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Résumé

Cet article, commandé comme étude synthétique de I’hypotheése de Riemann, offre un pano-
rama complet de 165 années d’approches mathématiques de ce probléeme fondamental, tout
en introduisant une nouvelle perspective apparue lors de sa préparation.

L’article débute par une description détaillée de nos connaissances sur la fonction zéta de
Riemann et ses zéros, suivie d’'un vaste panorama des théories mathématiques développées
pour tenter de résoudre I’hypothese de Riemann — des approches analytiques classiques aux
méthodes géométriques et physiques modernes. Nous y abordons également plusieurs formu-
lations équivalentes de ’hypothese.

Dans le cadre de cette étude, nous présentons une contribution originale sous la forme d’une
“Lettre a Riemann”, utilisant uniquement les mathématiques disponibles a son époque. Cette
lettre révele une méthode inspirée de ’approche de Riemann lui-méme au théoreme de trans-
formation conforme : en optimisant une forme quadratique (restriction de la forme quadratique
de Weil en langage moderne), nous obtenons des approximations remarquables des zéros de la
fonction zéta. En utilisant uniquement des nombres premiers inférieurs a 13, cette procédure
d’optimisation fournit des approximations des 50 premiers zéros avec des précisions allant
de 2,6 x 10 a 1073. De plus, nous démontrons un résultat général selon lequel ces valeurs
approchées se situent exactement sur la droite critique Re(z) = %

A la suite de la lettre, nous expliquons les mathématiques sous-jacentes en termes modernes,
notamment en décrivant le lien profond qui unit la forme quadratique de Weil au monde de
la théorie de I'information. Les derniéres sections développent une perspective géométrique
a l'aide de formules de trace, esquissant une stratégie de démonstration potentielle fondée
sur I’établissement de la convergence des zéros des produits eulériens finis vers les produits
eulériens infinis. Tout en complétant 1’étude commandée, ces nouveaux résultats suggerent
une piste prometteuse pour les recherches futures sur la conjecture de Riemann.

Référence : https://arxiv.org/pdf/2602.04022.
Correction de la traduction en francgais par outils informatiques : Denise Vella-Chemla.
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1 Introduction

L’hypothese de Riemann (HR) demeure sans doute le probleme non résolu le plus célebre des
mathématiques, ayant résisté a toutes les tentatives de démonstration depuis que Bernhard Riemann
a fait remarquer, nonchalamment, dans son Mémoire de 1859, que “sehr wahrscheinlich” (tres
probablement) tous les zéros non triviaux de sa fonction zéta se situent sur la droite critique

Re(s) =1/2.

L’essence du présent article est une lettre de trois pages a Riemann, écrite comme s’il était possible
de communiquer a travers les années, et dans laquelle je présenterai une stratégie (vers une preuve
de HR) qui n’utilise que les mathématiques qu’il connaissait, ainsi que la grande puissance des
ordinateurs modernes.

Dans la section “Rencontre avec la fonction zéta de Riemann”, nous souhaitons présenter au lec-
teur une image saisissante du lien extraordinaire que Riemann a mis en évidence entre les zéros
complexes de la fonction zéta et la distribution des nombres premiers. Nous commencgons par un
bref historique du théoreme des nombres premiers, suivi de la formule explicite de Riemann pour
7(x), le nombre de nombres premiers inférieurs a z, et de ses généralisations ultérieures en formules
explicites. Nous abordons ensuite I'une des conséquences les plus marquantes : la découverte par
Littlewood que la différence m(x) — Li(z) change de signe une infinité de fois, une observation qui
a bouleversé les hypothéses antérieures d'une simple loi monotone.

Nous retragons alors I'histoire des résultats concernant les zéros de ((s), depuis la démonstration
par Hardy de leur infinité sur la droite critique, en passant par la percée de Selberg en 1942, jus-
qu’aux résultats modernes relatifs a la proportion de zéros situés exactement sur la droite critique.
Pour éclairer cette théorie, nous nous appuyons également sur le riche cadre des fonctions entieres,
notamment le théoréme de factorisation d’Hadamard, la théorie de Nevanlinna et le remarquable
théoreme de Borchsenius-Jessen, fruit du programme de Bohr-Landau sur les fonctions presque
périodiques.

Cette partie culmine avec un résultat qui aurait certainement stupéfié Riemann : le théoréme d’uni-
versalité de Voronin. Ce théoréme affirme que la fonction zéta, dans la bande 1/2 < Re(s) < 1,

3



possede une propriété de caméléon : par translation verticale, elle peut approcher toute fonction
f(s) prédéfinie, continue, non nulle et holomorphe sur un compact simplement connexe de la bande.
Pris ensemble, ces jalons révelent a la fois la profondeur et la subtilité de la structure analytique
de ((s). Ils nous préparent a comprendre pourquoi I’hypothese de Riemann demeure si tenace : la
fonction elle-méme recele une gamme étonnante de comportements, bien plus insaisissables qu’il
n’y parait au premier abord.

Riemann n’aurait certainement pas pu prévoir I’extraordinaire paysage mathématique qui a émergé
des tentatives de démonstration de sa conjecture. Des théories entieres sont nées de cette quéte,
établissant des liens entre la géométrie algébrique et la physique quantique. La section “Un siecle
et demi de construction théorique vers 'hypothese de Riemann” est consacrée a un bref panorama
de ces théories. La premiere concerne I'extension du probleme a la géométrie algébrique et arith-
métique. Dans ce cadre, I’analogue de la fonction zéta de Riemann en caractéristique finie a été
développé, et 'analogue correspondant de I’hypothese de Riemann a été démontré par André Weil.
Pour contextualiser, je rappellerai brievement les notions de schémas de Grothendieck et de coho-
mologie étale. L’essentiel est que la célebre analogie de Weil avec la “pierre de Rosette” prend tout
son sens lorsqu’on l'envisage a travers le prisme des schémas. Sur la pierre de Rosette originale, les
inscriptions paralléles sont horizontales : les hiéroglyphes en haut, le texte démotique au milieu et le
grec en bas. Weil a proposé une comparaison similaire a trois textes pour I’hypothése de Riemann.
En bas, correspondant au texte grec, se trouve I’ceuvre de Riemann sur les surfaces riemanniennes. 11
n’y a pas d’analogue de I'’hypothese de Riemann dans ce contexte, mais cela illustre I’extraordinaire
puissance des méthodes transcendantes en géométrie. Le texte du milieu correspond a la géomé-
trie algébrique sur les corps finis : c’est ici que 'analogue de I’hypothese de Riemann a été établi
par Weil, la fonction zéta apparaissant comme fonction génératrice comptant les points rationnels
sur les courbes définies sur les extensions de corps finis. Enfin, le texte du haut, le texte “hiéro-
glyphique”, correspond au cas arithmétique du spectre de Z, qui demeure profondément mystérieux.

Ce qui est remarquable, c’est que, grace a la théorie des schémas de Grothendieck, on observe
un cadre unificateur pour les trois inscriptions : dans chaque cas, il s’agit de schémas réguliers de
dimension un. C’est pourquoi j’évoquerai brievement les schémas, la cohomologie étale et les motifs.

Une autre généralisation majeure découle de la théorie des formes automorphes et de la théorie des
représentations, ou la formule de trace de Selberg et les fonctions zéta jouent un role central.

Je passerai ensuite a la théorie des matrices aléatoires et au chaos quantique. Une découverte re-
marquable, initiée par Montgomery et Dyson et confirmée de facon spectaculaire par les expériences
numériques a grande échelle d’Odlyzko, est que la corrélation par paires des espacements normali-
sés entre les zéros consécutifs de ((s) sur la droite critique coincide avec la corrélation des valeurs
propres de ’ensemble unitaire gaussien (GUE) de la théorie des matrices aléatoires. Nicholas Katz
et Peter Sarnak ont étendu cette correspondance a des familles entieres de fonctions L et ont établi
un cadre théorique systématique pour comprendre leur comportement statistique, comme expliqué
dans le §3.4.4.

Lors de la comparaison des zéros de la fonction zéta avec les valeurs propres de ’ensemble unitaire
gaussien, il est nécessaire d’effectuer un changement d’échelle local pour compenser la densité va-



riable des zéros. Ce besoin d’ajustement révele 'absence d'un véritable “modele ultraviolet” pour
la fonction zéta — une lacune qui sera comblée dans la dernieére partie de cet article, dans le §7.6.

Une avancée supplémentaire a été réalisée avec les travaux de Keating et Snaith en 2000, qui ont
utilisé la théorie des matrices aléatoires pour proposer une formule conjecturale pour les moments
de la fonction zéta de Riemann.

Je reviendrai ensuite brievement sur mes travaux de 1998 concernant la formule de la trace. L’élé-
ment novateur réside dans le fait qu’au lieu d’étudier directement la fonction zéta, on considere
I'idéal qu’elle engendre, ce qui revient a se concentrer sur ses zéros. De maniere cruciale, on peut
appréhender cet idéal et les zéros associés sans définir explicitement la fonction, ni faire appel a
son prolongement analytique. La clé est la construction d'un espace géométrique — l'espace des
classes d’adeles — qui acquiert une importance centrale en tant que quotient des adeles par 'action
multiplicative ergodique des nombres rationnels. Ce quotient révele les zéros des fonctions L, et pas
seulement de la fonction zéta de Riemann, sous la forme d’un spectre d’absorption. Des résultats
récents soulignent une correspondance précise entre I'espace de classes d’adeles et ’homologue de la
théorie des corps de classes des schémas intimement liés a Spec Z que la théorie de Grothendieck du
site étale et du groupe fondamental étale a dévoilés comme une généralisation de la théorie de Galois.

La formule de trace correspondante est analogue a celle de Selberg, mais plus subtile, car elle fait
intervenir une coupure infrarouge et une coupure ultraviolette. C’est précisément ici que, pour la
premiere fois, les fonctions d’onde sphéroidales prolates apparaissent naturellement.

Je mentionnerai diverses généralisations de la fonction zéta de Riemann, qui élargissent la perspec-
tive et suggerent de nouvelles pistes de recherche. Par souci d’exhaustivité, j’aborderai également
les fonctions p-adiques : bien qu’aucun analogue de I’hypothese de Riemann ne soit connu dans ces
cas, elles ont néanmoins donné lieu a de nombreux développements remarquables.

Enfin, dans la section “Formulations équivalentes”, j'examinerai le domaine des formulations équi-
valentes de I’hypotheése de Riemann. Le livre “ Equivalences of the Riemann Hypothesis” de Kevin
Broughan (2017, Cambridge University Press) répertorie systématiquement plus de 100 formula-
tions équivalentes. Cet ouvrage exhaustif organise les équivalences par domaine mathématique.

Fonctions arithmétiques élémentaires,

Formules de dénombrement des nombres premiers,

Equivalents analytiques,

Criteres d’analyse fonctionnelle,

Enoncés probabilistes,

Théorie des matrices et des opérateurs,

Systémes dynamiques.

Certains des énoncés équivalents a HR sont d’une simplicité remarquable : par exemple, soit R,, la
matrice de Redheffer, une matrice n x n de booléens (i.e. de 0 ou 1) avec R;; = 1si j =1ousii
divise j. Alors

HR <= det(R,) = O(n'/?*°), Ve >0



Ces formulations sont séduisantes mais trompeuses : I’histoire du sujet montre avec quelle facilité
une tentative de résolution du probleme peut étre aspirée par ce “trou noir” d’équivalences. Je discu-
terai de deux de ces formulations équivalentes : d’abord le critere de positivité de Weil, puis le critere
de Robin amélioré par Lagarias. Ce dernier critére montre que 'hypothese de Riemann-Richardson
appartient a la catégorie des énoncés que Hilbert, dans son programme sur les fondements des
mathématiques, espérait voir “démontrables s’ils sont vrais”. Or, le théoreme de Godel a démontré
que, précisément pour ce type d’énoncés, la vérité n’implique pas la démontrabilité. Ce point sera
examiné en détail a I’aide de la théorie de la complexité algorithmique de Chaitin.

La partie suivante du présent article, intitulée “Lettre au professeur Bernhard Riemann”, est d'une
nature tout a fait différente. Elle se présente sous la forme d’une lettre adressée a Riemann lui-
méme, dans un dialogue imaginaire a travers le temps. L’objectif de cette lettre est de souligner
une observation simple mais surprenante : une stratégie vers HR qui s’inscrit pleinement dans la
propre perspective mathématique de Riemann, comme en témoigne par exemple sa démonstration
du théoreme de I'application conforme. Point important, cette stratégie ne requiert que des concepts
et outils mathématiques qui étaient disponibles en 1859.

Concretement, cette méthode permet de retrouver les premiers zéros non triviaux de la fonction
zéta en utilisant seulement quelques facteurs du produit eulérien. Par exemple, en tronquant le
produit eulérien au nombre premier 13 et en effectuant le calcul avec la méthode décrite, on ob-
tient une approximation des 50 premiers zéros de ((s) dont la précision se comprend mieux en
considérant la probabilité d’obtenir une telle approximation par hasard. La probabilité qu’'un tel
accord puisse se produire par pur hasard est d’environ 107235, Pour donner une idée de 1’échelle,
cela correspond approximativement a la probabilité de deviner correctement le résultat de plus de
4000 lancers de piece consécutifs — un exploit si improbable qu’en pratique, il exclut a la fois la
coincidence et 'erreur de calcul.

On pourrait donc étre tenté de conclure : “Il s’agit simplement d’un nouvel algorithme pour calculer
les zéros de la fonction zéta de Riemann.” Si tel était le cas, 'hypothese de Riemann elle-méme
en découlerait, puisqu'un théoreme général garantit que lorsque la plus petite valeur propre de
l'opérateur correspondant est simple et paire!, les nombres d’approximation obtenus forment le
spectre d'un opérateur auto-adjoint et sont donc tous réels.

Cette lettre a Riemann est suivie, dans la section “Prochaines étapes”, d'une discussion plus dé-
taillée de son contenu, ainsi que d’une esquisse d’une stratégie possible pour justifier rigoureusement
que, de maniere générale, les zéros d’approximation produits par cette méthode convergent vers
les zéros réels de la fonction zéta de Riemann. Bien que les preuves numériques en faveur de cela
soient convaincantes, les preuves seules ne constituent pas une démonstration. Dans cette approche
naturelle, les fonctions d’onde sphéroidales prolates, que j’avais introduites dans ce contexte en
1998, jouent un réle central.

Des expériences informatiques révelent un fait frappant : une fonction faisant intervenir les fonc-
tions d’onde sphéroidales prolate fournit une excellente approximation de la fonction qui minimise
la forme quadratique de Weil. Cette observation justifie pleinement cette approche. Il est bien stir
possible qu'une démonstration complete dans cette direction se heurte a des obstacles importants.
Cependant, quel que soit le niveau de progression, cette voie ouvre naturellement la voie a une

1. signifiant que la fonction propre associée est paire.



exploration plus approfondie, dont le point de départ est présenté dans la section “Perspectives
géométriques” : la relation inattendue entre deux mondes mathématiques apparemment éloignés.

D’une part, il y a le monde de la forme quadratique de Weil. Le fait central ici est I’équivalence
remarquable de Weil : I’hypothese de Riemann est équivalente a la positivité de certaines formes
quadratiques qui n’impliquent qu’un nombre fini de nombres premiers. Ceci est surprenant, car on
pourrait s’attendre a ce que la résolution de I’hypothese de Riemann exige de contrdler I'infinité
complete des nombres premiers. Ici, cependant, le probléeme se réduit localement, a des ensembles
finis a la fois. De plus, dans ce contexte, comme mentionné précédemment, on peut exploiter la
construction générale des fonctions dont les zéros se trouvent entierement sur la droite critique.

