles et des idèles en théorie
des nombres. Il unifia non seulement la théorie des corps de classes, mais jeta également les bases
des développements ultérieurs en matière de formes automorphes et de théorie des représentations,
que nous allons maintenant aborder.

3.3.1 Le programme de Langlands

Cette extension de la théorie des corps de classes au cas non abélien constitue un vaste réseau
de conjectures, initié par Langlands dans les années 1960. Elle prédit des liens profonds entre les
représentations de Galois et les représentations automorphes. Pour les fonctions L, elle prédit que
toute fonction L motivique (issue de la géométrie algébrique) est égale à une fonction L automorphe
(issue de l’analyse harmonique sur les groupes adéliques). L’équation fonctionnelle démontrée est
en réalité l’un des principaux apports de la théorie automorphe, établissant que les fonctions L
automorphes possèdent la structure analytique requise pour formuler l’hypothèse de Riemann gé-
néralisée. Puisqu’on s’attend à ce que les fonctions L automorphes satisfassent HR, cela devrait
impliquer que toutes les fonctions L motiviques la satisfassent également. Le programme de Lan-
glands a connu des succès spectaculaires (la démonstration par Wiles du dernier théorème de Fermat
s’appuyait sur la conjecture de Taniyama-Shimura, désormais un théorème), mais les conjectures
générales restent ouvertes.

3.3.2 Formes modulaires et fonctions L

La théorie des formes modulaires fournit des exemples concrets de fonctions L admettant un pro-
longement analytique et des équations fonctionnelles. Pour une forme parabolique de poids k,
f(z) = ∑∞

n=1 ane
2πinz sur Γ0(N), la fonction L associée :

L(s, f) =
∞∑

n=1

an

ns
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satisfait une équation fonctionnelle reliant s à k − s. La conjecture de Ramanujan-Petersson (dé-
montrée par Deligne) borne |ap| ≤ 2p(k−1)/2, ce qui est l’analogue de HR au niveau des facteurs
d’Euler. Ces exemples illustrent la forme attendue des fonctions L générales et leur relation avec
les objets géométriques.

3.3.3 Formule de trace et fonction zêta de Selberg

La formule de trace de Selberg [98], [59] pour les groupes discrets Γ agissant sur des espaces hyper-
boliques relie les données spectrales (les valeurs propres du laplacien) à des données géométriques
(les longueurs de géodésiques fermées). Pour Γ = PSL(2,Z), on obtient la fonction zêta de Selberg :

ZΓ(s) =
∏

p primitive

∞∏
k=0

(1 − e−(s+k)l(p))

où le produit porte sur les géodésiques primitives fermées p de longueur l(p). Cette fonction s’annule
aux valeurs propres du laplacien, fournissant ainsi une interprétation spectrale complète. L’analogie
avec la fonction zêta de Riemann est frappante : la fonction zêta de Riemann et la fonction zêta
de Selberg possèdent toutes deux des produits eulériens, des équations fonctionnelles et leurs zéros
contiennent des informations importantes (valeurs propres vs. distribution des nombres premiers).
La formule de trace de Selberg pour les surfaces de Riemann d’aire finie acquiert des termes sup-
plémentaires qui la rendent, par exemple dans le cas de X = H/PSL(2,Z) (où H est le demi-plan
supérieur muni de la métrique de Poincaré), encore plus semblable aux formules explicites, puisque
les termes paraboliques font désormais intervenir explicitement la somme.

2
∞∑

n=1

Λ(n)
n

g(2 log n)

(pour une fonction test g) à comparer aux termes Λ(n) dans les formules explicites

−2
∞∑

n=1

Λ(n)
n

1
2
g(log n)

Il existe cependant une différence notable : ces termes apparaissent avec un signe positif au lieu du
signe négatif, comme indiqué dans [59] § 12. Cette discussion sur le signe moins a été étendue au
cas de la limite semi-classique des systèmes hamiltoniens en physique dans [3].

3.4 Théorie des matrices aléatoires et chaos quantique
3.4.1 Corrélation des paires d’espacements de Montgomery

En 1973, Hugh Montgomery [79], [80] a conjecturé une propriété statistique remarquable des zéros
non triviaux de la fonction zêta de Riemann sur la droite critique. En notant γ les ordonnées
des zéros ρ = 1

2 + iγ avec 0 < γ < T , il a étudié la fonction de corrélation des espacements
normalisés entre deux zéros consécutifs. Plus précisément, il a conjecturé que pour 0 < a < b, et
N(T ) = ∑

0<γ≤T 1,

lim
T →∞

1
N(T )#

{
(γ, γ′) : 0 < γ, γ′ < T,

2πa
log T ≤ |γ − γ′| ≤ 2πb

log T

}
=
∫ b

a

(
1 −

(sin πu
πu

)2)
du,
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Cette densité conjecturée reflète une répulsion entre les zéros et suggère qu’ils ne sont pas distribués
aléatoirement, mais présentent une régularité semblable à celle des valeurs propres de grandes
matrices hermitiennes aléatoires. Dans une anecdote souvent rapportée, Montgomery mentionna
sa formule lors d’une visite à l’Institute for Advanced Study, où le physicien Freeman Dyson, en
la voyant, la reconnut immédiatement comme la fonction de corrélation de paires pour les valeurs
propres de l’ensemble unitaire gaussien (GUE) de la théorie des matrices aléatoires. Ce résultat fut
vérifié numériquement par Odlyzko avec une précision extraordinaire. Ce lien suggère que les zéros
se comportent comme les valeurs propres d’une matrice hermitienne aléatoire, indiquant l’existence
d’un système quantique chaotique sous-jacent.
Cette rencontre fortuite a jeté les bases d’une connexion profonde et fructueuse entre la théorie des
nombres et la mécanique statistique quantique.

3.4.2 Les statistiques d’Odlyzko

Les calculs d’Andrew Odlyzko dans les années 1980-1990 ont révolutionné notre compréhension des
propriétés statistiques des zéros de la fonction zêta. En calculant des millions de zéros à des valeurs
très élevées (autour du 1020-ième zéro), il a constaté que :

- les espacements entre plus proches voisins suivent la distribution GUE avec une précision
remarquable ;

- les fonctions de corrélation d’ordre supérieur correspondent également aux prédictions des
matrices aléatoires ;

- les statistiques locales sont universelles, mais les statistiques globales présentent des fluctua-
tions typiques de la théorie des nombres.

Ses données ont apporté une preuve convaincante de l’hypothèse GUE et ont inspiré une grande
partie des travaux ultérieurs reliant la théorie des nombres à la théorie des matrices aléatoires. Cette
concordance s’étend à des détails précis comme la variance du nombre de zéros dans les intervalles
et la distribution des arguments de ζ(1/2 + it).

Pour comparer les propriétés statistiques des zéros de la fonction zêta de Riemann avec les valeurs
propres de matrices aléatoires de l’ensemble unitaire gaussien (GUE), il est nécessaire de prendre
en compte une incompatibilité fondamentale de leurs densités. Les valeurs propres d’une matrice
GUE de dimension N × N présentent un espacement moyen constant π/

√
N le long de l’axe réel

(après normalisation appropriée). En revanche, les zéros ρn = 1/2 + iγn de la fonction zêta de
Riemann possèdent des parties imaginaires γn dont la densité croît logarithmiquement : le nombre
de zéros tels que 0 < γ < T est approximativement égal à T

2π
log T

2π
, ce qui donne un espacement

moyen local au voisinage de la hauteur T d’environ 2π
log(T/2π) .

Pour effectuer une comparaison pertinente, il est nécessaire de redimensionner localement les zéros.
Plus précisément, lors de l’étude des zéros proches de la hauteur T , on considère les espacements
redimensionnés.

γ̃n = log(T/2π)
2π (γn+1 − γn)

Ces espacements, dont la valeur moyenne est égale à 1, sont ensuite comparés aux espacements
des valeurs propres des matrices GUE avec N ∼ log T

2π
. Après ce rééchelonnement dépendant de la

hauteur, on observe une remarquable concordance des statistiques locales, telles que les distributions
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des espacements entre plus proches voisins et les fonctions de corrélation à n points. Toutefois, cette
procédure de rééchelonnement met en évidence que toute correspondance entre les zéros de zêta et
les valeurs propres de matrices aléatoires est intrinsèquement locale et ne peut résulter d’un simple
opérateur spectral fixe.

3.4.3 Chaos quantique

Le domaine du chaos quantique étudie la mécanique quantique des systèmes classiquement chao-
tiques. La conjecture de Berry-Tabor stipule que les systèmes quantiques à limites classiques inté-
grables possèdent des statistiques de Poisson pour leurs valeurs propres, tandis que ceux à limites
classiques chaotiques suivent des statistiques de matrices aléatoires (GUE pour les systèmes inva-
riants par renversement du temps). L’apparition de statistiques GUE pour les zéros de zêta suggère
qu’ils proviennent de la quantification d’un système classique chaotique [3]. Parmi les propositions
spécifiques figurent les billards dans certains domaines ou des systèmes dynamiques plus abstraits.

3.4.4 Théorie de Katz-Sarnak

S’appuyant sur la découverte de Montgomery et la confirmation numérique par Odlyzko du lien
entre les zéros de zêta de Riemann et les statistiques des matrices aléatoires, Nicholas Katz et Peter
Sarnak ont étendu cette correspondance à des familles entières de fonctions L et établi un cadre
théorique systématique pour comprendre leur comportement statistique [64, 65]. Leur intuition
novatrice a révélé que différentes familles de fonctions L présentent des propriétés statistiques
universelles régies par l’un des groupes de matrices classiques – unitaire U(N), orthogonal O(N) ou
symplectique Sp(2N) – le type de symétrie spécifique étant déterminé par la structure arithmétique
et géométrique de la famille elle-même [64, 42]. La conjecture de densité de Katz-Sarnak prédit que,
lorsque les conducteurs analytiques des fonctions L d’une famille tendent vers l’infini, la distribution
de leurs zéros normalisés de basse énergie au voisinage du point critique s = 1/2 converge vers les
limites d’échelle des valeurs propres regroupées autour de 1 dans l’ensemble de matrices aléatoires
correspondant [64, 65, 66]. De façon remarquable, ils ont démontré rigoureusement leurs conjectures
pour des familles de fonctions L sur des corps finis en reliant les zéros aux valeurs propres de
Frobenius et en appliquant le théorème d’équirépartition de Deligne [64], [51], [40], [41], fournissant
ainsi la première vérification complète de l’universalité des matrices aléatoires dans un contexte de
théorie des nombres. Ce travail a non seulement unifié des phénomènes auparavant disparates sous
un seul cadre conceptuel, mais a également fourni de nouveaux outils puissants pour étudier les
problèmes classiques de la théorie analytique des nombres, de la distribution des nombres premiers
à l’arithmétique des courbes elliptiques.

3.4.5 Matrices de moments et unitaires (Keating–Snaith)

On conjecture (voir [33]) que le comportement asymptotique des moments de la fonction zêta est
de la forme :

1
T

∫ T

0
|ζ(1/2 + it)|2kdt ∼ ck(log T )k2

Pour une certaine constante ck, Hardy et Littlewood l’ont démontré en 1918 pour k = 1, et Ingham
en 1926 [62]. Pour k = 2, on a c1 = 1 et c2 = (2π2)−1. Ce sont les seules valeurs de k pour
lesquelles cette conjecture est démontrée, et pendant longtemps, aucune valeur conjecturale de ck

n’a été proposée pour aucune autre valeur de k. Conrey et Ghosh [35] ont conjecturé en 1992 la
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valeur de ck pour k = 3, et Conrey et Gonek [36] ont conjecturé celle pour k = 4 en 1998. Ces
deux conjectures sont de la forme ck = akgk/(k2!), où, comme expliqué ci-dessous, ak est un facteur
arithmétique bien connu, mais les constantes g3 = 42 et g4 = 24024 restaient inconnues. Lors de
la conférence de Vienne de 1998 au sujet de HR, Keating et Snaith [66], [67] ont annoncé leur
découverte majeure : l’utilisation de la théorie des matrices aléatoires pour estimer la valeur de
gk. Leur intuition novatrice résidait dans la reconnaissance du fait que la constante fk = gk/(k2!)
découle naturellement de la théorie des matrices aléatoires. La conjecture générale prend alors la
forme ck = akfk où

- fk provient de la théorie des matrices aléatoires (le moment d’ordre k de | det(I − U)|2 pour
U une matrice unitaire aléatoire)

- ak est un facteur arithmétique qui capture la complexité arithmétique par le biais d’un produit
eulérien,

ak =
∏
p

(
1 − 1

p

)k2 ∞∑
m=0

(
Γ(m+ k)
m!Γ(k)

)2

p−m

La partie matricielle aléatoire fk peut être exprimée comme suit :

fk =
k−1∏
j=0

j!
(j + k)! =⇒ gk = (k2)! fk

Cette séparation révèle un principe remarquable : le comportement “universel” découle de la théorie
des matrices aléatoires, tandis que les spécificités arithmétiques de la fonction zêta sont encodées
séparément dans ak. Ceci a ouvert un nouveau paradigme d’utilisation des modèles de matrices
aléatoires pour prédire des résultats de théorie des nombres, étendu ultérieurement à d’autres
fonctions L et à leurs dérivées [38, 50, 104].

3.5 Géométrie non-commutative
3.5.1 Formule de trace de Connes

Connes a développé une formule de trace dans le contexte de la géométrie non commutative 8 qui
retrouve la formule explicite de Weil pour les zéros de ζ(s) et des fonctions L [17, 18]. L’idée-clé est
de travailler avec l’espace non commutatif des classes d’adèles A/Q∗, où A est l’anneau des adèles.
Sur cet espace, il existe une action naturelle du groupe des classes d’idèles GL(A)/Q∗ ≃ Ẑ∗ × R∗

+.
La formule de la trace établit la relation suivante :

- Côté spectral : contributions des zéros des fonctions L à Grössen-caractère.
- Côté géométrique : contributions des places de Q.

Au départ, la formule de trace a été énoncée pour les corps globaux généraux comme une conjec-
ture équivalente à la validité de l’analogue de l’équation de Riemann pour toutes les fonctions L
à Grössen-caractère. Cependant, la forme semi-locale de la formule de trace a déjà été démontrée
dans [17], et elle admet comme corollaires simples les versions globales permettant la présence de
zéros non critiques [78] (voir aussi [18]).

8. L’origine provient d’un système de mécanique statistique quantique présentant des transitions de phase et
ayant la fonction zêta de Riemann comme fonction de partition [8]
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Ceci fournit une réalisation spectrale où les zéros apparaissent sous la forme d’un spectre d’absorp-
tion, ce qui explique le signe moins dans les formules explicites par rapport à la formule de trace
de Selberg.
Ces approches visent à géométriser l’équation de Riemann à l’aide d’outils issus des algèbres d’opé-
rateurs et de la géométrie différentielle non commutative. Un quotient ergodique tel que l’espace des
classes d’adèles AK/K

× d’un corps de nombres K est encodé par le produit vectoriel de l’algèbre
des fonctions sur AK par l’action de K×. Les réalisations spectrales mentionnées plus haut font
intervenir l’homologie de Hochschild du produit vectoriel de l’algèbre de Bruhat-Schwartz, tandis
que la topologie de AK/K

× est encodée par le produit vectoriel des C∗-algèbres. Un résultat récent
[13] montre que cet encodage topologique est fidèle : des corps de nombres non isomorphes donnent
des C∗-algèbres non isomorphes.

3.5.2 Nœuds, nombres premiers et théorie des corps de classes

Pour le corps global K = Q, la projection de l’espace des classes d’adèles :

π : YQ = Q∗\A → Q∗\A/Ẑ∗ = XQ

sur le secteur XQ correspondant à ζ illustre l’analogie mentionnée précédemment, en théorie des
corps de classes, entre les nœuds et les nombres premiers. À chaque nombre premier p correspond
une orbite périodique Cp ⊂ XQ de longueur log p. Soit alors Frobp ∈ πet

1 (Spec (Fp)) le générateur
canonique du groupe fondamental étale et Z(p) l’anneau Z localisé en p. On a alors [26],

(i) L’image réciproque π−1(Cp) ⊂ YQ de l’orbite périodique Cp est canoniquement isomorphe
au tore d’application de la multiplication par r∗ {Frobp} dans le groupe fondamental étale
abélianisé πet

1 (Spec Z(p))ab.
(ii) L’isomorphisme canonique en (i) est équivariant pour l’action du groupe des classes d’idèles.
(iii) La monodromie du Cp périodique dans π−1(Cp) ⊂ YQ est égale à l’application naturelle

r∗ : πet
1 (SpecFp) → πet

1 (SpecZ(p))ab

et détermine la relation qui lie le nombre premier p à tous les autres nombres premiers.
Ce résultat montre que l’espace des classes d’adèles joue le rôle d’un homologue, en théorie des
corps de classes, des revêtements étales abéliens intervenant dans la théorie de Grothendieck.
De façon remarquable, l’espace XQ admet une incarnation en théorie des topos comme site d’échelle
naturellement muni d’un faisceau structural de caractéristique un (voir l’article [20] et ses réfé-
rences).

3.6 Fonctions L p-adiques et fonctions L motiviques
3.6.1 Fonctions L p-adiques et théorie d’Iwasawa

Kubota et Leopoldt ont construit des analogues p-adiques de la fonction zêta de Riemann, qui
sont des fonctions analytiques p-adiques interpolant des valeurs particulières de la fonction zêta
classique. Pour tout nombre premier p, la fonction zêta p-adique ζp(s) est une fonction analytique
p-adique sur Zp telle que :

ζp(1 − k) = (1 − pk−1)ζ(1 − k)
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pour les entiers positifs k. La théorie d’Iwasawa étudie ces fonctions dans des tours d’extensions
cyclotomiques, les reliant aux groupes de classes d’idéaux et aux unités. La conjecture principale
de la théorie d’Iwasawa (démontrée par Mazur-Wiles) relie les fonctions L p-adiques aux groupes
de Selmer des représentations de Galois. Bien qu’il n’existe pas d’analogue p-adique direct de
HR, la croissance et les zéros des fonctions L p-adiques sont intimement liés à des phénomènes
arithmétiques profonds.

3.6.2 Fonctions L motiviques et conjectures de Bloch–Kato

Ces conjectures d’une grande portée relient des valeurs particulières des fonctions L à des invariants
arithmétiques. Pour un motif M muni d’une fonction L, L(M, s), les conjectures prédisent que :

- l’ordre d’annulation de L(M, s) aux points entiers est égal au rang de certains K-groupes ou
groupes de Selmer ;

- le coefficient dominant est lié aux régulateurs, aux périodes et aux nombres de Tamagawa.
Des cas particuliers incluent la conjecture de Birch et Swinnerton-Dyer (pour les courbes elliptiques)
et les conjectures de Beilinson. Celles-ci inscrivent l’arithmétique de Riemann dans un contexte
arithmétique plus large où les zéros des fonctions L encodent des informations géométriques et
arithmétiques. Les conjectures suggèrent que l’arithmétique de Riemann fait partie d’un vaste
réseau de relations entre l’analyse, l’algèbre et la géométrie.

3.7 Mathématiques computationnelles et expérimentales
3.7.1 Calculs en haute précision

La vérification numérique de l’équation de Riemann-Siegel a une histoire riche :
- Riemann (1859) : calcul des premiers zéros,
- Gram (1903) : 15 zéros,
- Backlund (1914) : 79 zéros,
- Hutchinson (1925) : 138 zéros,
- Titchmarsh (1935-1936) : 1 041 zéros à l’aide de la formule de Riemann-Siegel,
- Turing (1950) : vérification de 1 104 zéros à l’aide du Manchester Mark 1,
- Lehmer (1956) : 25 000 zéros à l’aide d’ordinateurs électroniques,
- Rosser, Yohe, Schoenfeld (1968) : 3 500 000 zéros,
- van de Lune, te Riele, Winter (1986) : 1 500 000 000 zéros,
- Gourdon et Demichel (2004) : 1013 premiers zéros
- Platt (2021) : vérification jusqu’à une hauteur de 3 × 1012, [87].

Les calculs modernes utilisent la formule de Riemann-Siegel avec des bornes d’erreur sophistiquées
et la méthode de Turing pour une vérification rigoureuse. La publication en 1988 de l’algorithme
d’Odlyzko-Schönhage a constitué une avancée méthodologique majeure. Ces calculs massifs ap-
portent des preuves irréfutables de l’hypothèse de Riemann-Siegel tout en permettant de tester
l’existence de phénomènes exceptionnels [44], [63].
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4 Formulations équivalentes
Alors que les sections précédentes ont passé en revue les théories élaborées dans le cadre de l’hy-
pothèse de Riemann, il existe une tradition parallèle de recherche de formulations équivalentes de
HR elle-même. Ces reformulations, allant de la théorie élémentaire des nombres à l’analyse fonc-
tionnelle, révèlent les liens profonds qui unissent l’hypothèse de Riemann aux mathématiques et
suggèrent parfois de nouvelles pistes de recherche. Ces formulations équivalentes sont si nombreuses
qu’un livre entier leur est consacré. L’intérêt principal de toutes ces formulations réside dans le fait
que les formulations élémentaires, comme le critère de Robin ou le critère de Lagarias, démontrent
qu’au niveau logique, l’hypothèse de Riemann possède un statut logique très particulier, qui sera
examiné plus en détail ci-dessous.