D’autre part, il y a le monde des fonctions d’ondes prolates développé par David Slepian et ses
collaborateurs, dont les racines plongent dans les travaux de Claude Shannon en théorie de la
communication. Le lien fondamental, établi dans I'ouvrage fondateur de Slepian, Landau et Pollak,
est un opérateur différentiel classique du second ordre sur la droite : 'opérateur prolate, obtenu par
confluence de I’équation de Heun — un élément parfaitement familier de I’'univers mathématique de
Riemann. Cet opérateur joue un double réle. Dans le régime infrarouge, il permet d’approximer le
vecteur propre minimal de la forme quadratique de Weil. A Pautre extréme, comme expliqué dans
la derniere section de cet article, il fournit également un modele pour un opérateur auto-adjoint
dont le spectre reflete le comportement ultraviolet des zéros de la fonction zéta de Riemann.
Prises ensemble, ces observations soulignent 'importance de comprendre les situations ou seul un
nombre fini de nombres premiers intervient, et de clarifier 'interaction entre la forme quadratique
de Weil et 'opérateur prolate. Ce lien est établi par la formule de trace, que j’ai démontrée en
1998. Dans la derniére section, je reformulerai cette formule de trace en utilisant précisément les
mémes ¢léments que ceux qui apparaissent dans la théorie de la communication et dans les travaux
de Slepian et ses collaborateurs, explicitant ainsi le lien qu’elle établit entre la forme quadratique
de Weil et les fonctions prolate.

En arriere-plan se trouve un espace géométrique d’une importance fondamentale : 1’espace des
classes d’adeles semi-locales Yy, associé a un ensemble fini S de places de Q qui inclut la place
archimédienne. Par construction, Ys est obtenu comme le quotient

I1 Q.. S |

veS
du produit fini de corps locaux par ’action diagonale du groupe I' C Q* engendré par les nombres
premiers de S. Le critere de positivité de Weil montre que prouver la positivité requise dans ce
cadre semi-local est équivalent a établir '’hypotheése de Riemann (en fait, on englobe également le
cas des fonctions L a Grossen-caracteres).

Un avantage majeur de cet espace semi-local, comparé a l’espace complet des classes d’adeles, est
a trouver du coté de la théorie de la mesure : ici, les mesures de Haar multiplicative et additive
ne sont plus singulieres 'une par rapport a l'autre, de sorte que le quotient se comporte bien du
point de vue de la théorie de la mesure. Topologiquement, cependant, la situation est plus subtile.
Pour chaque nombre premier p € S, on rencontre une orbite périodique de longueur logp, et
ces orbites encodent précisément la contribution de p a la formule explicite. Enfin, dans le §7.6,
j'explique la récente découverte de notre travail commun avec H. Moscovici [27], ot nous montrons
que les valeurs propres de 'extension auto-adjointe de l'opérateur sphéroidal prolate reproduisent

7



le comportement ultraviolet des carrés des zéros de la fonction zéta de Riemann et construisent une
famille isospectrale d’opérateurs de Dirac dont les spectres ont le méme comportement ultraviolet
que les zéros de zéta.

2 Rencontre avec la fonction zéta de Riemann

2.1 Théorie analytique classique des nombres
2.1.1 Théoréme des nombres premiers (TNP)

En 1852, Pafnouti Tchebychev a démontré dans [11] que le nombre 7(z) de nombres premiers
inférieurs a z satisfait a la condition suivante :

6A =z

—_— A~ 0.92129
5 log(z)’

Ioa(2) m(z) <

pour x suffisamment grand, ce qui lui a permis de démontrer la convergence de la série sur les

nombres premiers p,
1 1 1 1

2log 2 * 3log3 * 5logh * Tlog7 e

Il a introduit deux fonctions de comptage essentielles, ¥ et 1), définies comme les sommes suivantes :

I(z) :== Y logp, Y(x) = I9(x) + I(@?) + 93 + ...

p<z

Il a démontré I'identité Y- ¢)(x/n) = log x! puis a utilisé la formule de Stirling.

Le fait que la relation asymptotique 7(x) ~ x/log z soit équivalente a ¥(z) ~ z était certainement
connu de Tchebychev et faisait partie des connaissances mathématiques de I’époque. En effet, dans
leurs articles respectifs [54], [106], Hadamard et de la Vallée Poussin démontrent tous deux ¥(z) ~ x
sans mentionner explicitement le résultat équivalent mw(x) ~ z/logx. Leurs démonstrations indé-
pendantes ont établi de maniere cruciale la non-annulation de ((s) sur la droite Re(s) = 1, en
utilisant des techniques d’analyse complexe, notamment la théorie des fonctions entieres de Hada-
mard. Le lien avec 'hypothése de Riemann est profond : alors que la théorie des nombres premiers
exige seulement que ((s) # 0 pour Re(s) = 1, le terme d’erreur 7(z) — Li(z) dans la fonction de
comptage des nombres premiers est directement contrélé par la position des zéros. Sous 'hypothese
de Riemann, le terme d’erreur s’améliore & O(z'/?log x). L’approximation par le logarithme intégral
differe sensiblement de son premier terme; on a

T T 2

Li(z)

~ log * log? z N log® x L

La démonstration de Hadamard selon laquelle ((s) # 0 pour fRe(s) = 1 recele une idée élégante
qui se comprend grace aux phases des puissances premieres et se réduit a (—1)? = 1. En effet,
si pour un certain nombre réel ¢ on avait ((1 + i#t) = 0, les nombres complexes p~* tendraient a
s’accumuler en —1, d’apres le développement de — log 1 —p~*¢. Mais alors les nombres complexes
p~ 2% tendraient & s’accumuler en 1, créant ainsi un pole de la fonction zéta en 1 + 2it, ce qui est
impossible sauf si 2t = 0.



L’étape suivante de la démonstration du théoréme fondamental des nombres premiers (TNP) par
Hadamard et de la Vallée Poussin découlait de leur besoin d’extraire des informations asympto-
tiques précises sur la distribution des nombres premiers a partir des propriétés analytiques de la
fonction zéta. Ils employerent des techniques sophistiquées issues de la théorie des fonctions entieres,
ce qui nécessitait des estimations détaillées du comportement de la fonction zéta dans différentes
régions du plan complexe. Bien que ces méthodes fussent mathématiquement rigoureuses et aient
révélé des intuitions mathématiques brillantes, elles masquaient la relation conceptuelle entre les
données analytiques et le résultat arithmétique, c¢’est-a-dire la formule asymptotique.

Edmund Landau a apporté la premiere simplification conceptuelle majeure en introduisant les mé-
thodes taubériennes pour démontrer le théoreme des nombres premiers, travaux parus dans son
ouvrage influent de 1909, “Handbuch der Lehre von der Verteilung der Primzahlen”. L’innovation
de Landau résidait dans la reconnaissance du fait que le lien entre les propriétés analytiques de la
fonction zéta et les informations arithmétiques sur la distribution des nombres premiers pouvait
étre établi grace a une classe générale de théoremes connus sous le nom de résultats taubériens.
Ces théoremes fournissent des conditions sous lesquelles les propriétés asymptotiques des fonctions
génératrices se traduisent par des propriétés asymptotiques de leurs suites de coefficients. La pro-
gression de l'approche taubérienne initiale de Landau & travers le théoréme de Wiener-Ikeharal
jusqu’a la présentation simplifiée de Newman montre comment la compréhension mathématique
peut s’approfondir grace au développement de cadres plus généraux et conceptuellement transpa-
rents.

La démonstration élémentaire du théoreme fondamental du nombre premier (TNP) par Selberg et
Erdos en 1949 a montré que 'analyse complexe n’est pas logiquement nécessaire a sa démonstration.
Le crible de Selberg, initialement développé pour cette démonstration élémentaire [97], est devenu
un outil fondamental en théorie analytique des nombres. La formule de symétrie de Selberg :

Zlog2p—|— Z logplogq =2z logx + O(x)

p<z pg<z

illustre sa capacité a trouver des simplicités inattendues dans la distribution des nombres premiers.

2.1.2 Formule de Riemann, article de von Mangoldt

Dans son article fondamental? [90], Riemann prit soin de définir précisément la branche du loga-
rithme intégral qu’il utilisait et d’énoncer la convergence conditionnelle® dans sa formule pour la
fonction f(x) obtenue comme la somme des fonctions de comptage (/™).

f(z) =Li(z) = > (Li (gg%ﬂvi) +Li (Q;%*ai» + /:O 1521—1tlitgt —log2 (1)

ou les % + « 7 sont les zéros non triviaux de ( a partie imaginaire positive et 'ordre des termes
correspond aux valeurs croissantes de JRe(a).

2. qu’il envoya a Tchebychev.

3. Il maitrisait parfaitement la convergence conditionnelle et a fourni la premiére démonstration rigoureuse que les
séries conditionnellement convergentes peuvent étre réarrangées pour converger vers n’importe quelle valeur prescrite
ou pour diverger completement. Le théoreme de réarrangement de Riemann est issu de sa thése d’habilitation de 1854,
“Uber die Darstellbarkeit einer Function durch eine trigonometrische Reihe”, un ouvrage principalement consacré a
I’extension de la théorie des séries de Fourier a des classes de fonctions plus générales, et publié a titre posthume en
1867, [91], grace au travail éditorial de Dedekind.



Comme je le mentionnerai brievement au début de ma lettre a Riemann, il est regrettable que
I’attention portée aux différentes branches du logarithme intégral ait disparu dans certains traités
modernes, tels que 'ouvrage classique d’Edwards [44], ou dans certains articles techniques, ou (1)
est écrit comme ci-dessus alors qu'il n’existe aucune fonction Li(z) ou Li(z) 4 Li(z) pour laquelle le
terme général de la série tend vers 0. Le probléme réside dans la notation, car si l'on suit attenti-
vement Riemann, on constate que la valeur qu’il considere dépend non seulement de z”, mais aussi
de plog z. En fait, dans son article [107], von Mangoldt définit correctement la signification qu’il
attribue non pas a la fonction Li(z), mais a la fonction Li(e"). Voici ce qu'il écrit :

En posant w = u + iv, ol u et v désignent des nombres réels, et en considérant a nouveau h
comme une variable réelle positive, il suffit de poser les définitions suivantes :
1.Siv >0, alors

. w . wo e )
Li(e¥) = lim —dz +im
h—oo J_p+w 2

2. Siv =0, alors

—h gz w g?
Li(e¥) = lim —dz + —dz
h—0J)_c0 2 h 7
3.5iv <0, alors
w ez
Li(e¥) = lim —dz —im

h—oo J_ptw %
11 est facile de vérifier que la fonction Li (e*) ainsi définie posséde bien les propriétés souhaitées.

Ainsi, von Mangoldt était pleinement conscient du défaut de la notation Li(x”), qui, malheureu-
sement, est restée utilisée sans précaution, méme si la plupart des auteurs sont (probablement)
conscients du probléme.

On peut tester la formule de Riemann, reformulée en utilisant la fonction Ei(plog x) au lieu de Li(z*)
(voir (7)) a l'aide d’un ordinateur, et I'on constate une assez bonne concordance en effectuant la
somme sur quelques milliers de zéros de zéta.

2.1.3 Formules explicites

Elles relient les fonctions de comptage des nombres premiers et les zéros non triviaux de ((s),
précisant ainsi U'influence de ces zéros sur les fonctions arithmétiques. Von Mangoldt [107] a ri-
goureusement démontré la formule explicite originale de Riemann, déduite de I’égalité plus simple
suivante :
T 1 _2
Y(x) =2 - — —log 2r — = log(l — z7?)
;P 2

ot Y(x) = Y r<,logp est la fonction de Tchebychev, et la somme porte sur les zéros non tri-
viaux p. Comme dans le cas de Riemann, >, est prise comme la limite des sommes partielles
pour =T < Jm(p) < T et n’est pas absolument convergente. Le terme d’erreur est de l'ordre de
(logT)?/T (voir le théoreme 12.5 de [31]).
Guinand [52] et Weil [109] ont ensuite développé des formules explicites plus générales reliant les
fonctions tests et leurs transformées de Fourier aux distributions de zéros, offrant ainsi une pers-
pective d’analyse harmonique sur la relation entre les nombres premiers et les zéros. La formulation
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usuelle de la fonction zéta de Riemann fait intervenir des fonctions tests f : R} — C satisfaisant
des conditions de régularité appropriées*
et leur transformée de Mellin définie comme

f)i= [T r@ada (2)

Elles prennent la forme

S Fp) = F0) + (1) = S Wu(f), (3)

ou la somme du membre de gauche porte sur tous les zéros complexes p de la fonction zéta de
Riemann et n’est en général que conditionnellement convergente, tandis que la somme du membre
de droite porte sur toutes les places rationnelles v de Q. Les distributions non archimédiennes W,
sont définies, a I'aide de f#(z) := 2~ f(x~!), comme suit :

W(f) == (log p) Z_( ™)+ M) (4)

tandis que la distribution archimédienne est donnée par

dx

xr—ax L

Wa(f) = (ogdr+ )50 + [~ (f@)+ () = 250

2.1.4 Changements de signe de 7(z) — Li(z)

Le célebre résultat de Littlewood de 1914 [75], selon lequel 7(x) — Li(x) change de signe une infinité
de fois (en supposant HR), a démontré que le terme d’erreur dans la théorie des perturbations pério-
diques (TPP) présente un comportement oscillatoire complexe, remettant en question I'observation
empirique selon laquelle 7(x) < Li(z) pour toutes les valeurs calculées. La premiere borne effective
pour un tel changement de signe a été donnée par Skewes [100], qui a montré (en supposant HR)
qu’un croisement se produit avant

B = 100"

Cette borne considérable a été grandement améliorée par Lehman [71], qui a introduit 'idée-clé de
dériver une formule explicite pour ue™"/2 (7 (¢*) — Li (e*)) moyennée par un noyau gaussien. Elle
a ensuite été améliorée par te Riele [105] (& environ 6,69 x 1037), Bays et Hudson [2] (& environ

1,4 x 10%19), et plus récemment par Chao et Plymen [15] et Saouter, Demichel et Trudgian ([93],

[94)).

4. Elles sont continues et admettent une dérivée continue, sauf en un nombre fini de points ou f(z) et f'(x)
présentent au plus une discontinuité de premiere espece, et ou leurs valeurs sont définies comme la moyenne de leurs
limites & droite et & gauche. De plus, on suppose que pour un certain § > 0, on a

fz) = O(z°), pour z — 0+, f(z) = O(a:_l_é), pour T — oo,
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2.1.5 Hardy et Littlewood

La preuve de Hardy de 1914 [56] selon laquelle une infinité de zéros se trouvent sur la droite critique
utilisait 1’équation fonctionnelle et une analyse minutieuse de Z(t) = ¢®®)((1/2 + it), ot O(t) est
choisi pour rendre Z(t) réel pour t réel,

1 t t
O(t) =Im(logl'(-+4+i=))—=1
®) m<0g (4 “2)) 2 1087
En étudiant les changements de signe de Z(t), il a montré qu’il existe une infinité de zéros avec
Re(s) =1/2.