4.1 Critère de positivité de Weil
L’hypothèse de Riemann (HR) est équivalente à la positivité de certaines distributions construites
à partir des zéros, ce qui la relie à l’approche de Weil par une formule explicite.

La difficulté de résoudre l’hypothèse de Riemann dans sa formulation analytique est souvent attri-
buée principalement au nombre infini de termes du produit eulérien.

ζ(s) =
∏
p

(1 − p−s)−1 (8)

Cependant, contrairement à cette croyance répandue, il existe une propriété P (n), ne faisant in-
tervenir que les facteurs d’Euler pour les nombres premiers inférieurs à n, et dont la validité pour
tout n est équivalente à HR.
Cette propriété découle du critère de positivité de Weil, qui fait intervenir la forme quadratique QW
définie à l’aide des formules explicites de Riemann-Weil appliquées à des fonctions-tests à support
dans un intervalle symétrique compact. Après une légère modification des notations, la transformée
de Mellin devient la transformée de Fourier du groupe R∗

+ dont le dual de Pontjagin est identifié
au groupe additif R, et la formule explicite prend la forme suivante, similaire à (4), (5) mais avec
des notations adaptées à l’algèbre de convolution involutive du groupe R∗

+.

f̂
(
i

2

)
−

∑
1
2 +is∈Z

f̂(s) + f̂
(

− i

2

)
=
∑

v

Wv(f)

f̂(s) :=
∫ ∞

0
f(x)x−isd∗x, d∗x = dx

x

où les contributions locales sont maintenant données par

Wp(f) := (log p)
∞∑

m=1
p−m/2

(
f (pm) + f

(
p−m

))
(9)

et pour la place archimédienne

WR(f) :=(log 4π + γ)f(1)

+
∫ ∞

1

(
f(x) + f

(
x−1

)
− 2x−1/2f(1)

) x1/2

x− x−1d
∗x

(10)
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Le résultat-clé d’André Weil est l’équivalence

RH ⇐⇒
∑

v

Wv (g ∗ g∗) ≤ 0, ∀g, ĝ
(

± i

2

)
= 0

où g ∈ C∞
c

(
R∗

+

)
est une fonction lisse à support compact et g∗(x) := ḡ (x−1).

Le point-clé de cette équivalence est que la somme à droite du symbole d’équivalence, évaluée sur
une fonction test g à support compact, ne fait intervenir qu’un nombre fini de nombres premiers
(puisque Wp s’annule sur les fonctions à support dans (p−1, p)). Ainsi, bien que l’hypothèse de
Riemann porte sur la distribution asymptotique des nombres premiers, la formulation équivalente
n’en fait intervenir qu’un nombre fini à la fois. Dans [111], H. Yoshida a démontré le résultat suivant
(Théorème 1 de son article).

Pour toute fonction lisse et définie positive f avec support dans l’intervalle (1/2, 2) et dont la
transformée de Fourier s’annule en ± i

2 , on a : W∞(f) ≥ 0 où W∞ := −WR.

La démonstration consiste en une analyse numérique de la positivité de la fonctionnelle de Weil W∞
restreinte à l’intervalle

(
1
2 , 2

)
, et ne fournit donc aucune justification conceptuelle à cette positivité

qui pourrait se vérifier en présence de nombres premiers.

4.2 Critère de Beurling–Nyman
Cette remarquable reformulation de l’hypothèse de Riemann (Beurling 1955, Nyman 1950) stipule
que HR est équivalente à un résultat concernant la densité dans L2(0, 1) des combinaisons linéaires∑n

1 cνρθν , 0 < θν ≤ 1, ∑n
1 cνθν = 0 où :

ρθ(x) =
{
θ

x

}
pour x ∈ (0, 1)

et où {y} désigne la partie fractionnaire de y. Ceci transforme l’égalité de Riemann en un problème
de complétude en analyse fonctionnelle. Des travaux ultérieurs de Báez-Duarte et d’autres ont
fourni des versions quantitatives, montrant que le taux d’approximation dans cette façon de voir
est lié à la distribution des zéros hors de la droite critique.

4.3 Critère de Li
Xian-Jin Li (1997) a démontré [74] que l’hypothèse de Riemann (HR) est équivalente à la positivité
des nombres :

λn =
∑

ρ

(
1 −

(
1 − 1

ρ

)n)

pour tout n ≥ 1, où la somme porte sur tous les zéros non triviaux ρ de ζ(s).
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4.4 Formulations en théorie élémentaire des nombres
En 1913, Grönwall a démontré dans son article “Some asymptotic expressions in the theory of
numbers” que

lim sup
n→∞

σ(n)
n log log n = eγ, γ = lim

n→∞

(
n∑

k=1

1
k

− log n
)

où σ(n) est la fonction somme des diviseurs et γ est la constante d’Euler-Mascheroni. S’appuyant
sur les travaux de Grönwall, Srinivasa Ramanujan a établi un lien crucial entre la fonction σ(n)
et l’hypothèse de Riemann dans ses travaux sur les nombres hautement composés. Ramanujan a
démontré que si l’hypothèse de Riemann est vraie, alors l’inégalité σ(n)/n < eγ log log n est vérifiée
pour tout entier positif n suffisamment grand. Ceci constituait le premier lien direct entre la validité
de l’hypothèse de Riemann et les bornes de certaines fonctions arithmétiques.

4.4.1 Critère de Robin (1984)

Guy Robin a démontré que l’hypothèse de Riemann (HR) est équivalente à l’inégalité suivante :

σ(n) < eγn log log n

pour tout n > 5040, où σ(n) est, comme précédemment, la fonction somme des diviseurs et γ est la
constante d’Euler-Mascheroni. Ce résultat remarquable traduit l’hypothèse de Riemann analytique-
complexe en termes purement arithmétiques.

4.4.2 Critère de Lagarias (2002)

Jeffrey Lagarias a affiné le critère de Robin sous la forme :

HR ⇐⇒ σ(n) < Hn + eHn logHn, ∀n ≥ 1

où Hn = 1+1/2+· · ·+1/n est le n-ième nombre harmonique. Cette formulation présente l’avantage
esthétique d’être valable pour tout entier positif.
La reformulation de l’hypothèse de Riemann comme un énoncé universel sur les propriétés arith-
métiques décidables la place précisément dans la classe des énoncés que Hilbert espérait considérer
comme “démontrables” s’ils étaient vrais, et que les théorèmes d’incomplétude de Gödel identifient
comme potentiellement “vrais mais indémontrables” ! Les résultats de Chaitin en théorie algorith-
mique de l’information démontrent que cette indémontrabilité devient de plus en plus fréquente à
mesure que la complexité des énoncés augmente. Ce lien met en lumière les limitations fondamen-
tales des systèmes mathématiques formels et fournit un exemple frappant de la façon dont même
des problèmes centraux en théorie des nombres recoupent les questions les plus profondes sur la
nature de la vérité et de la démonstration mathématiques.
Les travaux de Chaitin révèlent que, d’un point de vue informationnel, la vérité mathématique et
la démontrabilité opèrent dans des domaines fondamentalement différents. La plupart des vérités
mathématiques ont une complexité descriptive élevée et contiennent plus d’informations que celles
qui peuvent être extraites de systèmes d’axiomes finis par des processus déductifs. Cela crée un
vaste paysage d’énoncés vrais qui restent à jamais hors de portée de la démonstration formelle, les
énoncés démontrables ne représentant qu’une fraction infinitésimale de la réalité mathématique à
mesure que la complexité augmente.
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L’estimation de la complexité algorithmique du critère de Lagarias révèle des obstacles compu-
tationnels fondamentaux à la vérification de l’hypothèse de Riemann par un calcul arithmétique
direct. La complexité dominante provient des exigences de factorisation des entiers pour le calcul
de la fonction somme des diviseurs, ce qui rend certaines vérifications impossibles à effectuer en
temps polynomial pour des entiers quelconques. Le calcul des nombres harmoniques et l’évaluation
des fonctions transcendantes ajoutent des complexités supplémentaires qui alourdissent le coût de
calcul global.

Ces limitations de complexité soulignent à la fois l’élégance et la difficulté de calcul du critère de
Lagarias comme méthode de vérification de l’hypothèse de Riemann. Bien que ce critère parvienne
à transformer un énoncé analytique-complexe en opérations arithmétiques élémentaires, le coût de
calcul de la vérification reflète la grande complexité du problème mathématique sous-jacent. L’ana-
lyse démontre comment la théorie de la complexité algorithmique apporte des éclairages essentiels
sur la faisabilité pratique des méthodes de vérification mathématique et sur la relation fondamentale
entre vérité mathématique et ressources de calcul.

5 Une lettre au Professeur Bernhard Riemann
J’ai été invité à donner une conférence à Varèse, le 4 juin 2025, à la Villa Toeplitz, qui abrite
l’École internationale de mathématiques Riemann (RIMS). Afin de préparer cette conférence, j’ai
effectué, deux jours auparavant, un pèlerinage à Selasca, lieu du décès de Riemann le 20 juillet 1866.

Compte tenu du lieu où je devais donner cette conférence, je me suis lancé le défi suivant :

Que pourrais-je bien dire à Riemann pour le surprendre
et qui lui donnerait l’assurance que son hypothèse est vraie ?

Je vais donc lui écrire une lettre. Je l’appellerai “Maître”. Il est impératif, bien sûr, d’éviter d’em-
ployer des notions mathématiques qui lui sont inconnues ou difficiles à comprendre pour lui. Je
me limiterai donc à celles qu’il a utilisées dans ses travaux. Après cette remarque préliminaire, la
seconde partie de la lettre expose les éléments véritablement nouveaux.

Au Professeur Bernhard Riemann

La belle formule que vous avez démontrée dans votre article, à savoir celle qui permet de calculer

le nombre de nombres premiers inférieurs à x en fonction des zéros de la fonction zêta, a
malheureusement été mal écrite dans les manuels, révélant ainsi une profonde incompréhension du
terme du milieu de la formule. Soit π′(x) le nombre de nombres premiers strictement inférieurs à
x, auquel on ajoute

1

2
lorsque x est premier, et vous avez trouvée pour la fonction de comptage

f(x) :=
∑ 1

n
π′
(
x

1
n

)
,
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la formule suivante impliquant la fonction logarithme intégral Li(x) =
∫ x

0

dt

log t ,

f(x) = Li(x) −
∑

α

(
Li
(
x

1
2 +αi

)
+ Li

(
x

1
2 −αi

))
+
∫ ∞

x

1
t2 − 1

dt

t log t − log 2 (11)

Vous avez fait preuve de beaucoup de prudence à la fin de votre article en traitant des fonctions
multivaluées, mais le langage mathématique a évolué et, de nos jours, on n’utilise que des fonctions

ayant une signification univalente définie, tandis que l’utilisation de fonctions multivaluées n’est

plus couramment admise.
Dans les manuels scolaires classiques, par exemple dans le livre classique d’Edwards, 7 le terme

du milieu s’écrit comme une somme de la fonction logarithme intégral Li évaluée sur xρ, où les ρ
sont les zéros non triviaux de ζ .
Or, il est évident que cette somme est absurde, car x à la puissance ρ reste in�angé si l’on

remplace ρ par ρ+ 2πin
log x , où n est un entier quelconque. La constance de Li(xρ) sur cette progression

arithmétique implique donc que la somme infinie n’a aucun sens, car elle comprend une infinité de

répétitions d’un même terme, puisque les nombres complexes xρ s’accumulent à l’infini, au moins

sur le cercle de rayon x
1
2 . En fait, von Mangoldt a donné, plusieurs années après votre article,

une démonstration détaillée de votre théorème, et il a été plus rigoureux, dans une certaine mesure,
dans l’écriture de la formule. . . puisqu’au lieu de traiter Li, il considère une fonction univalente

bien définie Ei(z) = Li(exp(z)) de la variable z ( plutôt que exp(z) ). Il démontre ensuite votre
formule en remplaçant le terme

∑Li(xρ) par ∑Ei(ρ log x).

Cela étant dit, il ressort clairement de votre formule que vous connaissiez ce que l’on appelle

aujourd’hui les formules explicites de Guinand-Weil. La nouveauté dans cette formule, qui ne vous

surprendra pas, est que l’on considère, au lieu de la fonction
1

log u
que vous utilisez, une fonction

test arbitraire ϕ(u) appliquée aux puissances des nombres premiers, et l’on écrit une égalité

qui fait intervenir ce que l’on appelle aujourd’hui la transformée de Mellin 9 de cette fonction

ϕ(u) évaluée sur les zéros non triviaux de la fonction zêta. On obtient ainsi une égalité qui

ne constitue pas une généralisation de votre formule, car celle-ci va plus loin que les formules

explicites classiques de Guinand-Weil, votre fonction test
1

log u
étant singulière en u = 1. Un

point remarquable de ces formules explicites est que si la fonction test ϕ(u) s’annule en dehors

d’un intervalle fini [1, x], alors seuls un nombre fini de nombres premiers interviennent dans son
calcul, ceux inférieurs à x. Or, c’est précisément le cas de votre formule, qui fait intervenir la

9. La transformée de Mellin de ϕ(u) est définie par M(ϕ)(s) =
∫ ∞

0
us−1ϕ(u)du.
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fonction égale à ϕ(u) = 1
log u

dans l’intervalle [1, x] et qui s’annule en dehors de cet intervalle ;

cela ne vous surprendra donc pas.

Permettez-moi, Maître, de vous faire part d’un fait qui, à mon sens, corrobore votre hypothèse.

Le voici : je vais concevoir un procédé qui, en utilisant seulement quelques nombres premiers,

me permettra d’atteindre les premiers zéros non triviaux de votre fonction zêta avec une précision

remarquable. Que signifie “quelques nombres premiers” ? Prenons un exemple concret : imaginons

que je ne connaisse pas les nombres premiers supérieurs à 13. Je ne connais donc que 2, 3, 5,
7, 11 et 13. De prime abord, il semble que pour appréhender les zéros de la fonction zêta, il
soit nécessaire de considérer tous les nombres premiers, puisqu’ils interviennent tous dans le produit

eulérien qui la définit. Il paraît donc assez invraisemblable qu’en tronquant ce produit eulérien,

c’est-à-dire en ne considérant que les termes contenant les nombres premiers inférieurs à 13, on

puisse obtenir la moindre indication sur les zéros de la fonction zêta.

Permettez-moi donc de décrire le processus en utilisant uniquement des notions qui vous sont

familières. À partir de ces nombres premiers, 2, 3, etc., jusqu’à 13, on construit une forme

quadratique. Cette forme quadratique est semblable à celle que vous avez utilisée lors de l’application

du principe de Diri�let pour démontrer le théorème de transformation conforme. Il s’agit d’une
forme quadratique définie sur l’espace de dimension infinie des fonctions ϕ(u) d’une variable réelle

positive, qui s’annulent en dehors de l’intervalle [1, 13]. La valeur Q(ϕ) de la forme quadratique

est obtenue en appliquant la formule explicite à la fonction ψ(v) =
∫
ϕ(u)ϕ(uv)du

u
. Ainsi,

puisque la fonction ϕ s’annule en dehors de l’intervalle [1, 13], la fonction ψ s’annule en dehors

de l’intervalle
[
1

13
, 13

]
et il n’est pas nécessaire d’utiliser toute puissance première autre que

2, 3, 4, 5, 7, 8, 9, 11, 13 pour calculer Q(ϕ), je sais démontrer qu’il existe une fonction η(u) qui

minimise la forme quadratique Q(ϕ) lorsque
∫
ϕ(u)2 du

u
= 1. La démonstration de l’existence de

cette fonction est tout à fait similaire à celle donnée par Hilbert en 1900 dans son article “Über
das Diri�lets�e Prinzip” pour le principe de Diri�let. Je calcule ensuite la transformée de
Mellin de la fonction η(u). Je sais également démontrer 10 que les zéros de cette transformée

de Mellin se situent sur la droite critique (normalisée ici comme la droite imaginaire). Ceci est

prouvé modulo une condition d’unicité du minimum. 11

Le fait étonnant que je souhaite vous signaler est que, lorsqu’on calcule – à l’aide de ma�ines

10. Voir § 6.1.
11. La preuve utilise une généralisation d’un théorème de Caratheodory-Fejer sur les matrices de Toeplitz, obtenu

en 1911, il faut supposer que la plus petite valeur propre de la forme quadratique est simple et paire.
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de calcul modernes bien plus puissantes que celles disponibles à votre époque – les zéros de la

transformée de Mellin de η(u), par exemple ses 50 premiers zéros, on constate une incroyable
coïncidence avec les zéros non triviaux de η. Par exemple, pour le premier zéro, on observe
une concordance sur 54 décimales, et ainsi de suite. Le nombre de décimales concordantes dimi-
nue progressivement, et lorsqu’on atteint le cinquantième zéro, seules quelques décimales concordent.

J’ai calculé ces différences (limite supérieure) entre les valeurs calculées à l’aide des nombres
premiers inférieurs à 13 et les valeurs réelles des zéros de zêta que je présente ci-après :

Cela signifie que nous maîtrisons parfaitement vos zéros, sans jamais faire intervenir l’infinité

de l’ensemble de tous les nombres premiers. De plus, nous savons a priori que tous les zéros de

la transformée de Mellin de η(u) se trouvent sur la droite critique.

Ce que nous ignorons, c’est si lorsque nous augmentons la limite supérieure, qui était ici x = 13,
l’ensemble des zéros correspondant convergera vers les zéros de ζ. Ceci n’est pas démontré à
ce stade. En revan�e, il semble que la raison abstraite de la véracité de votre conjecture soit

désormais accessible, puisque nous savons que les zéros des transformées de Mellin des vecteurs
propres minimaux ηx sont purement imaginaires, et nous nous attendons à ce que ηx converge vers

la fonction dont la transformée de Mellin est votre fonction Ξ(it). Le résultat découlerait alors
du théorème de Hurwitz, qui implique que tous les zéros de la limite d’une suite convergente de

fonctions holomorphes dont les zéros sont sur une droite fixe restent sur cette droite.

Différences entre les valeurs (en utilisant les nombres premiers ≤ 13)

2.60179× 10−55, 4.80071× 10−52, 4.43756× 10−50, 3.89903× 10−47, 7.59453× 10−46,
1.13198× 10−43, 1.07245× 10−41, 1.2694× 10−40, 4.40141× 10−38, 4.24869× 10−37,
5.86724× 10−36, 3.24443× 10−34, 2.44517× 10−32, 9.02026× 10−32, 5.13539× 10−30,
7.04142× 10−29, 6.47754× 10−28, 4.96772× 10−27, 5.86016× 10−25, 3.76751× 10−24,
1.03779× 10−23, 3.52722× 10−22, 3.03977× 10−21, 5.66201× 10−20, 1.41755× 10−19,
2.19821× 10−18, 6.31599× 10−17, 1.42037× 10−16, 4.34328× 10−16, 4.47113× 10−15,
7.01522× 10−14, 3.81989× 10−13, 5.99581× 10−13, 4.26414× 10−11, 1.10653× 10−10,
1.95651× 10−10, 5.20728× 10−10, 2.05031× 10−9, 3.42274× 10−8, 2.10931× 10−7,
2.23714× 10−7, 5.95608× 10−7, 5.77737× 10−6, 0.000141389, 0.000556111,
0.000720794, 0.000314865, 0.0209081, 0.00313565, 0.00212727

Avec respect et admiration,

Alain Connes
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6 La stratégie et les prochaines petites étapes
Nous expliquons d’abord dans le § 6.1 le résultat général qui fournit une multitude de fonctions
entières dont tous les zéros appartiennent à la droite réelle.
L’objectif est ensuite de montrer que, lorsque la borne supérieure x (qui valait x = 13 ci-dessus)
tend vers l’infini, les vecteurs propres minimaux ηx convergent au sens approprié, de sorte que
leurs transformées de Fourier, pour la dualité entre R∗