Les travaux de Hardy et Littlewood [57] sur les résultats conditionnels ont démontré que ’hypothese
de Riemann (HR) a de nombreuses conséquences sur les écarts entre nombres premiers et sur
d’autres problemes additifs. Leur approche s’appuie sur les travaux antérieurs de Hardy, mais
integre des techniques analytiques plus raffinées pour I'estimation des intégrales oscillatoires et des
développements asymptotiques. Leurs travaux ultérieurs portent sur une analyse approfondie de
I’équation fonctionnelle approchée de la fonction zéta®, qui fournit une représentation explicite de
((s) valable dans toute la bande critique. En étudiant les annulations et les oscillations dans cette
représentation, ils ont pu démontrer que le nombre de changements de signe de la fonction Z de
Hardy, et donc le nombre de zéros de ((s) qui sont sur la droite critique lorsque la partie imaginaire
appartient a [0, 7], croit au moins linéairement avec 7. Il restait cependant a déterminer si une
fraction positive du nombre N(7') de zéros non triviaux de partie imaginaire dans [0, 7], estimé par
Riemann & N(T) ~ 5-T'log T, se situe sur la droite critique.

2.1.6 Les contributions pionniéres de Selberg (1940-1950)

La percée qui a permis de résoudre cette question fondamentale est survenue en 1942 grace aux
travaux pionniers d’Atle Selberg, qui a introduit la technique novatrice de I'adoucissement et a
démontré pour la premiere fois qu'une proportion positive de zéros non triviaux se situe sur la
droite critique. L’idée essentiel de la preuve de Selberg % consiste & multiplier la série pour ((s)
par le carré des sommes partielles de la série de ¢(s)~/2. La contribution majeure de Selberg a été
de démontrer que le nombre Ny(T') de zéros sur la droite critique satisfait No(7T') > TlogT, ce
qui implique immédiatement que le rapport No(T')/N(T') est strictement positif, établissant ainsi
qu'une fraction positive de tous les zéros se situe sur la droite critique. Les travaux de Selberg [96],
[97] ont révolutionné I'étude de la fonction zéta grace a plusieurs innovations fondamentales. Ses
travaux sur la distribution de log |((1/2 + it)| ont montré qu’elle suit une loi normale de moyenne
et de variance spécifiques, préfigurant ainsi les liens avec la théorie des matrices aléatoires.

2.1.7 Proportion de zéros sur la droite critique

Comme expliqué précédemment, le théoreme de Hardy (1914) [56] a été quantifié par Selberg (1942)
[96], qui a démontré quune proportion positive de zéros a une partie réelle égale a 1/2. La percée

5. L’article de Siegel de 1932 sur les carnets de Riemann montre que, bien que Hardy et Littlewood aient re-
découvert indépendamment le terme principal de ce développement en 1920 grace a leur “équation fonctionnelle
approchée” utilisant des méthodes similaires (la méthode du point-selle), les travaux de Riemann apportent des
idées supplémentaires.
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de Levinson en 1974 [73] a prouvé qu’au moins 1/3 des zéros non triviaux se situent sur la droite
critique, grace a des techniques de lissage qui réduisent la partie réelle de la fonction zéta au
voisinage de cette droite. L’amélioration apportée par Conrey en 1989 [34] (la proportion passant
de 1/3 4 2/5) a utilisé des techniques de lissage plus sophistiquées et une analyse asymptotique. Le
résultat de 2011 de Bui, Conrey et Young [12], atteignant 41 %, a employé plusieurs polynémes de
Dirichlet et des techniques d’optimisation issues de la théorie des fonctions extrémales, représentant
I'état de lart actuel dans cette approche. Pratt et al. [88] ont le record actuel de 41,7 % basé sur le
modificateur de Feng [16].

2.1.8 Régions sans zéros et estimation de la répartition des zéros

Les régions classiques sans zéros, telles que celle démontrée par de la Vallée Poussin [106] montrant
que ((s) # 0 pour Re(s) > 1—c/ log(|Im(s)|+2), fournissent des bornes explicites sur la distribution
des nombres premiers dans les progressions arithmétiques. Les estimations de densité de zéros,
initiées par Bohr et Landau, bornent le nombre N(o,T) de zéros tels que Re(s) > o
et |[IJm(s)| < T. Les meilleurs résultats connus montrent que N(o,T) < T~ pour différentes
valeurs de ¢ dépendant de o, avec une amélioration

3(1—o)
2—0o

N(o,T) < T (log T)°

Montgomery et d’autres ont fourni des bornes de plus en plus précises lorsque o — 1. Le résultat
de densité nulle de Guth-Maynard [53] constitue la premiére amélioration du théoreme d’Ingham
au voisinage de 0 = 3/4 en 85 ans.

2.1.9 Hypothese de Lindelof

L’hypothese de Lindelof stipule que [((1/2 +it)| < t° pour tout € > 0. Si ¢ est réel, alors u(o) est
défini comme l'infimum de tous les nombres réels a tels que |((o + it)| = O (t*). On a u(o) =0
pour o > 1, et I"équation fonctionnelle implique que p(o) = (1 — o) — o + 1/2. Le théoréme de
Phragmén-Lindelof implique que p est une fonction convexe. L’hypothese de Lindelof stipule que
1(1/2) = 0, ce qui, combiné aux propriétés de p mentionnées précédemment, implique que (o)
vaut 0 pour 0 > 1/2 et 1/2 — o pour o < 1/2. Bien que moins forte que ’hypotheése de Riemann,
cette hypotheése aurait néanmoins des applications importantes aux moments des fonctions L et
aux problemes de sous-convexité.

2.2 Théorie des fonctions entieres et méromorphes
2.2.1 Théoréme de factorisation de Hadamard
Une fonction entiere f est d’ordre o si :

) loglog M (r)
o = limsup —————=
r—00 log r

ot M(r) = maxj.|, | f(2)|. La formule du produit de Hadamard stipule qu'une fonction entiere f
d’ordre 1 peut s’écrire :

f(z) = 6A+BZH (1 — Z) e*/P

P P

13



ou le produit porte sur tous les zéros p de f, et A et B sont des constantes.
La fonction zéta complete

£(5) = a5 — T (/2)¢(5) (6

est une fonction entiere d’ordre un munie de la représentation du produit de Hadamard® [55, 5, 72]
z
§(2) =€) ] (1- p

Riemann considere la fonction (il la notait £(s), mais, depuis Hardy, on utilise Z(s)).

=(s) = £(1/2 + is) (7)

L’équation fonctionnelle £(s) = £(1 — s) implique Z(s) = Z(—s), donc la fonction = est paire et
ses zéros sont groupés par paires +a. De plus, = est entiere d’ordre 1. Pour chaque paire de zéros
+a, les facteurs exponentiels e/ et =%/ g’annulent et la factorisation de Hadamard de = prend
la forme particulierement simple suivante :

[1]
[1]

() =2(0) TI (1—82>

2
Re(a)>0 «

ou le produit porte uniquement sur les zéros a partie réelle positive. Les deux représentations du
produit sont identiques” & 1’exception du facteur constant et, tandis que £(0) = %, on a

(0) = —w ~ 0.497121

Cette nuance est a l'origine de la seule “erreur” dans la formule de Riemann pour le nombre de
nombres premiers inférieurs a x, ot il a utilisé log Z(0) au lieu de log £(0).

[1]

2.2.2 Théorie de Nevanlinna

Cette théorie de la distribution des valeurs [32, 83, (8] étudie la croissance et la distribution des
valeurs des fonctions méromorphes a travers les fonctions caractéristiques et les relations de dé-
ficience. Il est a noter que la caractéristique de Nevanlinna est étroitement liée a la formule de
Jensen.

Pour une fonction analytique f dont les zéros a; appartiennent a |z| < r, la formule de Jensen
affirme que, pourvu que f(0) # 0,

r 1 2 ’
log | £(0 1 7:7/ 1 Y| 46.
R e !

6. Le produit infini est défini ici comme la limite, lorsque T tend vers I'infini, du produit sur p avec |p| < T.
1tis 1-=
2 — a

140 = 12+ -°
3 Tia 1-353

7. en utilisant 'identité 1 —
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Cette relation entre la croissance moyenne au bord de f et la distribution de ses zéros est précisément
ce que la théorie de Nevanlinna systématise pour les fonctions méromorphes.

La caractéristique T'(r, f) = m(r, f)+ N(r, f),r > 0, peut ainsi étre vue comme une version affinée
des quantités apparaissant dans la formule de Jensen, la fonction de comptage N (r, f) enregistrant
les poles et la fonction de proximité m(r, f) enregistrant la croissance au bord. Pour la fonction
zéta, on peut définir la caractéristique de Nevanlinna T'(r, ¢) et étudier sa croissance . La théorie
fournit des outils tels que les premier et deuxiéme théorémes principaux qui relient la distribution
des a-points (solutions de f(z) = a) a la croissance de la fonction. Bien que les applications directes
pour démontrer HR n’aient pas abouti, la théorie de Nevanlinna éclaire le caractere exceptionnel
de la valeur 0 pour ((s), comme le montre le théoréeme de Borchsenius-Jessen présenté ci-dessous,
et offre des analogies avec les théorémes de type Picard [19]. Des travaux récents ont exploré les
liens entre la théorie de Nevanlinna et les propriétés d’universalité de ((s).

2.2.3 Comportement moyen de log|((s)| et zéros de ((s) — x

Le théoreme de Borchsenius-Jessen [7] offre un contraste frappant avec HR. Alors que tous les zéros
non triviaux de ((s) sont conjecturés comme appartenant a la droite critique Re(s) = 1/2, les zéros
de ((s) — x pour tout x # 0 se regroupent densément pres de la droite critique par la droite. Plus
précisément :
- Pour 2z # 0, l'équation ((s) = x admet une infinité de solutions dans toute bande
1/2 < Re(s) < o.
- La densité des solutions croit indéfiniment lorsque Re(s) — 1/27F.
- Si N,(T) compte les zéros de ((s) — x tels que Re(s) > 1/2 et 0 < TJm(s) < T, alors
N(T)/T — oo lorsque T — 0.
Ce phénomene met en évidence le caractere exceptionnel de la valeur x = 0 et montre que HR est
instable sous l'effet de perturbations : I’ajout d’une constante quelconque a ¢(s) détruit ’alignement
des zéros sur la droite critique. Ce résultat est lié aux théoremes de la moyenne pour log ((s) dans
la bande critique et aux propriétés ergodiques du flot s — s + it sur la distribution des valeurs de
((s). Le théoreme de Borchsenius-Jessen peut étre considéré comme le couronnement du programme
de Bohr-Landau sur les fonctions presque périodiques et les séries de Dirichlet. Alors que Bohr et
Landau ont établi le cadre général pour comprendre la distribution des valeurs des séries de Dirichlet
par le biais de la quasi-périodicité, Borchsenius et Jessen ont obtenu le résultat définitif pour la
fonction zéta de Riemann elle-méme, démontrant que log ((o + it) admet une distribution limite
continue 4.

2.2.4 Théoréme d’universalité de Voronin, zeta le caméléon mathématique

Ce remarquable théoreme de 1975 [108] stipule que la fonction zéta de Riemann peut approcher
arbitrairement bien toute fonction holomorphe non nulle dans la bande critique. Le théoreme ori-
ginal de Voronin a établi I'universalité pour les disques : si 0 < r < 1/4, si f(s) est continue sur
|s| < r, holomorphe sur |s| < r avec f(s) # 0 sur |s| < r, et si e > 0, alors il existe , tel que :

f(s)—§<s+2+it0)‘ <e

max
|s|<r

A la suite des travaux pionniers de Voronin, Reich et Bagchi ont démontré que si K est un sous-
ensemble compact de la bande {s : 1/2 < fRe(s) < 1} muni d’un complément connexe, si f est
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continue sur K et holomorphe a l'intérieur de K avec f(s) # 0 sur K, et si € > 0, alors il existe ¢,
tel que

max |((s +itg) — f(s)] <€

seK

De plus, 'ensemble de tels t, possede une densité inférieure positive. Ainsi, la fonction zéta de
Riemann dans la bande critique % < Re(z) < 1 se comporte comme un caméléon mathématique :
elle peut approcher toute fonction holomorphe non nulle sur les ensembles compacts par simple
translation verticale dans le plan complexe. Ce résultat utilise, comme dans le cadre presque pé-
riodique de Bohr-Landau, les propriétés ergodiques du flot de Kronecker sur le tore de dimension
infinie, dual compact du groupe discret Q* des nombres rationnels non nuls. Nous allons maintenant
aborder 'ingrédient-clé, qui est de nature différente.

Comme nous 'avons brievement mentionné plus haut dans la note de bas de page n° 3, Riemann,
dans son Mémoire sur les séries trigonométriques, a montré, dans son étude du noyau de Dirichlet,
qu'une série de nombres réels conditionnellement convergente peut prendre la valeur de n’importe
quelle somme C' apres un réarrangement approprié de ses termes. Ce qui est remarquable, c’est que
cette généralisation du fait principal est au cceur de la démonstration de Voronin. Le résultat-clé
est le suivant ([70], Théoréme 1.16).

Soit H un espace de Hilbert, et {x,, } une suite dans H satisfaisant les deux conditions suivantes :

(e.e] o0
> llemll® < oo; > |(@m, @) =00 Vz e Hx#0
m=1 m=1
Alors I'ensemble de toutes les séries convergentes > o0 | amTm, |am| =1, m = 1,2,... est

dense dans H.

La preuve de ce résultat témoigne de la puissance du théoréme de Hahn-Banach®, en utilisant I’en-
semble convexe des sommes Y b, 2, ou |by,| < 1.

Le théoreme de Voronin a été étendu au point d’atteindre 'universalité pour les fonctions L de
Dirichlet et d’autres classes de fonctions L, révélant ainsi un phénomene général pour les fonctions
avec produits eulériens. L’essence de la démonstration est de montrer que, en tant qu’éléments
d’un espace H approprié de type Bergman/Hardy, le systeme {log (1 — p~*)}, ou p parcourt les
nombres premiers, satisfait les deux conditions du théoréme précédent. Ceci permet d’approcher le
logarithme de la fonction f(s) (ce qui est logique puisque K est simplement connexe).

3 Un siecle et demi de construction de théories vers HR

Depuis le Mémoire de Riemann de 1859, “Uber die Anzahl der Primzahlen unter einer gegebenen
Grosse”, 'hypothese qu’il a formulée concernant les zéros de la fonction zéta a inspiré certains des
développements les plus importants en mathématiques.

La poursuite de I'’hypothese de Riemann, qu’elle soit explicite ou qu’elle serve d’idéal motivant, a
conduit a I’émergence de théories entieres et a profondément transformé de nombreux domaines.
Cette section présente un apercu des principaux cadres et idées mathématiques développés dans le
cadre de cette quéte permanente.
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3.1 Analyse harmonique et analyse fonctionnelle
3.1.1 Espaces de Hilbert et théorie spectrale

La démonstration du théoréeme de Voronin, évoquée précédemment, illustre la puissance des tech-
niques des espaces de Hilbert. L’inclusion par Hilbert de HR comme huitieme probléme de sa liste
de 23 problémes en 1900 coincide avec le développement de la théorie spectrale. La conjecture de
Hilbert-Pélya (années 1910) suggere 'existence d’un opérateur auto-adjoint H tel que les solutions
non triviales de ((1/2 + it) = 0 soient les valeurs propres de H. Ceci impliquerait immédiatement
HR, puisque les valeurs propres des opérateurs auto-adjoints sont réelles.

3.1.2 Théorie de la diffusion et interprétation spectrale

L’approche par diffusion, développée par Faddeev et Pavlov, interpréte les zéros de ((s) comme
des résonances (poles de la matrice de diffusion) d’un certain systéeme quantique. La conjecture de
Berry-Keating [3] suggere des liens avec des systémes hamiltoniens chaotiques classiques dont la
quantification pourrait fournir 'opérateur recherché. Parmi les propositions spécifiques, on trouve
H = %(xp + pz) (ou x est la position et p 'impulsion) avec des conditions aux limites appropriées,
bien que des constructions rigoureuses restent a ce jour difficiles a établir. Le lien avec le chaos
quantique est renforcé par la correspondance des propriétés statistiques des zéros avec celles des
systémes chaotiques quantiques.