+ et R, convergent uniformément sur les
sous-ensembles compacts vers la fonction holomorphe que Riemann a introduite comme fonction
Ξ dans son article. En fait, nous suivrons ses traces et considérerons la formule explicite qu’il a
donnée pour la fonction k dont la transformée de Fourier est Ξ(t). Nous allons réécrire dans le § 6.2
cette fonction k comme l’image, par une application de sommation E , d’une combinaison linéaire h
de deux fonctions de Hermite h0, h4. Il s’agit alors de montrer la convergence des vecteurs propres
minimaux ηx vers la fonction E(h). En fait, il faut d’abord recentrer ηx sur θx(u) = ηx(x1/2u), dont le
support est [x−1/2, x1/2]. Le plan, afin d’atteindre notre objectif, consiste à décomposer cet objectif
en plusieurs petites étapes. Dans la deuxième étape, au § 6.3, on introduit, étant donné λ > 1, les
fonctions d’onde sphéroïdales prolate qui donnent une adaptation hn,λ des fonctions hermitiennes
hn aux fonctions dont le support se trouve dans l’intervalle [−λ, λ] ⊂ R. Les fonctions hn,λ sont
des fonctions propres d’une modification de l’opérateur de Hermite (14), l’opérateur d’onde prolate
PWλ de (15), obtenues en ajoutant à l’opérateur de Hermite H seulement les multiples du carré de
la mise à l’échelle, de sorte que la somme commute avec la projection orthogonale sur les fonctions à
support dans l’intervalle [−λ, λ] ⊂ R. Par construction, PWλ admet deux points singuliers réguliers
à la frontière ±λ de l’intervalle et une singularité irrégulière à l’∞. La troisième étape, dans le § 6.4,
consiste à formuler une approximation éclairée du vecteur propre minimal θx en utilisant le même
procédé que dans le cas simple du § 6.2. On remplace ainsi les fonctions de Hermite h0, h4 par
leurs localisations h0,λ, h4,λ, pour λ = x1/2, et on procède à l’application de sommation E sur la
combinaison linéaire de ces deux fonctions dont l’intégrale est nulle. On obtient ainsi une fonction
kλ qui approche θx sur l’intervalle [x−1/2, x1/2]. Dans le § 6.5, on montre que, lorsque λ → ∞, les
transformées de Fourier k̂λ convergent vers la fonction Ξ de Riemann, uniformément sur les sous-
bandes fermées du voisinage ouvert de largeur 1 de la droite réelle. Enfin, dans le § 6.6, on indique
les étapes finales manquantes.

6.1 La transformation de Fourier de θx a tous ses zéros sur la droite
réelle

La démonstration de ce résultat découle d’un théorème présenté dans un article co-écrit avec Wal-
ter van Suijlekom, intitulé “Quadratic forms, real zeros and echoes of spectral action” (réf. [32]).
L’énoncé précis est le suivant :

Théorème 6.1 Soit L > 0, D une distribution réelle sur l’intervalle [0, L] et D̃ la distribution paire
associée sur [−L,L]. Supposons que la forme quadratique à noyau de Schwartz D̃(x − y) définisse
un opérateur auto-adjoint minoré sur L2([−L

2 ,
L
2 ]), et que le minimum de son spectre soit une valeur

propre simple et isolée, associée à une fonction propre paire η. Alors tous les zéros de la fonction
entière η̂(z), z ∈ C, transformée de Fourier de η, se trouvent sur la droite réelle.

La démonstration de ce théorème repose sur la forme particulière de la matrice quadratique dans
la base trigonométrique orthonormée, sur la construction, pour les matrices finies de cette forme
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particulière, d’un opérateur auto-adjoint et sur le théorème de Hurwitz mentionné précédemment,
qui assure le passage à la limite lorsque la taille des matrices tend vers l’infini. La validité du résultat
sur les zéros de la transformée de Fourier pour des troncatures finies [32] joue un rôle-clé dans les
calculs numériques [Il est utilisé pour la troncature trigonométrique à N = 100 dans le calcul
présenté dans la lettre.] et permet d’approximer les zéros de η̂(z) par le spectre d’une perturbation
de rang un de l’opérateur de Dirac périodique, obtenu à l’aide du noyau de Dirichlet analysé par
Riemann dans [91].

6.2 La fonction Ξ de Riemann et les fonctions de Hermite
Riemann adopte la notation suivante

ψ(x) :=
∞∑
1
e−n2πx

Il écrit ensuite, avec ξ(s) := 1
2s(s− 1)π−s/2ζ(s)Γ

(
s
2

)
, Ξ(t) := ξ(s) pour s = 1

2 + it, l’égalité 12

Ξ(t) = 4
∫ ∞

1

d
(
x

3
2ψ′(x)

)
dx

x− 1
4 cos

(1
2t log x

)
dx

Il obtient alors, en utilisant l’égalité k(u) = k(u−1) d’après la formule de Poisson, où

k(u) := u1/2π

2

∞∑
1
n2u2

(
2πn2u2 − 3

)
e−πn2u2

que Ξ(t) est la transformée de Fourier de la fonction k(u) :

Ξ(t) = 2
∫ ∞

1
k(u) cos (t log u) d∗u =

∫ ∞

0
k(u)uitd∗u,

De plus, en introduisant la notation :

E(f)(u) := u1/2
∞∑
1
f(nu) (12)

on a
k(u) = E(h)(u), h(u) = π

2u
2
(
2πu2 − 3

)
e−πu2

. (13)

La fonction h(u) peut être caractérisée comme suit. On considère l’opérateur de Hermite (oscillateur
harmonique) :

Hf(u) := −f ′′(u) + 4π2u2f(u) (14)

Soient hn les fonctions propres normalisées associées aux valeurs propres de la forme 2π(1 + 2n).
Ces fonctions sont paires pour n pair et invariantes par transformée de Fourier pour les valeurs de
n qui sont des multiples de 4.

Fait 6.2 La fonction Ξ de Riemann est la transformée de Fourier de k = E(h) où h est, à un
scalaire multiplicatif près, la seule combinaison linéaire de h0, h4 dont l’intégrale est nulle. 8

12. La notation traditionnelle pour cette fonction est Ξ(t) au lieu de la notation ξ(t) utilisée par Riemann.
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6.3 Les fonctions d’onde prolate entrent en scène
L’étape suivante consiste à introduire une famille de fonctions dont le rôle crucial dans la transmis-
sion du signal a été mis en évidence par Slepian, Pollak et Landau aux Bell Labs dans les années
1960. Leurs travaux portaient sur une question fondamentale posée initialement par Claude Shan-
non dans son étude fondatrice sur l’entropie : “Dans quelle mesure des fonctions à bande limitée
en temps peuvent-elles également être à bande limitée en fréquence ?” Shannon avait estimé que
le nombre N de signaux orthogonaux pouvant être contenus dans une fenêtre temporelle T et une
bande de fréquence W satisfait la relation N ≃ 2TW .
S’appuyant sur ce résultat, Slepian et ses collaborateurs ont cherché à maximiser la quantité d’in-
formations transmissibles dans un laps de temps limité et une bande passante donnée – un problème
central pour l’efficacité des systèmes de communication.

Pour décrire leur résultat, fixons l’intervalle de temps et de fréquence à [−λ, λ] ⊂ R, et soit Pλ la
projection dans l’espace de Hilbert L2(R) (fonctions de carré intégrable) définie par multiplication
par la fonction caractéristique de l’intervalle [−λ, λ]. Soit P̂λ := FeRPλF−1

eR
son conjugué par la

transformée de Fourier. 13

Dans leur article fondateur, [101], Slepian et Pollak ont démontré que la transformée de Fourier
compressée PλFeRPλ commute avec l’opérateur différentiel du second ordre.

PWλ := −∂x

(
(λ2 − x2)∂x

)
+ (2πλx)2. (15)

Il s’ensuit que cet opérateur commute sur L2(R)ev (l’ensemble des fonctions paires de carré inté-
grable) avec

PλP̂λPλ = PλFeRPλFeRPλ = (PλFeRPλ)2 ,

ce qui permet de diagonaliser l’opérateur d’angle 9 αλ entre les projections Pλ et P̂λ définies par
l’identité

Pλ cos2(αλ) = PλP̂λPλ.

Fait 6.3 Les valeurs propres de l’opérateur PλP̂λPλ dans L2([−λ, λ])ev sont simples et forment une
suite décroissante νn(λ), n ≥ 0, νn(λ) → 0 pour n → ∞, telle que 1 > ν0(λ) > ν1(λ) > . . . > 0).
Les fonctions propres correspondantes sont les fonctions d’onde sphéroïdales prolates d’indice pair
h2n,λ où hm,λ est la m+1-ième fonction propre de l’opérateur d’onde prolate (15) dans L2([−λ, λ]).

L’opérateur αλ possède un nombre fini 14 ∼ 4λ2 de petites valeurs propres non nulles. Suivant la
notation standard de la littérature, les fonctions d’ondes sphéroïdales prolates sont notées

hn,λ(x) := PSn,0

(
2πλ2,

x

λ

)
13. La transformée de Fourier normalisée est définie par

FeR(f)(y) :=
∫
R
f(x)e2πixy dx.

Notons que pour les fonctions paires, on a : F−1
eR

= FeR .
14. Avec notre normalisation, la durée est T = 2λ et la limite de bande est W = λ.
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où l’indice n indexe la fonction propre, le second indice 0 indique l’ordre angulaire (un vestige de
l’origine de l’opérateur dans la séparation des variables pour le laplacien sur les sphéroïdes prolates)
et le premier argument 2πλ2 est le paramètre de bande passante sans dimension.
Chaque fonction hn,λ est définie sur [−λ, λ] et prolongée par zéro en dehors de cet intervalle. La
fonction hn,λ est paire lorsque n est pair. La transformée de Fourier de h2m,λ, restreinte à [−λ, λ],
satisfait

FeR(h2m,λ) = χmh2m,λ,

où χ2
m = νm et le signe de χm est (−1)m. Pour notre propos, nous avons besoin des valeurs propres

χ0 et χ2 correspondant aux fonctions propres h0,λ et h4,λ, et les termes (1 −χ0) et (1 −χ2) tendent
exponentiellement vers 0 en fonction de x = λ2.

6.4 La formule de Poisson et l’approximation kλ de θx, λ =
√
x.

Soit λ > 1, et QWλ la restriction de la forme quadratique de Weil aux fonctions test dont le support
est inclus dans l’intervalle [λ−1, λ]. D’après le résultat d’André Weil présenté au § 4.1, la positivité
de QWλ pour tout λ > 1 est équivalente à l’hypothèse de Riemann. Cette positivité peut être
démontrée pour de petites valeurs de λ (voir [111], [24]). Il existe (voir [25, 31]) pour chaque λ > 1
un opérateur auto-adjoint canonique minoré et non borné Aλ à résolvante compacte, dans l’espace
de Hilbert L2 ([λ−1, λ] , du/u) tel que

QWλ(f, f) = ⟨Aλf | f⟩ (16)

Le calcul numérique de la plus petite valeur propre ϵ(λ) de Aλ, effectué dans [25], montre que ϵ(λ)
tend exponentiellement rapidement vers 0 en fonction de µ = λ2. En fait, une analyse minutieuse
révèle une similitude frappante (Figure 6.4) entre le comportement de ϵ(λ) et celui de la fonction
angulaire 1 − χ2(λ). En fonction de la longueur L = 2 log λ du support [λ−1, λ] des fonctions-
tests pour QWλ, la convergence vers 0 des quantités minuscules comme 1 − χ2 est exponentielle
d’exponentielle 15 :

1 − χ2 ∼ 214

3
√

2π5e−4πeL+9/2L.

Graphes de log(ϵ(
√
x))) et log(1 − χ2(

√
x))) comme fonctions de x.

15. voir [47], Théorème 1. Notons que χk(λ)2 = λ2k(a) avec a =
√

2π λ dans les notations de ce théorème.
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Dans [25], nous avons donné une construction numériquement justifiée des vecteurs propres associés
aux premières valeurs propres minuscules de QWλ, en utilisant les fonctions d’onde sphéroïdales
prolate associées à l’intervalle [−λ, λ]. En particulier, cela donne une approximation éclairée du
vecteur propre associé à la plus petite valeur propre ϵ(λ) de Aλ. En accord avec le fait 6.2, cette
approximation est

kλ(u) := E(hλ)(u), ∀u ∈ [λ−1, λ] (17)

où hλ est, à un scalaire multiplicatif près, la seule combinaison linéaire de h0,λ, h4,λ dont l’intégrale
s’annule 16.

La justification conceptuelle de cette formule est la suivante : l’image de l’application E est contenue
dans le radical de la forme quadratique de Weil globale (voir [18]), mais l’hypothèse de Riemann
implique que QWλ est strictement positive et que son radical est {0}. On s’attend donc à ce que
le domaine de QWλ ne contienne aucun élément non nul de l’image de l’application E . On peut
néanmoins construire des fonctions à support [λ−1, λ] appartenant au “quasi-radical” de la forme
quadratique de Weil, comme suit. Si le support de la fonction paire f est inclus dans l’intervalle
[−λ, λ] ⊂ R, le support de E(f) est inclus dans (0, λ] ⊂ R∗

+. Par ailleurs, la formule de Poisson,
utilisant les conditions f(0) = f̂(0) = 0 pour définir le sous-espace de codimension 2 S0 ⊂ S(R) de
l’espace de Schwartz, donne

E(f̂)(x) = E(f)(x−1) , ∀f ∈ Sev
0 (18)

qui montre que le support de E(f) est inclus dans [λ−1,∞) pourvu que le support de la fonction
paire f̂ soit inclus dans l’intervalle [−λ, λ] ⊂ R. L’obstacle à l’obtention d’un élément E(f) du
radical de QWλ est l’égalité Pλ ∩ P̂λ = {0}, où Pλ et P̂λ sont définis comme ci-dessus. Mais comme
expliqué au § 6.3, ces deux projections s’intersectent presque, et après avoir pris en compte les deux
conditions f(0) = f̂(0) = 0, la restriction de E(f) à l’intervalle [λ−1, λ] donne naissance à la fonction
kλ de (17) sur laquelle QWλ prend des valeurs non nulles, mais extrêmement petites, donnant ainsi
une supposition naturelle comme approximation du vecteur propre associé à la plus petite valeur
propre ϵ(λ) de Aλ.

6.5 Convergence des transformées de Fourier k̂λ → k̂

Grâce aux estimations classiques sur la convergence des fonctions d’onde prolates vers la fonction
de Hermite-Weber, on contrôle la convergence de kλ de (17) vers k = E(h), ce qui donne le :

Fait 6.4 La transformée de Fourier de kλ converge, lorsque λ → ∞, vers la fonction Ξ de Riemann
uniformément sur les sous-bandes fermées de la bande ouverte Im(z) < 1

2 .

La différence est contrôlée sur la droite Im(z) = α où α ∈ (−1
2 ,

1
2) par cλ− 1

2 −α(1 − 2α)−1 où c est
une constante finie.

16. Notez que le calcul de E(hλ)(u) pour u ∈ [λ−1, λ] n’implique que la somme sur les entiers ≤ λ2
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6.6 Étapes restantes
Pour appliquer le théorème 6.1, il faut démontrer que la plus petite valeur propre de la forme
quadratique de Weil QWλ est simple et associée à un vecteur propre pair. L’analogue de cette
propriété est connu pour l’opérateur d’onde prolate. De plus, il reste à montrer que kλ est une
approximation suffisamment bonne de θx, λ =

√
x.

7 Perspectives géométriques
L’approche géométrique adoptée dans l’article commun [19], décrit dans [20], a révélé un paysage
géométrique inédit qui constitue un analogue naturel, pour le corps global Q, de la géométrie as-
sociée aux corps globaux en caractéristique finie. En particulier, les correspondances de Frobenius
prennent sens sur le carré du site de mise à l’échelle et la fonction zêta de Riemann complète
apparaît comme l’analogue de la fonction génératrice de Hasse-Weil. Le traitement des valeurs
principales délicates intervenant dans la formule explicite de Riemann-Weil a nécessité l’utilisation
de l’incarnation adélique du site de mise à l’échelle, que nous comprenons maintenant comme son
homologue en théorie des corps de classes [26].
Dans l’article [24], nous avons commencé à exploiter l’interprétation adélique des correspondances
de Frobenius pour le corps de nombres Q afin d’étudier progressivement la positivité de Weil.
Comme expliqué au § 4.1, la positivité de Weil, qui n’implique qu’un nombre fini de nombres pre-
miers à la fois, est équivalente à l’hypothèse de Riemann. Dans le cadre géométrique adélique, les
correspondances sont encodées par des noyaux de Schwartz, qui sont des distributions dans le carré
des données adéliques et qui jouent le rôle de l’équivalent, en théorie des corps de classes, de la
courbe géométrique. Plus généralement, le lien entre les points de vue de la théorie des opérateurs
et de la géométrie est établi par les noyaux de Schwartz associés aux opérateurs. En implémentant
la structure additive des adèles, on constate que le noyau de Schwartz de l’opérateur d’échelle cor-
respond géométriquement au diviseur de la correspondance de Frobenius.

La structure additive des adèles de Q permet d’écrire le noyau de Schwartz k(x, y) de l’action
de mise à l’échelle f(x) 7→ f(λx), λ ∈ R∗

+, sous la forme (avec δ la distribution de Dirac)

k(x, y) = δ(λx− y).

7.1 Formule de trace archimédienne
Il existe un parallèle très important entre la forme quadratique de Weil et la formule de trace, d’une
part, et le monde de la théorie de l’information, d’autre part. Le point de départ de ce parallèle est
la réécriture du cas archimédien de la formule de trace de [17] en faisant intervenir deux paramètres
indépendants qui jouent le rôle de limitation temporelle et de limitation fréquentielle dans l’approche
de Shannon, Slepian et leurs collaborateurs concernant la transmission d’information. On travaille
dans l’espace de Hilbert L2(R)ev des fonctions paires de carré intégrable. L’action d’échelle de R∗

+
est définie comme

(ϑλξ)(v) := λ−1/2ξ
(
λ−1v

)
, ϑ(f) =

∫
f(λ) ϑλd

∗λ, ∀ξ ∈ L2(R)ev
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Le paramètre T , qui impose la limitation temporelle à l’intervalle [−T, T ], définit la projection
orthogonale PT , et le paramètre W , qui impose la limitation fréquentielle à l’intervalle [−W,W ],
définit la projection P̂W . On peut écrire le cas archimédien de la formule de trace de [17] comme
suit, où W∞ := −WR a été défini dans (10) :

W∞(f) = log(TW ) f(1) + Trace
(
ϑ(f)

(
1 − PT − P̂W

))
(19)

Nous considérons cette formule comme un pont entre les formules explicites et le monde de la théorie
de l’information, où les projections PT et P̂W jouent un rôle central. Elle sera étendue ci-dessous
dans le § 7.4 afin d’intégrer la contribution des nombres premiers aux formules explicites.

7.2 Positivité de Weil archimédienne
L’ingrédient-clé est la formule de trace semi-locale, que nous avons utilisée dans le cas simple où
aucun nombre premier n’intervient. Nous avons constaté que non seulement la positivité de Weil
est vérifiée dans ce cas, comme expliqué dans le § 4.1, mais que la principale source de positivité
provient de l’espace de Sonin, introduit initialement dans le contexte de l’hypothèse de Riemann par
Burnol [9, 10, 11]. L’espace de Sonin Sλ est l’espace des fonctions de carré intégrable qui s’annulent
identiquement sur l’intervalle [−λ, λ], ainsi que leur transformée de Fourier. Par construction, il est
orthogonal aux images des projections Pλ et P̂λ. On note S la projection orthogonale dans L2(R)ev
sur l’espace de Sonin S1 (pour λ = 1). On a alors (voir [24]) le

Théorème 7.1 Soit g ∈ C∞
c

(
R∗

+

)
une fonction à support dans l’intervalle

[
2−1/2, 21/2

]
et dont la

transformée de Fourier s’annule en i

2 et en 0. Alors l’inégalité suivante est vérifiée.

W∞ (g ∗ g∗) ≥ Tr (ϑ(g)Sϑ(g)∗)

7.3 L’espace des classes d’adèles semi-local
La formule de trace semi-locale présentée dans le § 7.4 repose sur les espaces de classes d’adèles
semi-locaux.
Ces espaces géométriques YS sont associés à un ensemble fini S de places de Q contenant la place
infinie. Par construction, YS est le quotient

YS := AS/ΓS, AS =
∏
v∈S

Qv (20)

du produit adélique des complétions des corps locaux du corps global Q aux places v ∈ S. Le
groupe ΓS est le sous-groupe de Q× défini par

ΓS := {±pn1
1 · · · pnk

k : pj ∈ S \ {∞} , nj ∈ Z} ⊂ Q× (21)

L’anneau AS contient Q comme sous-anneau par injection diagonale, ce qui induit l’action de ΓS

sur AS par multiplication. Les espaces de classes d’adèles semi-locales sont le mieux encodés par les
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algèbres non commutatives S(AS)⋊ΓS produits croisés des algèbres de Bruhat-Schwartz S(AS) de
fonctions sur les adèles semi-locales, par les groupes multiplicatifs ΓS. Ces algèbres non commuta-
tives constituent un faisceau d’algèbres sur SpecZ. Le groupe ΓS est proprement compris comme les
sections Z×

S du faisceau Gm sur le complémentaire ouvert de S dans SpecZ. On montre que l’algèbre
de Bruhat-Schwartz semi-locale S(AS) forme un faisceau O d’algèbres commutatives sur SpecZ.
On obtient alors le résultat suivant, qui établit la compatibilité des constructions géométriques non
commutatives avec la géométrie algébrique de SpecZ.