3.2 Géométrie algébrique et arithmétique

Comme tout mathématicien le sait, une des stratégies éprouvées face a un probleme difficile consiste
a en élargir le champ d’application : généraliser la question puis examiner des cas particuliers ou
les caractéristiques essentielles apparaissent plus clairement. C’est dans ce cadre qu’André Weil
a réalisé une avancée décisive en résolvant ’analogue de I'hypothese pour les corps globaux de
caractéristique finie.

3.2.1 Preuve de Weil pour les corps de fonctions

La démonstration de I’hypothese de Riemann pour les courbes sur des corps finis par Weil dans les
années 1940 utilisait la théorie de l'intersection sur le produit C' x C' d’une courbe avec elle-méme.
Pour une courbe projective lisse C' sur F,, la fonction zéta

o0 Nn
Zo(t) = exp (Z t”)
n=1 T
avec N, = |C(Fn)|, satisfait une équation fonctionnelle et est de la forme

P(t)
(1-t)(1—qt)’

Zo(t) =

oil P(t) est un polynoéme dont les racines ont pour valeur absolue ¢~'/2. Ceci est I’analogue de HR.
La démonstration de Weil utilisait I’appariement des intersections sur les diviseurs et le théoreme
de I'indice de Hodge, établissant une approche géométrique des problemes de type HR. Les simplifi-
cations successives de la démonstration de Weil par Mattuck-Tate et Grothendieck représentent un
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exemple paradigmatique de la fagon dont la compréhension mathématique évolue grace au dévelop-
pement de cadres théoriques plus puissants. La réussite originale de Weil nécessitait une virtuosité
technique pour surmonter ’absence d’outils théoriques-clés. Les simplifications ultérieures ont dé-
montré comment la disponibilité de résultats généraux — le théoreme de Riemann-Roch pour les
surfaces® et la théorie systématique de I'intersection — permet de transformer des constructions spé-
cialisées en applications de techniques standard. Si le théoreme classique de Riemann-Roch pour
les surfaces a été formulé par Castelnuovo dans les années 1890, la version basée sur la théorie
des faisceaux, qui a permis la simplification de Mattuck-Tate, a été développée par Serre et la
théorie de l'intersection adaptée a ce cadre représente un effort collectif impliquant les travaux fon-
dateurs d’André Weil en 1946, la théorie locale de Claude Chevalley, la formulation algébrique de
Serre en 1958, et les développements ultérieurs qui ont abouti au cadre moderne des multiplicités
d’intersection utilisant les foncteurs Tor et la cohomologie des faisceaux.

3.2.2 Schémas de Grothendieck et cohomologie étale

Grothendieck a révolutionné la géométrie algébrique en introduisant les schémas et la cohomologie
étale [1], notamment dans le but de démontrer les conjectures de Weil en dimension arbitraire.
Les groupes de cohomologie étale HZ (X, Q) d’une variété X sur F, sont munis d'une action du
morphisme de Frobenius, et la fonction zéta s’exprime comme suit :

2dim X

ZX(t): H Pi(t>(71)i+1

ot P(t) = det(1 — tF|H(X,Qy)). La preuve de Deligne (1974) des conjectures de Weil a montré
que les valeurs propres de Frobenius sur H* ont une valeur absolue ¢*/2, établissant HR pour les
variétés sur les corps finis.

Ce qui est particulierement stimulant dans ’étude du site étale de Spec(Z), c’est 'analogie frap-
pante, due a David Mumford et Barry Mazur, entre le role des idéaux premiers en géométrie
arithmétique et celui des nceuds dans la sphéere tridimensionnelle. Dans cette perspective, chaque
idéal premier peut étre vu comme l'analogue d’un noeud, et la maniere complexe dont les idéaux
premiers sont imbriqués au sein de Spec(Z) muni de la topologie étale reflete la fagon dont les noeuds
peuvent étre entrelacés dans S3. Cette vision a ouvert de nouvelles perspectives topologiques a la
théorie des nombres, suggérant que la géométrie des idéaux premiers pourrait étre appréhendée a
travers des concepts plus proches de la topologie de basse dimension que de ’analyse classique. Au
coeur de cette analogie se trouve I'extension considérable de la théorie de Galois par Grothendieck,
des corps aux schémas généraux, réalisée grace a I'introduction du groupe fondamental étale. Elle
fournit le langage naturel permettant d’interpréter I’arithmétique des nombres premiers en termes
d’espaces de recouvrement, offrant ainsi un cadre conceptuel dans lequel I'analogie de Mazur et
Mumford a pu prendre forme et se développer [77]. Nous reviendrons brievement sur ce point dans
le §3.5.2.

3.2.3 Motifs

L’invention des motifs par Grothendieck vise a fournir une théorie cohomologique universelle expli-
quant les schémas communs aux différentes théories cohomologiques (de de Rham, étale, cristalline,
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etc.). Dans ce cadre, les fonctions zéta et les fonctions L sont associées a des motifs, et leurs proprié-
tés analytiques incluant potentiellement HR) découlent des propriétés géométriques des motifs. Le
formalisme motivique suggere une interprétation cohomologique de I’égalité de de Rham classique,
considérant Spec(Z) comme une courbe arithmétique et recherchant une théorie cohomologique ap-
propriée. Si la théorie compléte des motifs mixtes demeure conjecturale, des cas particuliers comme
les motifs d’Artin et les motifs de formes modulaires ont été largement développés.

3.3 Formes automorphes et théorie de la représentation

Dans I'ceuvre d’André Weil, I’hypothese de Riemann est naturellement reformulée dans le cadre plus
large des corps globaux. Weil a démontré I'analogue de HR pour les corps globaux de caractéristique
finie, et son ouvrage Basic Number Theory (Springer, 1967) illustre la puissance de cette approche
unificatrice de la théorie des nombres. Une intuition fondamentale est que, bien que les corps globaux
soient dénombrables et discrets, chacun admet un compagnon naturel : un anneau localement
compact et non discret qui contient le corps global comme sous-groupe cocompact discret. Ce
compagnon est 'anneau des adéles, introduit initialement dans le contexte de la théorie des corps de
classes. [’anneau des adeles fournit une structure harmonique-analytique riche, et la reformulation
par Weil des formules explicites dans ce cadre représente une étape décisive vers 'exploitation de
cette structure comme outil en théorie analytique des nombres. L’ouvrage de Weil, Basic Number
Theory, fut la premiere exposition systématique de 'utilisation des adeles et des ideles en théorie
des nombres. Il unifia non seulement la théorie des corps de classes, mais jeta également les bases
des développements ultérieurs en matiere de formes automorphes et de théorie des représentations,
que nous allons maintenant aborder.

3.3.1 Le programme de Langlands

Cette extension de la théorie des corps de classes au cas non abélien constitue un vaste réseau
de conjectures, initié par Langlands dans les années 1960. Elle prédit des liens profonds entre les
représentations de Galois et les représentations automorphes. Pour les fonctions L, elle prédit que
toute fonction L motivique (issue de la géométrie algébrique) est égale a une fonction L automorphe
(issue de I'analyse harmonique sur les groupes adéliques). L’équation fonctionnelle démontrée est
en réalité I'un des principaux apports de la théorie automorphe, établissant que les fonctions L
automorphes possedent la structure analytique requise pour formuler I’hypothese de Riemann gé-
néralisée. Puisqu’on s’attend a ce que les fonctions L automorphes satisfassent HR, cela devrait
impliquer que toutes les fonctions L motiviques la satisfassent également. Le programme de Lan-
glands a connu des succes spectaculaires (la démonstration par Wiles du dernier théoréme de Fermat
s’appuyait sur la conjecture de Taniyama-Shimura, désormais un théoréme), mais les conjectures
générales restent ouvertes.

3.3.2 Formes modulaires et fonctions L

La théorie des formes modulaires fournit des exemples concrets de fonctions L admettant un pro-
longement analytique et des équations fonctionnelles. Pour une forme parabolique de poids k,

f(2) =300 ane®™™* sur Ty(NN), la fonction L associée :
0 ay
L(57 f) = Z s

n=1 n
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satisfait une équation fonctionnelle reliant s & k — s. La conjecture de Ramanujan-Petersson (dé-
montrée par Deligne) borne |a,| < 2p*=1D/2 ce qui est 'analogue de HR au niveau des facteurs
d’Euler. Ces exemples illustrent la forme attendue des fonctions L générales et leur relation avec
les objets géométriques.

3.3.3 Formule de trace et fonction zéta de Selberg

La formule de trace de Selberg [98], [59] pour les groupes discrets I' agissant sur des espaces hyper-
boliques relie les données spectrales (les valeurs propres du laplacien) a des données géométriques
(les longueurs de géodésiques fermées). Pour I' = PSL(2,Z), on obtient la fonction zéta de Selberg :

Zr(s)= 11 H )

p primitive k=0

ou le produit porte sur les géodésiques primitives fermées p de longueur [(p). Cette fonction s’annule
aux valeurs propres du laplacien, fournissant ainsi une interprétation spectrale complete. L’analogie
avec la fonction zéta de Riemann est frappante : la fonction zéta de Riemann et la fonction zéta
de Selberg possedent toutes deux des produits eulériens, des équations fonctionnelles et leurs zéros
contiennent des informations importantes (valeurs propres vs. distribution des nombres premiers).
La formule de trace de Selberg pour les surfaces de Riemann d’aire finie acquiert des termes sup-
plémentaires qui la rendent, par exemple dans le cas de X = H/PSL(2,Z) (ou H est le demi-plan
supérieur muni de la métrique de Poincaré), encore plus semblable aux formules explicites, puisque
les termes paraboliques font désormais intervenir explicitement la somme.

ZZ g(2logn)

(pour une fonction test g) a comparer aux termes A(n) dans les formules explicites

22 1 glogn
n=1

Il existe cependant une différence notable : ces termes apparaissent avec un signe positif au lieu du
signe négatif, comme indiqué dans [59] §12. Cette discussion sur le signe moins a été étendue au
cas de la limite semi-classique des systémes hamiltoniens en physique dans [3].

3.4 Théorie des matrices aléatoires et chaos quantique
3.4.1 Corrélation des paires d’espacements de Montgomery

En 1973, Hugh Montgomery [79], [80] a conjecturé une propriété statistique remarquable des zéros
non triviaux de la fonction zéta de Riemann sur la droite critique. En notant v les ordonnées
des zéros p = % + iy avec 0 < v < T, il a étudié la fonction de corrélation des espacements
normalisés entre deux zéros consécutifs. Plus précisément, il a conjecturé que pour 0 < a < b, et

N(T) = ZO<7§T L,

gt {050 <3 2 s Y (1 ()
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Cette densité conjecturée reflete une répulsion entre les zéros et suggere qu’ils ne sont pas distribués
aléatoirement, mais présentent une régularité semblable a celle des valeurs propres de grandes
matrices hermitiennes aléatoires. Dans une anecdote souvent rapportée, Montgomery mentionna
sa formule lors d’'une visite a I'Institute for Advanced Study, ou le physicien Freeman Dyson, en
la voyant, la reconnut immédiatement comme la fonction de corrélation de paires pour les valeurs
propres de l'ensemble unitaire gaussien (GUE) de la théorie des matrices aléatoires. Ce résultat fut
vérifié numériquement par Odlyzko avec une précision extraordinaire. Ce lien suggere que les zéros
se comportent comme les valeurs propres d'une matrice hermitienne aléatoire, indiquant ’existence
d’un systéme quantique chaotique sous-jacent.

Cette rencontre fortuite a jeté les bases d’une connexion profonde et fructueuse entre la théorie des
nombres et la mécanique statistique quantique.

3.4.2 Les statistiques d’Odlyzko

Les calculs d’Andrew Odlyzko dans les années 1980-1990 ont révolutionné notre compréhension des
propriétés statistiques des zéros de la fonction zéta. En calculant des millions de zéros a des valeurs
tres élevées (autour du 10?°-ieme zéro), il a constaté que :

- les espacements entre plus proches voisins suivent la distribution GUE avec une précision
remarquable ;

- les fonctions de corrélation d’ordre supérieur correspondent également aux prédictions des
matrices aléatoires;

- les statistiques locales sont universelles, mais les statistiques globales présentent des fluctua-
tions typiques de la théorie des nombres.

Ses données ont apporté une preuve convaincante de '’hypothese GUE et ont inspiré une grande
partie des travaux ultérieurs reliant la théorie des nombres a la théorie des matrices aléatoires. Cette
concordance s’étend a des détails précis comme la variance du nombre de zéros dans les intervalles
et la distribution des arguments de ((1/2 + it).

Pour comparer les propriétés statistiques des zéros de la fonction zéta de Riemann avec les valeurs
propres de matrices aléatoires de I’ensemble unitaire gaussien (GUE), il est nécessaire de prendre
en compte une incompatibilité fondamentale de leurs densités. Les valeurs propres d’une matrice
GUE de dimension N x N présentent un espacement moyen constant 7/ VN le long de I'axe réel
(apreés normalisation appropriée). En revanche, les zéros p, = 1/2 + i7, de la fonction zéta de
Riemann possedent des parties imaginaires -, dont la densité croit logarithmiquement : le nombre
de zéros tels que 0 < v < T est approximativement égal a % log %, ce qui donne un espacement

moyen local au voisinage de la hauteur T d’environ —2%—.
log(T/2m)

Pour effectuer une comparaison pertinente, il est nécessaire de redimensionner localement les zéros.
Plus précisément, lors de I’étude des zéros proches de la hauteur T', on considere les espacements
redimensionnés.

log(T'/27)
" 27
Ces espacements, dont la valeur moyenne est égale a 1, sont ensuite comparés aux espacements
des valeurs propres des matrices GUE avec N ~ log % Apres ce rééchelonnement dépendant de la
hauteur, on observe une remarquable concordance des statistiques locales, telles que les distributions

(’Vn—i-l - 7n>
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des espacements entre plus proches voisins et les fonctions de corrélation a n points. Toutefois, cette
procédure de rééchelonnement met en évidence que toute correspondance entre les zéros de zéta et
les valeurs propres de matrices aléatoires est intrinsequement locale et ne peut résulter d’un simple
opérateur spectral fixe.

3.4.3 Chaos quantique

Le domaine du chaos quantique étudie la mécanique quantique des systemes classiquement chao-
tiques. La conjecture de Berry-Tabor stipule que les systémes quantiques a limites classiques inté-
grables possedent des statistiques de Poisson pour leurs valeurs propres, tandis que ceux a limites
classiques chaotiques suivent des statistiques de matrices aléatoires (GUE pour les systémes inva-
riants par renversement du temps). L’apparition de statistiques GUE pour les zéros de zéta suggere
qu’ils proviennent de la quantification d’un systéme classique chaotique [3]. Parmi les propositions
spécifiques figurent les billards dans certains domaines ou des systémes dynamiques plus abstraits.

3.4.4 Théorie de Katz-Sarnak

S’appuyant sur la découverte de Montgomery et la confirmation numérique par Odlyzko du lien
entre les zéros de zéta de Riemann et les statistiques des matrices aléatoires, Nicholas Katz et Peter
Sarnak ont étendu cette correspondance a des familles entieres de fonctions L et établi un cadre
théorique systématique pour comprendre leur comportement statistique [64, 65]. Leur intuition
novatrice a révélé que différentes familles de fonctions L présentent des propriétés statistiques
universelles régies par I'un des groupes de matrices classiques — unitaire U(N), orthogonal O(N) ou
symplectique Sp(2N) — le type de symétrie spécifique étant déterminé par la structure arithmétique
et géométrique de la famille ellee-méme [64, 12]. La conjecture de densité de Katz-Sarnak prédit que,
lorsque les conducteurs analytiques des fonctions L d’une famille tendent vers 'infini, la distribution
de leurs zéros normalisés de basse énergie au voisinage du point critique s = 1/2 converge vers les
limites d’échelle des valeurs propres regroupées autour de 1 dans I’ensemble de matrices aléatoires
correspondant [64, 65, 66]. De fagon remarquable, ils ont démontré rigoureusement leurs conjectures
pour des familles de fonctions L sur des corps finis en reliant les zéros aux valeurs propres de
Frobenius et en appliquant le théoreme d’équirépartition de Deligne [64], [51], [10], [41], fournissant
ainsi la premiere vérification complete de I'universalité des matrices aléatoires dans un contexte de
théorie des nombres. Ce travail a non seulement unifié des phénomenes auparavant disparates sous
un seul cadre conceptuel, mais a également fourni de nouveaux outils puissants pour étudier les
problémes classiques de la théorie analytique des nombres, de la distribution des nombres premiers
a I'arithmétique des courbes elliptiques.

3.4.5 Matrices de moments et unitaires (Keating—Snaith)

On conjecture (voir [33]) que le comportement asymptotique des moments de la fonction zéta est
de la forme :

1 /T 2
T/o C(1/2 + it)|*dt ~ ci(log T)*

Pour une certaine constante ¢, Hardy et Littlewood I'ont démontré en 1918 pour k£ = 1, et Ingham
en 1926 [62]. Pour k = 2, ona ¢ = 1 et ¢y = (2%2)_1. Ce sont les seules valeurs de k pour
lesquelles cette conjecture est démontrée, et pendant longtemps, aucune valeur conjecturale de ¢,
n’a été proposée pour aucune autre valeur de k. Conrey et Ghosh [35] ont conjecturé en 1992 la
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valeur de ¢ pour k = 3, et Conrey et Gonek [36] ont conjecturé celle pour k = 4 en 1998. Ces
deux conjectures sont de la forme ¢ = agr/(k?!), oll, comme expliqué ci-dessous, ay est un facteur
arithmétique bien connu, mais les constantes g3 = 42 et g4 = 24024 restaient inconnues. Lors de
la conférence de Vienne de 1998 au sujet de HR, Keating et Snaith [66], [67] ont annoncé leur
découverte majeure : 'utilisation de la théorie des matrices aléatoires pour estimer la valeur de
gr- Leur intuition novatrice résidait dans la reconnaissance du fait que la constante f;, = gi/(k*!)
découle naturellement de la théorie des matrices aléatoires. La conjecture générale prend alors la
forme ¢, = ay fi, ou

- fr provient de la théorie des matrices aléatoires (le moment d’ordre k de | det(I — U)|* pour

U une matrice unitaire aléatoire)

- ay, est un facteur arithmétique qui capture la complexité arithmétique par le biais d’'un produit

eulérien, 2 2
) £ ()

p m=0

La partie matricielle aléatoire f; peut étre exprimée comme suit :

Cette séparation révele un principe remarquable : le comportement “universel” découle de la théorie
des matrices aléatoires, tandis que les spécificités arithmétiques de la fonction zéta sont encodées
séparément dans a,. Ceci a ouvert un nouveau paradigme d’utilisation des modeles de matrices
aléatoires pour prédire des résultats de théorie des nombres, étendu ultérieurement a d’autres
fonctions L et a leurs dérivées [38, 50, 104].

3.5 Géométrie non-commutative
3.5.1 Formule de trace de Connes

Connes a développé une formule de trace dans le contexte de la géométrie non commutative® qui
retrouve la formule explicite de Weil pour les zéros de ((s) et des fonctions L [17, 18]. L’idée-clé est
de travailler avec I’espace non commutatif des classes d’adeles A/Q*, ot A est I'anneau des adeles.
Sur cet espace, il existe une action naturelle du groupe des classes d’ideles GL(A)/Q* ~ 7% x R
La formule de la trace établit la relation suivante :

- Coté spectral : contributions des zéros des fonctions L a Grossen-caractere.
- Coté géométrique : contributions des places de Q.

Au départ, la formule de trace a été énoncée pour les corps globaux généraux comme une conjec-
ture équivalente a la validité de I'analogue de I’équation de Riemann pour toutes les fonctions L
a Grossen-caractere. Cependant, la forme semi-locale de la formule de trace a déja été démontrée
dans [17], et elle admet comme corollaires simples les versions globales permettant la présence de
zéros non critiques [78] (voir aussi [18]).

8. L’origine provient d’un systéme de mécanique statistique quantique présentant des transitions de phase et
ayant la fonction zéta de Riemann comme fonction de partition [8]
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Ceci fournit une réalisation spectrale ou les zéros apparaissent sous la forme d’un spectre d’absorp-
tion, ce qui explique le signe moins dans les formules explicites par rapport a la formule de trace
de Selberg.

Ces approches visent a géométriser I’équation de Riemann a 'aide d’outils issus des algebres d’opé-
rateurs et de la géométrie différentielle non commutative. Un quotient ergodique tel que I'espace des
classes d’adeles Ay /K> d’un corps de nombres K est encodé par le produit vectoriel de 1'algebre
des fonctions sur Ag par I'action de K*. Les réalisations spectrales mentionnées plus haut font
intervenir 'homologie de Hochschild du produit vectoriel de I'algebre de Bruhat-Schwartz, tandis
que la topologie de Ax /K™ est encodée par le produit vectoriel des C*-algebres. Un résultat récent
[13] montre que cet encodage topologique est fidele : des corps de nombres non isomorphes donnent
des C*-algebres non isomorphes.

3.5.2 Nceuds, nombres premiers et théorie des corps de classes

Pour le corps global K = Q, la projection de I'espace des classes d’adéles :
T: Yy =Q"\A - Q\A/Z" = X,

sur le secteur X correspondant a ( illustre I’analogie mentionnée précédemment, en théorie des
corps de classes, entre les noeuds et les nombres premiers. A chaque nombre premier p correspond
une orbite périodique C, C Xg de longueur logp. Soit alors Frob, € w{'(Spec (F,)) le générateur
canonique du groupe fondamental étale et Z, I'anneau Z localisé en p. On a alors [20],

(i) L’image réciproque 7 '(C,) C Yy de l'orbite périodique C, est canoniquement isomorphe
au tore d’application de la multiplication par r* {Frob,} dans le groupe fondamental étale
abélianisé ¢! (Spec Z) ).

(ii) L’isomorphisme canonique en (i) est équivariant pour l'action du groupe des classes d’idéles.

(iii) La monodromie du C), périodique dans 7~ *(C,) C Yy est égale a 'application naturelle
r*: 7wt (SpecF,) — 7§ (Spec Z(p))“b

et détermine la relation qui lie le nombre premier p a tous les autres nombres premiers.

Ce résultat montre que 'espace des classes d’adeles joue le role d’'un homologue, en théorie des
corps de classes, des revétements étales abéliens intervenant dans la théorie de Grothendieck.

De facon remarquable, I'espace Xg admet une incarnation en théorie des topos comme site d’échelle
naturellement muni d’un faisceau structural de caractéristique un (voir larticle [20] et ses réfé-
rences).

3.6 Fonctions L p-adiques et fonctions L motiviques
3.6.1 Fonctions L p-adiques et théorie d’Iwasawa

Kubota et Leopoldt ont construit des analogues p-adiques de la fonction zéta de Riemann, qui
sont des fonctions analytiques p-adiques interpolant des valeurs particulieres de la fonction zéta
classique. Pour tout nombre premier p, la fonction zéta p-adique (,(s) est une fonction analytique
p-adique sur Z, telle que :

GL—k) =1 -p" 1~k
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pour les entiers positifs k. La théorie d’Iwasawa étudie ces fonctions dans des tours d’extensions
cyclotomiques, les reliant aux groupes de classes d’idéaux et aux unités. La conjecture principale
de la théorie d’Iwasawa (démontrée par Mazur-Wiles) relie les fonctions L p-adiques aux groupes
de Selmer des représentations de Galois. Bien qu’il n’existe pas d’analogue p-adique direct de
HR, la croissance et les zéros des fonctions L p-adiques sont intimement liés a des phénomenes
arithmétiques profonds.

3.6.2 Fonctions L motiviques et conjectures de Bloch—Kato
Ces conjectures d’une grande portée relient des valeurs particulieres des fonctions L a des invariants
arithmétiques. Pour un motif M muni d’une fonction L, L(M,s), les conjectures prédisent que :

- Tordre d’annulation de L(M, s) aux points entiers est égal au rang de certains K-groupes ou
groupes de Selmer ;

- le coefficient dominant est lié aux régulateurs, aux périodes et aux nombres de Tamagawa.

Des cas particuliers incluent la conjecture de Birch et Swinnerton-Dyer (pour les courbes elliptiques)
et les conjectures de Beilinson. Celles-ci inscrivent 'arithmétique de Riemann dans un contexte
arithmétique plus large ou les zéros des fonctions L encodent des informations géométriques et
arithmétiques. Les conjectures suggerent que l'arithmétique de Riemann fait partie d’'un vaste
réseau de relations entre I'analyse, I'algebre et la géométrie.

3.7 Mathématiques computationnelles et expérimentales
3.7.1 Calculs en haute précision

La vérification numérique de I’équation de Riemann-Siegel a une histoire riche :
- Riemann (1859) : calcul des premiers zéros,
- Gram (1903) : 15 zéros,
- Backlund (1914) : 79 zéros,
- Hutchinson (1925) : 138 zéros,
- Titchmarsh (1935-1936) : 1 041 zéros a l’aide de la formule de Riemann-Siegel,
- Turing (1950) : vérification de 1 104 zéros a 'aide du Manchester Mark 1,
- Lehmer (1956) : 25 000 zéros a l'aide d’ordinateurs électroniques,
- Rosser, Yohe, Schoenfeld (1968) : 3 500 000 zéros,
- van de Lune, te Riele, Winter (1986) : 1 500 000 000 zéros,
- Gourdon et Demichel (2004) : 10'® premiers zéros
- Platt (2021) : vérification jusqu’a une hauteur de 3 x 1012, [37].

Les calculs modernes utilisent la formule de Riemann-Siegel avec des bornes d’erreur sophistiquées
et la méthode de Turing pour une vérification rigoureuse. La publication en 1988 de ’algorithme
d’Odlyzko-Schonhage a constitué une avancée méthodologique majeure. Ces calculs massifs ap-
portent des preuves irréfutables de ’hypothese de Riemann-Siegel tout en permettant de tester
I'existence de phénomenes exceptionnels [14], [63].
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4 Formulations équivalentes

Alors que les sections précédentes ont passé en revue les théories élaborées dans le cadre de I’hy-
pothese de Riemann, il existe une tradition parallele de recherche de formulations équivalentes de
HR elle-méme. Ces reformulations, allant de la théorie élémentaire des nombres a I'analyse fonc-
tionnelle, révelent les liens profonds qui unissent I’hypothese de Riemann aux mathématiques et
suggerent parfois de nouvelles pistes de recherche. Ces formulations équivalentes sont si nombreuses
qu’un livre entier leur est consacré. L’intérét principal de toutes ces formulations réside dans le fait
que les formulations élémentaires, comme le critere de Robin ou le critere de Lagarias, démontrent
qu’au niveau logique, 'hypothese de Riemann possede un statut logique trés particulier, qui sera
examiné plus en détail ci-dessous.

4.1 Critere de positivité de Weil

L’hypothese de Riemann (HR) est équivalente a la positivité de certaines distributions construites
a partir des zéros, ce qui la relie a I'approche de Weil par une formule explicite.

La difficulté de résoudre '’hypothese de Riemann dans sa formulation analytique est souvent attri-
buée principalement au nombre infini de termes du produit eulérien.

¢(s)=[1A—p)" (8)

p

Cependant, contrairement a cette croyance répandue, il existe une propriété P(n), ne faisant in-
tervenir que les facteurs d’Euler pour les nombres premiers inférieurs a n, et dont la validité pour
tout n est équivalente a HR.

Cette propriété découle du critere de positivité de Weil, qui fait intervenir la forme quadratique QW
définie a l'aide des formules explicites de Riemann-Weil appliquées a des fonctions-tests a support
dans un intervalle symétrique compact. Apres une légere modification des notations, la transformée
de Mellin devient la transformée de Fourier du groupe R’ dont le dual de Pontjagin est identifié
au groupe additif R, et la formule explicite prend la forme suivante, similaire a (4), (5) mais avec
des notations adaptées a l'algebre de convolution involutive du groupe R .

F5)- X fo+i(-5)=Lwi
1tisez v
f(s) = /Ooo f(x)z "d*z, d'rv= Cix

ou les contributions locales sont maintenant données par

Wy (f) := (logp) i p (M + () (9)

et pour la place archimédienne
We(f) :=(log4m + ) f(1)
x!/? (10)

+/100 (f@)+f(z7") =207 2f(1)) ——d"w

r—x
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Le résultat-clé d’André Weil est 1’équivalence

RH <= S W, (g g") <0, v, 5 (5) =

ougeCx (Ri) est une fonction lisse & support compact et g*(z) := g (z 7).

Le point-clé de cette équivalence est que la somme a droite du symbole d’équivalence, évaluée sur
une fonction test g a support compact, ne fait intervenir qu'un nombre fini de nombres premiers
(puisque W, s’annule sur les fonctions a support dans (p~*,p)). Ainsi, bien que I'hypothése de
Riemann porte sur la distribution asymptotique des nombres premiers, la formulation équivalente
n’en fait intervenir qu'un nombre fini & la fois. Dans [111], H. Yoshida a démontré le résultat suivant
(Théoréeme 1 de son article).

Pour toute fonction lisse et définie positive f avec support dans l'intervalle (1/2,2) et dont la
transformée de Fourier s’annule en £, on a : W (f) > 0 ot Wy 1= —Wk.

La démonstration consiste en une analyse numérique de la positivité de la fonctionnelle de Weil W,

restreinte a l'intervalle (%, 2), et ne fournit donc aucune justification conceptuelle a cette positivité

qui pourrait se vérifier en présence de nombres premiers.

4.2 Critere de Beurling—Nyman

Cette remarquable reformulation de I'hypotheése de Riemann (Beurling 1955, Nyman 1950) stipule
que HR est équivalente & un résultat concernant la densité dans L?(0,1) des combinaisons linéaires
>icupe,, 0<6,<1 >"cb,=0o0u:

po(x) = {5197} pour z € (0,1)

et ou {y} désigne la partie fractionnaire de y. Ceci transforme 1'égalité de Riemann en un probléme
de complétude en analyse fonctionnelle. Des travaux ultérieurs de Béez-Duarte et d’autres ont
fourni des versions quantitatives, montrant que le taux d’approximation dans cette fagon de voir
est lié a la distribution des zéros hors de la droite critique.

4.3 Critere de Li
Xian-Jin Li (1997) a démontré [74] que ’hypotheése de Riemann (HR) est équivalente a la positivité

des nombres : .
1
Ay = 1—(1—-=

pour tout n > 1, ot la somme porte sur tous les zéros non triviaux p de ((s).
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4.4 Formulations en théorie élémentaire des nombres

En 1913, Gronwall a démontré dans son article “Some asymptotic expressions in the theory of
numbers” que

_ o(n) . "1

limsup ————— =€, = lim — —logn

n—>oop nloglogn Tl <kz::1 k & )
ou o(n) est la fonction somme des diviseurs et vy est la constante d’Euler-Mascheroni. S’appuyant
sur les travaux de Gronwall, Srinivasa Ramanujan a établi un lien crucial entre la fonction o(n)
et '’hypothese de Riemann dans ses travaux sur les nombres hautement composés. Ramanujan a
démontré que si ’hypothese de Riemann est vraie, alors I'inégalité o(n)/n < €”loglogn est vérifiée
pour tout entier positif n suffisamment grand. Ceci constituait le premier lien direct entre la validité
de ’hypothese de Riemann et les bornes de certaines fonctions arithmétiques.