Théorème 7.2 - Le produit vectoriel algébrique O ⋊ Gm définit un faisceau d’algèbres sur
SpecZ tel que pour tout ensemble fini de places S ∋ ∞

(O ⋊ Gm) (Sc) = S(AS) ⋊ Z×
S

- La fibre de O ⋊ Gm au point générique est le produit vectoriel global S(AQ) ⋊Q×.
- Les sections globales de O ⋊ Gm forment le produit vectoriel S(R) ⋊ {±1}.

Les espaces fonctionnels impliqués dans la formule de trace semi-locale du § 7.4 sont mieux compris
conceptuellement comme l’homologie de Hochschild des algèbres semi-locales.

7.4 La formule de trace semi-locale
La difficulté restante pour démontrer la convergence des vecteurs propres θx vers la fonction k =
E(h) du fait 6.2 consiste à comparer efficacement θx avec kλ pour λ =

√
x. La preuve numérique a été

apportée dans [25] où la comparaison a été étendue aux vecteurs propres de QWλ correspondant
aux premières valeurs propres minuscules, en utilisant l’orthogonalisation de Gram-Schmidt des
vecteurs de la forme E(ψ), les ψ étant construits à partir des fonctions d’onde prolate suivantes.
Comme étape vers une justification conceptuelle de ce résultat numérique, on peut se référer à la
formule de trace semi-locale de [17].
Cette formule fournit une représentation sous forme de trace de la forme quadratique de Weil QWλ,
parfaitement analogue à (19), mais qui donne maintenant la contribution des nombres premiers
p ∈ S à la formule explicite. Elle prend la forme suivante :

−
∑
v∈S

Wv(f) = log(TW ) f(1) + Trace
(
ϑ(f)

(
1 − P S

T − P̂ S
W

))
(22)

où les projections P S
T et P̂ S

W sont définies comme dans le cas archimédien en utilisant le module10.

7.5 Les régimes infrarouge et ultraviolet
Dans le cadre de la géométrie non commutative, l’encodage d’un espace géométrique par un triplet
spectral (A,H, D) révèle des informations à travers deux régimes spectraux complémentaires de
l’opérateur de Dirac D :

• Le régime ultraviolet (UV) correspond à la partie des hautes énergies du spectre, c’est-à-dire
au comportement des valeurs propres de D à l’infini. Ce régime capture la structure infini-
tésimale de l’espace et détermine ses invariants géométriques locaux, tels que la dimension,
la forme du volume et la courbure. En physique, cela s’apparente à sonder un système à très
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courte distance ou à des impulsions élevées. Mathématiquement, le comportement UV régit
le comportement asymptotique du noyau de la chaleur et intervient de manière cruciale dans
le principe d’action spectrale.

• Le régime infrarouge (IR) concerne la partie des basses énergies du spectre de D, en par-
ticulier les petites valeurs propres. Cette partie reflète les caractéristiques topologiques et
géométriques globales de l’espace, telles que la connexité, la croissance du volume et les
quantités issues de la théorie des indices. En physique, le comportement infrarouge (IR) fait
référence aux phénomènes de basse énergie et aux propriétés à grande échelle. Il joue un rôle
central dans la compréhension des corrélations à longue portée et des effets topologiques.

En particulier, une telle perspective duale permet à la géométrie non commutative d’accéder à la
fois aux invariants spectraux locaux et aux caractéristiques arithmétiques ou topologiques globales
grâce au langage unifié de la théorie des opérateurs.
Pour le régime infrarouge, nous construisons dans [30] des opérateurs auto-adjoints D(λ,N)

log obtenus
comme perturbations de rang un du triplet spectral associé à l’opérateur de mise à l’échelle sur
l’intervalle [λ−1, λ] et dont le spectre coïncide avec l’approximation remarquable des zéros de zêta
de basse énergie tels que décrits dans la lettre à Riemann. Nous calculons ensuite les déterminants
régularisés detreg(D(λ,N)

log − z) de ces opérateurs et discutons du rôle analytique qu’ils jouent dans
le contrôle et la démonstration potentielle du résultat ci-dessus en montrant que, convenablement
normalisés, ils convergent vers la fonction Ξ de Riemann.
Pour le régime ultraviolet, nous décrirons brièvement dans la section 7.6 les résultats de [27] qui
montrent que l’opérateur d’onde prolate fournit un opérateur auto-adjoint qui correspond au com-
portement ultraviolet des zéros. En guise de préparation, on peut utiliser les formules explicites
pour calculer l’expansion de la chaleur, en supposant HR, d’un opérateur dont le spectre est formé
des parties imaginaires des zéros non triviaux de ζ(z) :

Théorème 7.3 [28] Supposons HR et soit D l’opérateur auto-adjoint dont le spectre est formé
des parties imaginaires des zéros non triviaux de la fonction zêta de Riemann. On obtient alors le
développement asymptotique suivant pour t → 0 :

Tr(exp(−tD2)) ∼
log

(
1
t

)
4
√
π

√
t

−
(log 4π + 1

2γ)
2
√
π

√
t

+ 2 exp(t/4) +
∑

ant
n/2 (23)

où a0 = −1
4 et pour k > 0, en utilisant les nombres de Bernoulli Bj et les nombres d’Euler E(k),

a2k−1 =
Γ(k)

(
22k−1 − 1

)
B2k

2
√
π(2k)! , a2k = −1

4 Γ(k + 1
2) E(2k)√

π(2k)! .

Les nombres d’Euler sont définis ainsi

E(2n) :=
2n∑

k=1

(
−1

2

)k 2k∑
j=0

(−1)j

(
2k
j

)
(k − j)2n (24)

On a le comportement asymptotique lorsque k → ∞

E(2k)
(2k)! ∼ (−1)k22k 4

π
π−2k
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qui montre que le développement asymptotique (23) n’est en aucun cas convergent puisque son
coefficient général an diverge comme une factorielle.

7.6 L’opérateur d’onde prolate
Les fonctions d’onde sphéroïdales prolates jouent un rôle-clé, comme nous l’avons vu précédem-
ment en relation avec la fonction zêta de Riemann. Dans toutes ces applications, elles apparaissent
comme fonctions propres de l’opérateur d’angle entre deux projections orthogonales dans l’espace
de Hilbert L2(R)ev des fonctions paires de carré intégrable sur R. Ces projections dépendent d’un
paramètre λ > 0. La projection Pλ est donnée par le produit de λ par la fonction caractéristique de
l’intervalle [−λ, λ] ⊂ R. La projection P̂λ est sa conjuguée par la transformée de Fourier FeR . Dans
toutes les applications mentionnées ci-dessus des fonctions d’onde sphéroïdales allongées, l’existence
miraculeuse, découverte par le groupe des laboratoires Bell Labs, d’un opérateur différentiel PWλ

commutant avec l’opérateur d’angle, ne joue qu’un rôle auxiliaire. Dans la présente section, nous
expliquons un autre “miracle” découvert lors de notre collaboration avec H. Moscovici [27] : une
étude approfondie de l’extension auto-adjointe naturelle de PWλ étendue à L2(R) montre qu’elle
possède toujours un spectre discret et que ses valeurs propres négatives reproduisent le compor-
tement ultraviolet des carrés des zéros de la fonction zêta de Riemann. De manière similaire, le
spectre positif correspond, dans le régime ultraviolet, aux zéros triviaux de la fonction zêta de
Riemann. Cette coïncidence est valable pour deux valeurs : λ = 1 et =

√
2. La raison conceptuelle

de cette coïncidence réside dans le lien entre l’opérateur de (15), c’est-à-dire

(PWλ ψ)(q) = −∂((λ2 − q2)∂)ψ(q) + (2πλq)2 ψ(q) (25)

et le carré de l’opérateur de mise à l’échelle /S := x∂x. Comme nous l’avons vu précédemment,
la compression de l’opérateur dde mise à l’échelle ϑ(f) dans l’espace de Sonin est la racine de
la positivité de Weil à la place archimédienne sur les fonctions-tests à support dans l’intervalle[
2−1/2, 21/2

]
. Or, j’ai démontré en 1998 que l’opérateur d’onde prolate admet une unique extension

auto-adjointe commutant avec les projections orthogonales Pλ et P̂λ. Cette extension est invariante
par transformation de Fourier et se restreint à l’espace de Sonin, c’est-à-dire à l’espace des fonctions
paires de carré intégrable qui s’annulent identiquement, ainsi que leur transformée de Fourier sur
l’intervalle [−λ, λ].
Nous avons découvert dans [27] que cette restriction de PWλ à l’espace de Sonin, qui est un opé-
rateur auto-adjoint, fournit une réalisation spectrale du régime ultraviolet des zéros de la fonction
zêta de Riemann.
Plus précisément, le spectre de cet opérateur est formé par une suite discrète νk de nombres néga-
tifs, et les nombres 2

√
νk pour le choix λ =

√
2 ont le même comportement ultraviolet que ρ − 1

2 ,
où les ρ sont les zéros de la fonction zêta.

En utilisant le procédé de Darboux, nous avons construit une racine carrée de Dirac D de PWλ

dépendant d’un paramètre de déformation, et dont le spectre est constitué des nombres 2
√
νk pour

λ =
√

2. Ce spectre présente le même comportement ultraviolet que les zéros de la fonction zêta de
Riemann. La figure 7.6 montre le spectre de l’opérateur D et les parties imaginaires des zéros de la
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fonction zêta. Cette similarité spectrale ultraviolette suggère que nous avons capturé spectralement
la contribution de la place archimédienne au spectre zêta. L’ambiguïté dans le choix de la racine
carrée de l’opérateur de Dirac D est étroitement liée à la théorie de Galois différentielle de l’équation
différentielle prolate étudiée par J. P. Ramis et ses collaborateurs [45, 89].

Le graphe montre la proximité du nieme zéro de zeta avec le nieme élément de SpecD.

8 Conclusion
L’hypothèse de Riemann a catalysé le développement de vastes domaines des mathématiques, de
l’analyse classique à la géométrie arithmétique moderne et à la physique mathématique. Chaque
approche a enrichi notre compréhension de la fonction zêta et de ses généralisations, même sans
que l’on soit parvenu à une démonstration.