4.4.1 Critere de Robin (1984)

Guy Robin a démontré que I’hypothese de Riemann (HR) est équivalente a I'inégalité suivante :
o(n) < e'nloglogn

pour tout n > 5040, ot o(n) est, comme précédemment, la fonction somme des diviseurs et 7 est la
constante d’Euler-Mascheroni. Ce résultat remarquable traduit I’hypothese de Riemann analytique-
complexe en termes purement arithmétiques.

4.4.2 Critére de Lagarias (2002)

Jeffrey Lagarias a affiné le critere de Robin sous la forme :
HR <= o(n) < H, + e log H,,, Vn > 1

ou H, =1+1/2+---+1/n est le n-itme nombre harmonique. Cette formulation présente ’avantage
esthétique d’étre valable pour tout entier positif.

La reformulation de I’hypothése de Riemann comme un énoncé universel sur les propriétés arith-
métiques décidables la place précisément dans la classe des énoncés que Hilbert espérait considérer
comme “démontrables” s’ils étaient vrais, et que les théoremes d’incomplétude de Godel identifient
comme potentiellement “vrais mais indémontrables”! Les résultats de Chaitin en théorie algorith-
mique de 'information démontrent que cette indémontrabilité devient de plus en plus fréquente a
mesure que la complexité des énoncés augmente. Ce lien met en lumiere les limitations fondamen-
tales des systemes mathématiques formels et fournit un exemple frappant de la facon dont méme
des problémes centraux en théorie des nombres recoupent les questions les plus profondes sur la
nature de la vérité et de la démonstration mathématiques.

Les travaux de Chaitin révelent que, d’un point de vue informationnel, la vérité mathématique et
la démontrabilité operent dans des domaines fondamentalement différents. La plupart des vérités
mathématiques ont une complexité descriptive élevée et contiennent plus d’informations que celles
qui peuvent étre extraites de systemes d’axiomes finis par des processus déductifs. Cela crée un
vaste paysage d’énoncés vrais qui restent a jamais hors de portée de la démonstration formelle, les
énoncés démontrables ne représentant qu'une fraction infinitésimale de la réalité mathématique a
mesure que la complexité augmente.
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L’estimation de la complexité algorithmique du critere de Lagarias révele des obstacles compu-
tationnels fondamentaux a la vérification de I’hypothese de Riemann par un calcul arithmétique
direct. La complexité dominante provient des exigences de factorisation des entiers pour le calcul
de la fonction somme des diviseurs, ce qui rend certaines vérifications impossibles a effectuer en
temps polynomial pour des entiers quelconques. Le calcul des nombres harmoniques et 1’évaluation
des fonctions transcendantes ajoutent des complexités supplémentaires qui alourdissent le coflit de
calcul global.

Ces limitations de complexité soulignent a la fois I’élégance et la difficulté de calcul du critere de
Lagarias comme méthode de vérification de 'hypothese de Riemann. Bien que ce critére parvienne
a transformer un énoncé analytique-complexe en opérations arithmétiques élémentaires, le cotit de
calcul de la vérification reflete la grande complexité du probléeme mathématique sous-jacent. L’ana-
lyse démontre comment la théorie de la complexité algorithmique apporte des éclairages essentiels
sur la faisabilité pratique des méthodes de vérification mathématique et sur la relation fondamentale
entre vérité mathématique et ressources de calcul.

5 Une lettre au Professeur Bernhard Riemann

J’ai été invité a donner une conférence a Varese, le 4 juin 2025, a la Villa Toeplitz, qui abrite
I'Ecole internationale de mathématiques Riemann (RIMS). Afin de préparer cette conférence, j’ai
effectué, deux jours auparavant, un pelerinage a Selasca, lieu du déces de Riemann le 20 juillet 1866.

Compte tenu du lieu ou je devais donner cette conférence, je me suis lancé le défi suivant :

Que pourrais-je bien dire a Riemann pour le surprendre
et qui lui donnerait l’assurance que son hypothése est vraie ?

Je vais donc lui écrire une lettre. Je I'appellerai “Maitre”. Il est impératif, bien str, d’éviter d’em-
ployer des notions mathématiques qui lui sont inconnues ou difficiles & comprendre pour lui. Je
me limiterai donc a celles qu’il a utilisées dans ses travaux. Apres cette remarque préliminaire, la
seconde partie de la lettre expose les éléments véritablement nouveaux.

% )Orofesseur .Qgerﬂijaré Ricmann

[a befle formufe que vous aves Sémontrée Sans votre article, a savoir celle 7ui permet Se calculer
fe nombre Sc nombres premicrs inféricurs a x en fonction Yes séros le [a fonction séta, a
malfeurcusement été mal éerite Sans les manuels, révélant ainsi une profonde incompréhension Su
terme Su milieu Se la formufe. Soif 7' (x) le nombre Sc nombres premicrs strictement inféricurs a

. 1 . / .
x, auguef ot ajoute — forsgue x est premier, ct vous aves trouvce pour fa fonction S comptage
2



dt

[a formufe suivante impfiguant fa fonction fogaritfme iﬂfégraf Li(z) = /xﬁ’
o log

o) = Lifo) = X2 (L (a4) + Li () + [ g 1o — o2 (1)

«

Vous aves fait preuve Se Eeaucoup Se pruéeﬂce afla fin ¢ votre article en traitamt Ses foncffons

. / . / . / / . s ofe .
multivaluées, mais le faﬂgagc mafécmaftﬂue a évofué ct, Se nos jours, on #n utilise que des fonctions
apant unc signification univalente definie, tandis que [utilisation S fonctions multivaluées #'cst

plus couramment admise.
. . . . s/ 7
Dans les manucls scolaires cfasstﬂues) par cxemple Sans fe fiore cfasstﬂue §Chwards, 7 le terme

ofe 4 / . . . . / . / /
Su milicu s écrit comme une somme Se la fonction fogartféme mtegraf Li évaluée sur x¢, on les p
sont les séros non triviaux e .

. / . . . / . 4
Or, il est évident que cette somme est absurle, car z a la puissance p reste inchangé si [ on

2min
rempface p par p+ 1

,oun est un entier 7uefc0ﬂ7ue. [a constance Se Li(x?) sur cette progressiot
ogx
. /4 . . . . . 4 . . . /
amtﬁmettﬂue 1mpf17ue done que la somme infinic na aucun sens, car clle compren’ une infinite de
/ A4 4 A . 4 ’0 . . .
répetitions § un meme terme, puisque fes nombres compfeé‘es z” s accumulent a fmftm, au moins

1 . , . / .
sur le cercle e ragont 2. Cn fait, von M{gmgoféf a Somné, plusicurs amnées apres votre article,
une Sémonstration Sétaillée Se votre théoreme, ot il a été plus rigourcux, dans une certaine mesure,

Sans [éeriture Se la formufe. .. puisgu’au ficu S¢ traiter Li, il consiSere unc fonction univalente
biew Sefinic Ei(z) = Li(exp(z)) S fa variable 2 (pfutt?f que exp(z) ) U Sémontre cnsuite votre
formufe en remplagant fe terme 3 Li(2”) par Y Ei(plogz).

Cela étant Sit, il ressort clairement S votre formufc que vous conmaissieg ce que ['on appeffe

aujourb’éui fes formufes cxplicites $e guincmé—‘Weif. [a nouveauté Sans cette formufe} 7ui #e vous

4 . . . of o .
surprendra pas, est que lon consiere, au liew e la fonction que vous utilises, unc fonction

0g U ,
test arbitraire ¢(u) ap}ofiﬂuée aux puissances Ses nombres premiers, ot [on éerit une égafifé
7ui fait intervenir ce que ' on appeffe aujourbyiz)ui fa transformee de ﬂ/l{effw de cette fonction
d(u) évaluée sur les séros non triviaux de fa fonction séta. On obticnt ainsi unc éﬂafité 714{

ne constitue pas ume 5énérafisaﬁoa e votre formufe) car celle—ci va plus loin que fes formufes

cxplicites cfassiﬂucs de guimmé—‘Weif) votre fonction test

ctant siﬂgufiére enu=1 Un
log u

point remarﬂuaﬁfe de ces formufes cxplicites est que si la ponction test ¢(u) s annule en dehors

Sun intervalle fini [1, 2], alors seuls un nombre fini de nombres premiers interviennent Sans son

s

caleul, ceux inféricurs a . Or, cest précisément le cas Se votre formufe) 7ui fait intervenir fa

9. La transformée de Mellin de ¢(u) est définie par M(p)(s) = / u* o (u)du.
0
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fonction eﬂafe ao(u) = og Sans [intervalle [1,2] et gui sannule en Schors S cet intervalle ;

cela ne vous surprendra Sonc pas.

)Oermetfeg—moi} a/‘/@ftre) de vous faire part 8 un tait 9ui, a mon sens, corrobore votre fypothese.
Lo voici : je vais concevoir um procédé 7ui) en utilisant seulement 7uef7ues nombres premiers,
me permettra 8 atteindre les premicrs 5éros won triviaux Se votre fonction 56ta avec ume precision
remarguaﬁfe. Que signific “7uef7ues nombres premiers” : )Oreﬂoﬂs un egempfe concret : imaginons
que je ne connaisse pas les nombres premicrs supérieurs a 13. “Je ne connais Sonc gue 2, 3, 5,
7, 11 et 13. O prime abord, il semble que. pour appréhender les séros S la fonction séta, if
soit nécessaire de considérer tous les nombres premiers, puisgulifs interviennent tous Sans fe produit
eulérien 7ui la definit. o paraft Sonc assey invraisemblable 914!011 tronﬂuaﬂf ce produit culérien,
¢'est—a—Sirc en ne consiérant gue les termes contenant les nombres premicrs inféricurs a 13, on

puisse obtenir {a moindre indication sur les séros e fa fomtioa seta.

)Oermcttcg—moi Sonc Se Séerire fe processus off utilisant uniﬂuement Ses notions 7ui vous sont

\

famifiércs. a\v,partir S¢ ces nombres premicrs, 2, 3, efe., jusgu’& 13, on construit ume forme
7ua6rati7ue. Cette forme 9ua3raﬁ7ue est semblable a cefle que vous aves utifisée lors Se (appficaﬁoa

Su principe de @iridéfst pour Sémontrer le tfz’éoréme de fransformaﬁm COﬂforme. g s’aﬂit 8 une

forme 7ua5rati9ue defimic sur f’espace de Simension infinic Ses fonctions ¢(u) Sunc variable réelle

positive, 9ui s annulent con dehors be ['interalle [1,13). [a valeur Q(¢) $c la forme 7uabraﬁ7ue
est obfenuc on ap}ofiﬂuaﬂf [a formufe explicite a fa ponction P(v) = /gb(u)gb(uv)? %ﬂsi)

puisgue [a fonction ¢ s annule cn Schors e ['intervalle [1,13], la fonction 1 s annule cn Schors

7. 1 . ’ , . I e . i
Se [intervalle [,13] et il #est pas #iccessaire § utiliser toute puissance premicre autre que

13
2,3,4,5,7,8,9,11,13 pour cafeuler Q(9), je sais Semontrer 9u,if existe une foactioa n(u) 714{
minimise la forme 7uabrati7ue Q(9) forsgue / ¢(u)2d—u = 1. [a Sémonstration Se f’egisteme de
u

cette fonction est tout a fait similaire a celle Somnée par Jg\t{ﬂ}ert e 1900 Sans son article “Uber
das @irio@fcztsdz’e )Oringip" pour le principe Se @irio/z’fet. Je caleule cnsuite fa transformee Se

Wellin S¢ fa ponction n(u). Je sais éﬂafemeﬂf Semontrer 10 gue fes séros Se cotte transformee
Se M{eﬁ’in sc situent sur la Sroite critigue (ﬂormafisée ici comme la Sroite imaﬂinaire). Oeci est

/ - . ! 3 - 7/ . .
prouve modulo unc condition § umicité Su minimum.

.y s . . . 4 N .
Ll fait ctonnant que je souhaite vous syﬂafer est gue, forsgu on caleule — a laile Se machines

10. Voir §6.1.
11. La preuve utilise une généralisation d’un théoréme de Caratheodory-Fejer sur les matrices de Toeplitz, obtenu
en 1911, il faut supposer que la plus petite valeur propre de la forme quadratique est simple et paire.
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Se caleul modernes bien }ofus puisscmtes que celles bispmdﬁfes a votre époguc — fes seros e fa

transformee $e M@fﬁa Se n(u), par cxemple ses 5O premicrs géros, on constate une imroyaﬁfs
coincidence avec les 5éros non triviaux Se 1. par cxemple, pour e premier 5éro, on obscrve

ue concordance sur 54 Sécimales, ot ainsi e suite. [c nombre S¢ Sécimales concorbantes Simi=
. s . . . / /.
fiue progressivement, ct forsgu on atteint fe cmﬂuaﬂﬁéme séro, seules 7ucf7ues Sécimales concordent.

Tai caleulé ces Sifferences (fimite supérieure) entre les valeurs caleulées & laile Ses nombres
premiers inféricurs a 13 et les valeurs réclles Ses séros S 5éta gue je présente ci—apres :

Cela signific gue tious maitrisons parfaitement vos 5éros, sans jamais faire intervenir f’iﬂfinifé
sc ['ensemble Sc tous les nombres premicrs. O plus, nous savons a priori gue tous les séros Sc

[a transformee de MWellin Se n(u) se trousent sur la broite critiﬂue.

Ce que tous ignorons, cest si forsgue fous augmentons la fimite supérieure, 7ui etait ici v = 13,

) , , . 4 / /
[ensemble Ses séros correspondant comvergera vers fes séros Se C. Ceci #'est pas demontre a

ce stade. €n revanche, il semble que fa raison abstraite S¢ la véracité S¢ votre comjecture soit
5 7 )

Sésormais accessible, puisgue fous savonis que fes séros Ses transformees de %ﬂfﬂ des vecteurs

propres mistimaux 1, sont purement imaginaires, et nous nous atfendons a ce que 1), converge vers

fa fonction Sont fa transformee de MWellin est votre ponction =(it). Lo résultat Sécoulerait alors

du theoreme Se nguru?ifg, 9ui impfiﬂue que tous les séros Se la fimite Sune suite convergente de

onctions Holomorphes Sont les =éros sont sur ume Sroife five restent sur cette Sroite.
P 3 X

@ifféreﬂces entre les valeurs (Gﬂ utilisant les nombres premiers < 13)

2.60179 X 10755, 4.80071 X 10752, 4.43756 X 107°°, 3.80903 X 10747, 7.59453 X 10 4°,
1.13198 X 10743, 1.07245 X 10 4%, 1.2694 X 1074°,  4.40141 X 10738, 4.24869 X 10737,

5.86724 X 1073%,  3.24443 X 10734, 244517 X 10732, 9.02026 X 10732, 5.13539 X 107 3°,

04142 X 10729, 6.47754 X 10728, 4.96772 X 10727, 5.86016 X 10725, 3.76751 X 1024,
7

1.03779 X 1023, 3.52722 X 10~ %*, 3.03977 X 10~ *", 5.66201 X 107°°, 1.41755 X 10~ 9,
2.19821 X 1078, 6.31599 X 1077, 1.42037 X 100 4.34328 x 107*®, 4.47113 X 10715,

7.01522 X 10" 4, 3.81989 X 107 '3, 5.99581 X 10~ '3, 4.26414 X 10", 1.10653 X 107 *°,

1.95651 X 107%°, 5.20728 X 107'°, 2.05031 X 1079, 3.42274 X 10°°, 2.10931 X 107,
2.23714 X 1077, 5.95608 X 1077, 5.77737 X 10°%,  0.000141380, 0.000556111,
0.000720794, 0.000314865, 0.0209081, 0.00313565, 0.00212727

RAvec respect ot admiration,

Naia @onnes
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6 La stratégie et les prochaines petites étapes

Nous expliquons d’abord dans le §6.1 le résultat général qui fournit une multitude de fonctions
entieres dont tous les zéros appartiennent a la droite réelle.

L’objectif est ensuite de montrer que, lorsque la borne supérieure x (qui valait x = 13 ci-dessus)
tend vers l'infini, les vecteurs propres minimaux 7, convergent au sens approprié, de sorte que
leurs transformées de Fourier, pour la dualité entre R et R, convergent uniformément sur les
sous-ensembles compacts vers la fonction holomorphe que Riemann a introduite comme fonction
= dans son article. En fait, nous suivrons ses traces et considérerons la formule explicite qu’il a
donnée pour la fonction k dont la transformée de Fourier est Z(¢). Nous allons réécrire dans le §6.2
cette fonction k£ comme l'image, par une application de sommation £, d'une combinaison linéaire A
de deux fonctions de Hermite hg, hy. Il s’agit alors de montrer la convergence des vecteurs propres
minimaux 7, vers la fonction £(h). En fait, il faut d’abord recentrer 1, sur 6, (u) = n,(x'/?u), dont le
support est [x7'/2, x1/2]. Le plan, afin d’atteindre notre objectif, consiste & décomposer cet objectif
en plusieurs petites étapes. Dans la deuxieme étape, au §6.3, on introduit, étant donné A\ > 1, les
fonctions d’onde sphéroidales prolate qui donnent une adaptation h, , des fonctions hermitiennes
h, aux fonctions dont le support se trouve dans l'intervalle [-A, A] C R. Les fonctions h,, , sont
des fonctions propres d'une modification de 'opérateur de Hermite (14), I'opérateur d’onde prolate
PW, de (15), obtenues en ajoutant a 'opérateur de Hermite H seulement les multiples du carré de
la mise a I’échelle, de sorte que la somme commute avec la projection orthogonale sur les fonctions a
support dans l'intervalle [\, A] C R. Par construction, PW, admet deux points singuliers réguliers
a la frontiere £\ de I'intervalle et une singularité irréguliere a 1’'co. La troisieme étape, dans le §6.4,
consiste a formuler une approximation éclairée du vecteur propre minimal 6, en utilisant le méme
procédé que dans le cas simple du §6.2. On remplace ainsi les fonctions de Hermite hg, hy par
leurs localisations hg x, ha x, pour A = z'/2, et on procede & lapplication de sommation £ sur la
combinaison linéaire de ces deux fonctions dont 'intégrale est nulle. On obtient ainsi une fonction
kx qui approche @, sur Iintervalle [z7'/2, 2'/?]. Dans le §6.5, on montre que, lorsque A — 0o, les
transformées de Fourier k) convergent vers la fonction = de Riemann, uniformément sur les sous-
bandes fermées du voisinage ouvert de largeur 1 de la droite réelle. Enfin, dans le §6.6, on indique
les étapes finales manquantes.

6.1 La transformation de Fourier de 0, a tous ses zéros sur la droite
réelle

La démonstration de ce résultat découle d’'un théoreme présenté dans un article co-écrit avec Wal-
ter van Suijlekom, intitulé “Quadratic forms, real zeros and echoes of spectral action” (réf. [32]).
L’énoncé précis est le suivant :

Théoréme 6.1 Soit L > 0, D une distribution réelle sur l'intervalle [0, L] et D la distribution paire
associée sur [—L, L]. Supposons que la forme quadratique a noyau de Schwartz D(z —y) définisse
un opérateur auto-adjoint minoré sur LQ([—%, é]), et que le minimum de son spectre soit une valeur
propre simple et isolée, associée d une fonction propre paire n. Alors tous les zéros de la fonction

entiére 1j(z), z € C, transformée de Fourier de n, se trouvent sur la droite réelle.

La démonstration de ce théoreme repose sur la forme particuliere de la matrice quadratique dans
la base trigonométrique orthonormée, sur la construction, pour les matrices finies de cette forme
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particuliere, d’'un opérateur auto-adjoint et sur le théoréeme de Hurwitz mentionné précédemment,
qui assure le passage a la limite lorsque la taille des matrices tend vers 'infini. La validité du résultat
sur les zéros de la transformée de Fourier pour des troncatures finies [32] joue un réle-clé dans les
calculs numériques [Il est utilisé pour la troncature trigonométrique a N = 100 dans le calcul
présenté dans la lettre.| et permet d’approximer les zéros de 7j(z) par le spectre d’une perturbation
de rang un de l'opérateur de Dirac périodique, obtenu a l'aide du noyau de Dirichlet analysé par
Riemann dans [91].

6.2 La fonction = de Riemann et les fonctions de Hermite

Riemann adopte la notation suivante

<
~—~
=
I
(ST “Mg
)
3[\3
3
8

Il écrit ensuite, avec £(s) := 1s(s — 1)m%/2((s)I ), E(t) == &(s) pour s = 5 + it, égalité 12

3
=E(t) = 4/100 Mx_% cos (;tlog x) dx
Il obtient alors, en utilisant 'égalité k(u) = k(u~') d’apres la formule de Poisson, ot
k(u) := ul/zg in%z (27Tn2u2 — 3) e
1
que Z(t) est la transformée de Fourier de la fonction k(u) :
=(t) =2 /100 k(u) cos (tlogu) d*u = /OOO E(uw)ud u,

De plus, en introduisant la notation :

E(f)(u) = ul/? i f(nu) (12)

on a
2

k(u) = E(h)(u), h(u) = gzﬂ (2mu® - 3) e, (13)

La fonction h(u) peut étre caractérisée comme suit. On considere 'opérateur de Hermite (oscillateur
harmonique) :
Hf(u) o= —f"(u) + 47*u* f (u) (14)

Soient h, les fonctions propres normalisées associées aux valeurs propres de la forme 27(1 + 2n).
Ces fonctions sont paires pour n pair et invariantes par transformée de Fourier pour les valeurs de
n qui sont des multiples de 4.

Fait 6.2 La fonction = de Riemann est la transformée de Fourier de k = E(h) ou h est, a un
scalaire multiplicatif prés, la seule combinaison linéaire de hg, hy dont lintégrale est nulle. ®

12. La notation traditionnelle pour cette fonction est Z(t) au lieu de la notation £(t) utilisée par Riemann.
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6.3 Les fonctions d’onde prolate entrent en scene

L’étape suivante consiste a introduire une famille de fonctions dont le role crucial dans la transmis-
sion du signal a été mis en évidence par Slepian, Pollak et Landau aux Bell Labs dans les années
1960. Leurs travaux portaient sur une question fondamentale posée initialement par Claude Shan-
non dans son étude fondatrice sur ’entropie : “Dans quelle mesure des fonctions a bande limitée
en temps peuvent-elles également étre a bande limitée en fréquence ?” Shannon avait estimé que
le nombre N de signaux orthogonaux pouvant étre contenus dans une fenétre temporelle T et une
bande de fréquence W satisfait la relation N ~ 2T'W.

S’appuyant sur ce résultat, Slepian et ses collaborateurs ont cherché a maximiser la quantité d’in-
formations transmissibles dans un laps de temps limité et une bande passante donnée — un probleme
central pour l'efficacité des systémes de communication.

Pour décrire leur résultat, fixons I'intervalle de temps et de fréquence a [—\, \] C R, et soit Py la
projection dans I'espace de Hilbert L?(R) (fonctions de carré intégrable) définie par multiplication

par la fonction caractéristique de l'intervalle [—\, A]. Soit Py = Fe.P\F_! son conjugué par la
transformée de Fourier. 1
Dans leur article fondateur, [101], Slepian et Pollak ont démontré que la transformée de Fourier

compressée P\F,., P, commute avec 'opérateur différentiel du second ordre.

PW, = =0, (\ = 2%)0,) + (2m\a)?. (15)

Il s’ensuit que cet opérateur commute sur L*(R)®¥ (I'ensemble des fonctions paires de carré inté-
grable) avec N
PAP\Py = P\Fe, PFe, Py = (PAFe, P2)”

ce qui permet de diagonaliser 'opérateur d’angle ? ay entre les projections Py et P, définies par
I'identité
P)\ COSQ(OQ\) = P)\P)\P)\.

Fait 6.3 Les valeurs propres de 'opérateur P\P\Py dans L2([=X, \))®Y sont simples et forment une
suite décroissante vy (N), n > 0, v,(A) = 0 pour n — oo, telle que 1 > vo(N) > v1(A) > ... >0).
Les fonctions propres correspondantes sont les fonctions d’onde sphéroidales prolates d’indice pair
honx 0U Iy, est la m+1-iéme fonction propre de lopérateur d’onde prolate (15) dans L*([—\, A]).

L’opérateur a,, posséde un nombre fini'* ~ 4% de petites valeurs propres non nulles. Suivant la
notation standard de la littérature, les fonctions d’ondes sphéroidales prolates sont notées

hox(x) :=PS,p (27r)\2, f\)

13. La transformée de Fourier normalisée est définie par
P () i= [ F)e o do
R

Notons que pour les fonctions paires, on a : F ! = Fe,.
14. Avec notre normalisation, la durée est T'= 2\ et la limite de bande est W = .
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ou l'indice n indexe la fonction propre, le second indice 0 indique I'ordre angulaire (un vestige de
lorigine de l'opérateur dans la séparation des variables pour le laplacien sur les sphéroides prolates)
et le premier argument 272 est le parametre de bande passante sans dimension.
Chaque fonction h, x est définie sur [—A, A] et prolongée par zéro en dehors de cet intervalle. La
fonction h,, \ est paire lorsque n est pair. La transformée de Fourier de hgyp, », restreinte a [—A, A],
satisfait

Fep (hom) = Xmhom s

ol X2, = vy, et le signe de x,, est (—1)™. Pour notre propos, nous avons besoin des valeurs propres
Xo et x2 correspondant aux fonctions propres hg y et hy ), et les termes (1 — xo) et (1 — x2) tendent
exponentiellement vers 0 en fonction de x = \2.

6.4 La formule de Poisson et ’approximation k), de 0,, A = \/z.

Soit A > 1, et QW) la restriction de la forme quadratique de Weil aux fonctions test dont le support
est inclus dans lintervalle [A\™1, \]. D’apres le résultat d’André Weil présenté au §4.1, la positivité
de QW) pour tout A > 1 est équivalente a I’hypothese de Riemann. Cette positivité peut étre
démontrée pour de petites valeurs de A\ (voir [111], [24]). Tl existe (voir [25, 31]) pour chaque A > 1
un opérateur auto-adjoint canonique minoré et non borné A, a résolvante compacte, dans 1’espace
de Hilbert L? (A7, A, du/u) tel que

QWAL ) = (ANf L) (16)

Le calcul numérique de la plus petite valeur propre e(\) de Ay, effectué dans [25], montre que €(\)
tend exponentiellement rapidement vers 0 en fonction de p = A2. En fait, une analyse minutieuse
révele une similitude frappante (Figure 6.4) entre le comportement de €(\) et celui de la fonction
angulaire 1 — x2(A). En fonction de la longueur L = 2log A du support [A~!, A] des fonctions-
tests pour QW,, la convergence vers 0 des quantités minuscules comme 1 — x5 est exponentielle
d’exponentielle™ :

ou .
1— Yo ~ ?\/571_56—471'6 +9/2L'

— Log(e(vx))
Log(1-x2(/x))

Graphes de log(e(1/7))) et log(1 — x2(v/))) comme fonctions de .

15. voir [47], Théoréme 1. Notons que xx(A)? = Mg (a) avec a = v/2m X dans les notations de ce théoréme.
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Dans [25], nous avons donné une construction numériquement justifiée des vecteurs propres associés
aux premieres valeurs propres minuscules de QW),, en utilisant les fonctions d’onde sphéroidales
prolate associées a l'intervalle [—A, A]. En particulier, cela donne une approximation éclairée du
vecteur propre associé a la plus petite valeur propre €(\) de A,. En accord avec le fait 6.2, cette
approximation est

kx(u) := E(hy)(u), Vu € A ) (17)

ou hy est, a un scalaire multiplicatif pres, la seule combinaison linéaire de hg x, ha y dont 'intégrale
s’annule 6.

La justification conceptuelle de cette formule est la suivante : I'image de I'application £ est contenue
dans le radical de la forme quadratique de Weil globale (voir [18]), mais I'hypothése de Riemann
implique que QW) est strictement positive et que son radical est {0}. On s’attend donc a ce que
le domaine de QW) ne contienne aucun élément non nul de I'image de I'application £. On peut
néanmoins construire des fonctions a support [A™!, \] appartenant au “quasi-radical” de la forme
quadratique de Weil, comme suit. Si le support de la fonction paire f est inclus dans I'intervalle
[\, A] C R, le support de E(f) est inclus dans (0, \] C R%. Par ailleurs, la formule de Poisson,
utilisant les conditions f(0) = f(0) = 0 pour définir le sous-espace de codimension 2 Sy € S(R) de
I’espace de Schwartz, donne

~

E(f)(x)=E(f)™"), VfeS® (18)

qui montre que le support de £(f) est inclus dans [A\™!, 0o) pourvu que le support de la fonction
paire f soit inclus dans Dintervalle [—-X, \] C R. L’obstacle a I'obtention d’un élément £(f) du
radical de QW, est I'égalité P\ N ]3>\ = {0}, ou P, et P, sont définis comme ci-dessus. Mais comme
expliqué au § 6.3, ces deux projections s’intersectent presque, et apres avoir pris en compte les deux
conditions f(0) = f(0) = 0, la restriction de £(f) & Pintervalle [\, \] donne naissance a la fonction
kx de (17) sur laquelle QW) prend des valeurs non nulles, mais extrémement petites, donnant ainsi
une supposition naturelle comme approximation du vecteur propre associé a la plus petite valeur
propre () de A,.

6.5 Convergence des transformées de Fourier ky — k

Grace aux estimations classiques sur la convergence des fonctions d’onde prolates vers la fonction
de Hermite-Weber, on contréle la convergence de ky de (17) vers k = £(h), ce qui donne le :

Fait 6.4 La transformée de Fourier de k) converge, lorsque X — 0o, vers la fonction = de Riemann
uniformément sur les sous-bandes fermées de la bande ouverte Jm(z) < 3.

La différence est controlée sur la droite Jm(z) = a ot a € (—1,1) par A 27%(1 — 2a) 7! onl ¢ est
une constante finie.

16. Notez que le calcul de £(hy)(u) pour u € [A~1, A] n’implique que la somme sur les entiers < A2
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6.6 Etapes restantes

Pour appliquer le théoreme 6.1, il faut démontrer que la plus petite valeur propre de la forme
quadratique de Weil QW) est simple et associée a un vecteur propre pair. L’analogue de cette
propriété est connu pour 'opérateur d’onde prolate. De plus, il reste a montrer que k), est une
approximation suffisamment bonne de 6,, A = \/x.