Dans cette étude, nous avons proposé une vue d’ensemble de ce paysage mathématique. Nous avons
commencé par un examen détaillé des connaissances actuelles sur la fonction zêta de Riemann et
ses zéros, puis nous avons passé en revue la remarquable variété des théories mathématiques déve-
loppées au cours des 165 dernières années pour tenter de résoudre l’hypothèse de Riemann : des
méthodes analytiques classiques et de la théorie des fonctions L aux approches modernes via la
théorie des matrices aléatoires, la théorie des opérateurs et la géométrie arithmétique. Nous avons
exploré des formulations équivalentes de l’hypothèse, chacune offrant sa propre perspective sur
les raisons pour lesquelles ce problème s’est avéré si difficile à résoudre. Si cette étude exhaustive
démontre la richesse des idées mathématiques engendrées par l’hypothèse de Riemann, elle révèle
également que même les approches modernes les plus sophistiquées n’ont pas encore réussi à percer
ce mystère vieux de 165 ans.

Dans ce contexte de connaissances accumulées, la seconde partie de cet article a proposé une ap-
proche différente : un retour au point de vue initial de Riemann sous un angle nouveau. Notre
découverte d’une vaste classe de fonctions directement liées à la forme quadratique de Weil et dont
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les zéros se situent sur la droite critique, de manière démontrable, combinée aux résultats numé-
riques exceptionnels reliant les produits d’Euler tronqués aux zéros réels de la fonction zêta, suggère
que les intuitions initiales de Riemann pourraient recéler une portée insoupçonnée. La précision ob-
tenue en utilisant uniquement des nombres premiers inférieurs à 13 – avec des erreurs aussi faibles
que 2, 6 × 10−55 – ne saurait être considérée comme une simple coïncidence.

Le cadre géométrique présenté ici, utilisant la formule de trace et les méthodes spectrales, offre une
voie prometteuse : démontrer que les zéros de fonctions d’approximation convenablement construites
convergent vers les zéros de la fonction zêta. Cette synthèse de découvertes numériques, d’analyse
classique et de techniques géométriques modernes représente une approche novatrice qui honore
l’héritage de Riemann tout en employant des outils mathématiques contemporains.

Reste à savoir si cette voie mènera à une démonstration de l’hypothèse de Riemann. Toutefois, ce
cheminement a déjà révélé des liens inattendus entre la forme quadratique de Weil et le monde de
la théorie de l’information, ainsi qu’entre les résultats numériques et la structure théorique. Comme
nous l’écrivions dans notre lettre à Riemann, les vérités les plus profondes se cachent parfois dans
les observations les plus simples.

Pour des études exhaustives de l’hypothèse de Riemann et de ses multiples facettes, voir [6], [37],
[39], [44], [63], [86]. Le présent travail, qui se poursuivra en collaboration avec C. Consani et H.
Moscovici, ouvre un nouveau chapitre dans cette histoire en cours.

Notes

1Le théorème de Wiener-Ikehara stipule que si A(x) est une fonction non négative et croissante et

f(s) =
∫ ∞

0
A(x)e−xsdx

converge pour Re(s) > 1, et si f(s) − c/(s − 1) admet un prolongement continu à Re(s) ≥ 1 pour une certaine
constante c ≥ 0, alors

lim
x→∞

e−xA(x) = c.

Ce résultat a fourni précisément le cadre nécessaire pour convertir l’information concernant la non-annulation de la
fonction zêta sur Re(s) = 1 en énoncés asymptotiques précis sur les fonctions de comptage des nombres premiers.
L’application au théorème des nombres premiers consiste à exprimer la dérivée logarithmique de la fonction zêta
comme une transformée de Mellin de la fonction de Tchebychev ψ(x) =

∑
pk≤x log p, c’est-à-dire l’égalité −ζ ′(s)/ζ(s) =

s
∫∞

1 ψ(x)x−(s+1)dx. La non-annulation de ζ(s) sur Re(s) = 1, combinée au comportement connu de ζ(s) en s = 1,
garantit que ζ ′(s)/ζ(s) + 1/(s − 1) possède les propriétés analytiques requises pour l’application du théorème de
Wiener-Ikehara. Ce théorème implique alors directement que ψ(x) ∼ x, d’où découle le théorème des nombres
premiers par des arguments élémentaires.

2Le coefficient de lissage de Selberg était de la forme suivante :

∑
n≤ξ

αn

(
1 − log n

log ξ

)
ns

où les αn sont les coefficients de la série de Dirichlet de 1/
√
ζ(s) avec α1 = 1. Il avait besoin d’une moyenne de

|ζ(1/2 + it)|2 multipliée par la quatrième puissance de ce coefficient de lissage.
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3Pour une fonction méromorphe f dans le plan complexe, la caractéristique de Nevanlinna est définie par

T (r, f) = m(r, f) +N(r, f), r > 0,

où
m(r, f) = 1

2π

∫ 2π

0
log+∣∣f(reiθ

) ∣∣ dθ
est la fonction de proximité est

N(r, f) =
∫ r

0

n(t, f) − n(0, f)
t

dt+ n(0, f) log r

est la fonction de comptage intégrée des pôles, avec n(t, f) désignant le nombre de pôles de f (avec multiplicité)
dans |z| ≤ t. Pour une fonction entière, N(r, f) = 0 et donc T (r, f) = m(r, f).

Dans le cas de la fonction zêta de Riemann ζ(s), méromorphe dans C avec un unique pôle en s = 1, on peut définir
T (r, ζ) de la même manière. Un résultat classique de Borchsenius et Jessen (1948) montre que :

T (r, ζ) ∼ log r
2π

∫ π

−π

log+∣∣ζ(reiθ
) ∣∣ dθ (r → ∞),

et, plus précisément, ils ont obtenu le comportement asymptotique

T (r, ζ) ∼ 1
π
r log r lorsque r → ∞.

Ainsi, la caractéristique de Nevanlinna de ζ(s) croît essentiellement comme r log r, ce qui est du même ordre de
grandeur que la croissance de logM(r, ζ), où M(r, ζ) = max|s|=r |ζ(s)|.

4Le théorème stipule que pour σ > 1/2 fixé, les valeurs

1
T

∫ T

0
f(log ζ(σ + it))dt

convergent lorsque T → ∞ pour les fonctions continues bornées f : C → C, la distribution limite µσ est une mesure
de probabilité sur C telle que :
- Elle ne possède pas d’atomes (distribution continue)
- Son support est tout le plan complexe lorsque 1/2 < σ < 1.
De plus, malgré l’ambiguïté qui entoure la définition de log ζ(σ + it) en présence de zéros de zeta, le théorème de
Borchsenius-Jessen ne suppose pas l’hypothèse de Riemann.

5Outre le théorème de Hahn-Banach, on utilise le lemme suivant (voir lemme 1.15 de Laurincikas) : Soient
x1, . . . , xn ∈ H et soient b1, . . . , bn des nombres complexes avec |bj | ⩽ 1, j = 1, . . . , n. Alors il existe des nombres
complexes a1, . . . , an tels que |aj | = 1, j = 1, . . . , n, tels que :∥∥∥∥∥∥

n∑
j=1

ajxj −
n∑

j=1
bjxj

∥∥∥∥∥∥
2

⩽ 4
n∑

j=1
∥xj∥2

6Il est de la forme
∑2

0(−1)jdimHj(X,O(D)) = 1
2D.(D−K) +χ(X) où D est un diviseur, O(D) son faisceau de

sections, χ(X) est le genre arithmétique.
7Le fait que ce livre utilise une convention cachée n’est pas clair, mais la formule suivante est écrite dans la section

1.15 “Le terme impliquant les racines ρ” ∫
C+

tβ−1

log t dt =
∫ xβ

0

du

log u
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(avec le commentaire “où la seconde intégrale porte sur un chemin passant au-dessus de la singularité en u = 1”)
égalise deux termes qui ne peuvent être égaux puisque l’intégrale de gauche prend des valeurs différentes lorsqu’on
remplace β par β+ 2πi

log(x) tandis que xβ reste inchangé. Cela implique que la formule de Riemann doit être réécrite

en utilisant plutôt la fonction Ei(z) =
∫ z

−∞

et

t
dt qui présente une discontinuité de branche dans le plan complexe z

allant de −∞ à 0. La forme correcte de (11) est

f(x) = Li(x) −
∑

Im(ρ)>0

(Ei(ρ log x) + Ei(ρ log x)) +
∫ ∞

x

1
t2 − 1

dt

t log t − log 2

où la somme porte sur les zéros de la fonction zêta ayant une partie imaginaire positive.
8Plus précisément, on a : h =

√
3

4 23/4h4 − 3
217/4h0, ∥hj∥ = 1, ∥h∥ =

√
33

217/4 .

9La notion d’angle entre deux sous-espaces fermés d’un espace de Hilbert – ou, de manière équivalente, entre
deux projections orthogonales P et Q – a été étudiée par J. Dixmier dans : “Position relative de deux variétés
linéaires fermées dans un espace de Hilbert”, Revue Sci. 86 (1948), 387-399. L’idée essentielle est qu’une paire (P,Q)
correspond à une représentation unitaire du groupe diédral infini. Ses représentations irréductibles sont classées par
un angle , qui, dans le plan réel, représente l’angle entre deux droites réelles. La relation P cos2 α = PQP détermine
l’opérateur d’angle sur chaque composante irréductible.

10Le module s’étend à une application multiplicative | • |S de l’anneau AS =
∏

v∈S Qv à R+, et par construction,
cette application passe au quotient comme une application ModS : YS = AS/Γ → R+.

ModS(u) := |(uv)v∈S |S =
∏

|u|v ∈ R+.

Les groupes d’idèles et les groupes de classes d’idèles

GL1(AS) =
∏
p∈S

GL1(Qp), CS = GL1(AS)/Γ

agissent naturellement par multiplication sur le quotient YS et l’orbite de 1 ∈ AS induit un plongement CS → YS .
Le complémentaire de CS dans YS est de mesure nulle pour le produit des mesures de Haar des groupes additifs des
corps locaux (produit préservé par l’action du groupe dénombrable Γ). En utilisant la dérivée de Radon-Nikodym
des mesures de Haar des groupes multiplicatifs par rapport à la mesure de Haar des groupes additifs, on obtient une
identification unitaire.

wS : L2(YS) → L2(CS) (see [18] Proposition 2.30).

Nous rappelons également (voir [18], [Eqs. (2.223) et (2.239)]) que CS est un groupe localement compact modulé de
module

ModS(λ) = |λ|S :=
∏
p∈S

|λp|, ∀λ = (λp) ∈ CS

qui est (non canoniquement) isomorphe à R∗
+ ×KS , où KS est le noyau de ModS . La formule de trace sous la forme

de (22) est la spécialisation de la formule de trace générale de [17] à la partie invariante KS .
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