7 Perspectives géométriques

L’approche géométrique adoptée dans 'article commun [19], décrit dans [20], a révélé un paysage
géométrique inédit qui constitue un analogue naturel, pour le corps global Q, de la géométrie as-
sociée aux corps globaux en caractéristique finie. En particulier, les correspondances de Frobenius
prennent sens sur le carré du site de mise a 1’échelle et la fonction zéta de Riemann complete
apparait comme l’analogue de la fonction génératrice de Hasse-Weil. Le traitement des valeurs
principales délicates intervenant dans la formule explicite de Riemann-Weil a nécessité 1'utilisation
de I'incarnation adélique du site de mise a ’échelle, que nous comprenons maintenant comme son
homologue en théorie des corps de classes [20].

Dans 'article [24], nous avons commencé a exploiter 'interprétation adélique des correspondances
de Frobenius pour le corps de nombres QQ afin d’étudier progressivement la positivité de Weil.
Comme expliqué au §4.1, la positivité de Weil, qui n’implique qu'un nombre fini de nombres pre-
miers a la fois, est équivalente a 'hypothese de Riemann. Dans le cadre géométrique adélique, les
correspondances sont encodées par des noyaux de Schwartz, qui sont des distributions dans le carré
des données adéliques et qui jouent le role de I'équivalent, en théorie des corps de classes, de la
courbe géométrique. Plus généralement, le lien entre les points de vue de la théorie des opérateurs
et de la géométrie est établi par les noyaux de Schwartz associés aux opérateurs. En implémentant
la structure additive des adeles, on constate que le noyau de Schwartz de 'opérateur d’échelle cor-
respond géométriquement au diviseur de la correspondance de Frobenius.

La structure additive des adeles de Q permet d’écrire le noyau de Schwartz k(z,y) de I'action
de mise a I’échelle f(x) — f(Az), A € R%, sous la forme (avec d la distribution de Dirac)

k(z,y) = d(A\x —y).

7.1 Formule de trace archimédienne

Il existe un parallele tres important entre la forme quadratique de Weil et la formule de trace, d'une
part, et le monde de la théorie de I'information, d’autre part. Le point de départ de ce parallele est
la réécriture du cas archimédien de la formule de trace de [17] en faisant intervenir deux parametres
indépendants qui jouent le role de limitation temporelle et de limitation fréquentielle dans ’approche
de Shannon, Slepian et leurs collaborateurs concernant la transmission d’information. On travaille
dans lespace de Hilbert L*(R)., des fonctions paires de carré intégrable. L’action d’échelle de R*
est définie comme

(028)(v) == A€ (A7), o) = [ Fo Iad'N, V6 € LX(R)ey
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Le parameétre T, qui impose la limitation temporelle & 'intervalle [—T, T, définit la projection
orthogonale Pr, et le parametre W, qui impose la limitation fréquentielle a l'intervalle [—W, W],
définit la projection Py. On peut écrire le cas archimédien de la formule de trace de [17] comme
suit, ot Wy, := —Wg a été défini dans (10) :

Woo(f) = log(TW) f(1) + Trace (9(f) (1— Pr — Pw)) (19)

Nous considérons cette formule comme un pont entre les formules explicites et le monde de la théorie
de l'information, ou les projections Pr et Py jouent un role central. Elle sera étendue ci-dessous
dans le § 7.4 afin d’intégrer la contribution des nombres premiers aux formules explicites.

7.2 Positivité de Weil archimédienne

L’ingrédient-clé est la formule de trace semi-locale, que nous avons utilisée dans le cas simple ou
aucun nombre premier n’intervient. Nous avons constaté que non seulement la positivité de Weil
est vérifiée dans ce cas, comme expliqué dans le §4.1, mais que la principale source de positivité
provient de ’espace de Sonin, introduit initialement dans le contexte de I’hypothése de Riemann par
Burnol [9, 10, 11]. L’espace de Sonin & est I’espace des fonctions de carré intégrable qui s’annulent
identiquement sur I'intervalle [—A, A], ainsi que leur transformée de Fourier. Par construction, il est
orthogonal aux images des projections Py et Py. On note & la projection orthogonale dans L?(R).,
sur l'espace de Sonin &; (pour A = 1). On a alors (voir [24]) le

Théoréme 7.1 Soit g € C° (]Ri) une fonction a support dans l'intervalle [2_1/2, 21/2} et dont la

Ve . Z . 7/ . 7/ . e i Ve
transformée de Fourier s’annule en 3 et en 0. Alors l'inégalité suivante est vérifiée.

We (9% g*) > Tr (9(9)69(9)*)

7.3 L’espace des classes d’adeles semi-local

La formule de trace semi-locale présentée dans le §7.4 repose sur les espaces de classes d’adeles
semi-locaux.

Ces espaces géométriques Yy sont associés a un ensemble fini S de places de Q contenant la place
infinie. Par construction, Ys est le quotient

Ys:=Ag/Ts, As=T] Q, (20)

vES

du produit adélique des complétions des corps locaux du corps global Q aux places v € S. Le
groupe ['g est le sous-groupe de Q* défini par

D= {£p1" " o pj € S\ {oo}, ny € 2} C Q7 (@)

L’anneau Ag contient Q comme sous-anneau par injection diagonale, ce qui induit 'action de I'g
sur Ag par multiplication. Les espaces de classes d’adéles semi-locales sont le mieux encodés par les
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algebres non commutatives S(Ag) x I's produits croisés des algebres de Bruhat-Schwartz S(Ag) de
fonctions sur les adeles semi-locales, par les groupes multiplicatifs I'g. Ces algebres non commuta-
tives constituent un faisceau d’algebres sur Spec Z. Le groupe ['g est proprement compris comme les
sections Zg du faisceau G, sur le complémentaire ouvert de S dans Spec Z. On montre que 1’algebre
de Bruhat-Schwartz semi-locale S(Ag) forme un faisceau &' d’algebres commutatives sur Spec Z.
On obtient alors le résultat suivant, qui établit la compatibilité des constructions géométriques non
commutatives avec la géométrie algébrique de Spec Z.

Théoreme 7.2 - Le produit vectoriel algébrique O x G, définit un faisceau d’algebres sur
Spec Z tel que pour tout ensemble fini de places S 5 oo

(0 % Gp,) (59 =S(Ag) xZ3

- La fibre de 0 x G, au point générique est le produit vectoriel global S(Ag) x Q*.
- Les sections globales de O x G, forment le produit vectoriel S(R) »x {£1}.

Les espaces fonctionnels impliqués dans la formule de trace semi-locale du § 7.4 sont mieux compris
conceptuellement comme 'homologie de Hochschild des algebres semi-locales.

7.4 La formule de trace semi-locale

La difficulté restante pour démontrer la convergence des vecteurs propres 6, vers la fonction k£ =
E(h) du fait 6.2 consiste & comparer efficacement 6, avec k) pour A = y/z. La preuve numérique a été
apportée dans [25] ou la comparaison a été étendue aux vecteurs propres de QW) correspondant
aux premieres valeurs propres minuscules, en utilisant 'orthogonalisation de Gram-Schmidt des
vecteurs de la forme £(v)), les ¢ étant construits a partir des fonctions d’onde prolate suivantes.
Comme étape vers une justification conceptuelle de ce résultat numérique, on peut se référer a la
formule de trace semi-locale de [17].

Cette formule fournit une représentation sous forme de trace de la forme quadratique de Weil QW)
parfaitement analogue a (19), mais qui donne maintenant la contribution des nombres premiers
p € S a la formule explicite. Elle prend la forme suivante :

— > W(f) =log(TW) f(1) + Trace (9(f) (1 - Pf — Py)) (22)

vES

ot les projections P2 et Pj sont définies comme dans le cas archimédien en utilisant le module!®.

7.5 Les régimes infrarouge et ultraviolet

Dans le cadre de la géométrie non commutative, I’encodage d’un espace géométrique par un triplet
spectral (A, H, D) révele des informations a travers deux régimes spectraux complémentaires de
I'opérateur de Dirac D :

e Le régime ultraviolet (UV) correspond a la partie des hautes énergies du spectre, c’est-a-dire
au comportement des valeurs propres de D a l'infini. Ce régime capture la structure infini-
tésimale de 'espace et détermine ses invariants géométriques locaux, tels que la dimension,
la forme du volume et la courbure. En physique, cela s’apparente a sonder un systeme a tres
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courte distance ou a des impulsions élevées. Mathématiquement, le comportement UV régit
le comportement asymptotique du noyau de la chaleur et intervient de manieére cruciale dans
le principe d’action spectrale.

e Le régime infrarouge (IR) concerne la partie des basses énergies du spectre de D, en par-
ticulier les petites valeurs propres. Cette partie reflete les caractéristiques topologiques et
géométriques globales de l'espace, telles que la connexité, la croissance du volume et les
quantités issues de la théorie des indices. En physique, le comportement infrarouge (IR) fait
référence aux phénomenes de basse énergie et aux propriétés a grande échelle. Il joue un role
central dans la compréhension des corrélations a longue portée et des effets topologiques.

En particulier, une telle perspective duale permet a la géométrie non commutative d’accéder a la
fois aux invariants spectraux locaux et aux caractéristiques arithmétiques ou topologiques globales
grace au langage unifié¢ de la théorie des opérateurs.

Pour le régime infrarouge, nous construisons dans [30] des opérateurs auto-adjoints Dl((;\g’N) obtenus
comme perturbations de rang un du triplet spectral associé a 'opérateur de mise a ’échelle sur
I'intervalle [A™!, A] et dont le spectre coincide avec I'approximation remarquable des zéros de zéta
de basse énergie tels que décrits dans la lettre a Riemann. Nous calculons ensuite les déterminants
régularisés detreg(Dl(g‘g’N) — z) de ces opérateurs et discutons du role analytique qu’ils jouent dans
le controle et la démonstration potentielle du résultat ci-dessus en montrant que, convenablement
normalisés, ils convergent vers la fonction = de Riemann.

Pour le régime ultraviolet, nous décrirons brievement dans la section 7.6 les résultats de [27] qui
montrent que 'opérateur d’onde prolate fournit un opérateur auto-adjoint qui correspond au com-
portement ultraviolet des zéros. En guise de préparation, on peut utiliser les formules explicites
pour calculer I'expansion de la chaleur, en supposant HR, d'un opérateur dont le spectre est formé
des parties imaginaires des zéros non triviaux de ((z) :

Théoréme 7.3 [28] Supposons HR et soit D l'opérateur auto-adjoint dont le spectre est formé
des parties imaginaires des zéros non triviauzr de la fonction zéta de Riemann. On obtient alors le
développement asymptotique suivant pourt — 0 :

N log (%) _ (logdrm + )

Tr(exp(—tD?)) NN NN

+2exp(t/4) + 3 a,t"? (23)

ou ag = —i et pour k > 0, en utilisant les nombres de Bernoulli B; et les nombres d’'Euler E(k),
T(k) (2%1 = 1) By, 1 1. E(2k)
A2k—1 = ; age = —— Lk + 2) —=51-
2/ (2k)! 4 27 \/7(2k)!

Les nombres d’Euler sont définis ainsi

E(2n) = % (—;)kikj(—w (%)(k — 5> (24)

k=1 =0 J

On a le comportement asymptotique lorsque k& — oo

E(2k)

4
(2k)' ~ (—1)k22k—ﬂ' 2k

3
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qui montre que le développement asymptotique (23) n’est en aucun cas convergent puisque son
coefficient général a,, diverge comme une factorielle.

7.6 L’opérateur d’onde prolate

Les fonctions d’onde sphéroidales prolates jouent un role-clé, comme nous ’avons vu précédem-
ment en relation avec la fonction zéta de Riemann. Dans toutes ces applications, elles apparaissent
comme fonctions propres de 'opérateur d’angle entre deux projections orthogonales dans 1’espace
de Hilbert L?(R)®¥ des fonctions paires de carré intégrable sur R. Ces projections dépendent d’un
parametre A > 0. La projection Py est donnée par le produit de A par la fonction caractéristique de
I'intervalle [\, A\] C R. La projection P, est sa conjuguée par la transformée de Fourier F,,. Dans
toutes les applications mentionnées ci-dessus des fonctions d’onde sphéroidales allongées, ’existence
miraculeuse, découverte par le groupe des laboratoires Bell Labs, d'un opérateur différentiel PW)
commutant avec 'opérateur d’angle, ne joue qu'un réle auxiliaire. Dans la présente section, nous
expliquons un autre “miracle” découvert lors de notre collaboration avec H. Moscovici [27] : une
étude approfondie de I'extension auto-adjointe naturelle de PW, étendue & L?(R) montre qu’elle
possede toujours un spectre discret et que ses valeurs propres négatives reproduisent le compor-
tement ultraviolet des carrés des zéros de la fonction zéta de Riemann. De maniére similaire, le
spectre positif correspond, dans le régime ultraviolet, aux zéros triviaux de la fonction zéta de
Riemann. Cette coincidence est valable pour deux valeurs : A = 1 et = /2. La raison conceptuelle
de cette coincidence réside dans le lien entre 'opérateur de (15), c’est-a-dire

(PWA)(q) = —0((X* — ¢*)9) ¥(q) + (27 Aq)* ¥(q) (25)

et le carré de l'opérateur de mise a ’échelle § := x0,. Comme nous 'avons vu précédemment,
la compression de 'opérateur dde mise a 1’échelle ¥(f) dans 'espace de Sonin est la racine de
la positivité de Weil a la place archimédienne sur les fonctions-tests a support dans l'intervalle
[2_1/ 2 ot/ 2}. Or, j’ai démontré en 1998 que l'opérateur d’onde prolate admet une unique extension

auto-adjointe commutant avec les projections orthogonales P, et P,. Cette extension est invariante
par transformation de Fourier et se restreint a ’espace de Sonin, c¢’est-a-dire a ’espace des fonctions
paires de carré intégrable qui s’annulent identiquement, ainsi que leur transformée de Fourier sur
I'intervalle [—\, A].

Nous avons découvert dans [27] que cette restriction de PW, a I'espace de Sonin, qui est un opé-
rateur auto-adjoint, fournit une réalisation spectrale du régime ultraviolet des zéros de la fonction
zéta de Riemann.

Plus précisément, le spectre de cet opérateur est formé par une suite discrete v, de nombres néga-
tifs, et les nombres 24/v, pour le choix A = V2 ont le méme comportement ultraviolet que p — %,
ou les p sont les zéros de la fonction zéta.

En utilisant le procédé de Darboux, nous avons construit une racine carrée de Dirac D de PW
dépendant d’un parametre de déformation, et dont le spectre est constitué des nombres 24/v, pour
X\ = /2. Ce spectre présente le méme comportement ultraviolet que les zéros de la fonction zéta de
Riemann. La figure 7.6 montre le spectre de 'opérateur D et les parties imaginaires des zéros de la
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fonction zéta. Cette similarité spectrale ultraviolette suggere que nous avons capturé spectralement
la contribution de la place archimédienne au spectre zéta. L’ambiguité dans le choix de la racine
carrée de 'opérateur de Dirac D est étroitement liée a la théorie de Galois différentielle de I’équation
différentielle prolate étudiée par J. P. Ramis et ses collaborateurs [15, 89].
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Le graphe montre la proximité du n'*™° zéro de zeta avec le n'*™° élément de Spec D.

8 Conclusion

L’hypothese de Riemann a catalysé le développement de vastes domaines des mathématiques, de
I’analyse classique a la géométrie arithmétique moderne et a la physique mathématique. Chaque
approche a enrichi notre compréhension de la fonction zéta et de ses généralisations, méme sans
que 'on soit parvenu a une démonstration.

Dans cette étude, nous avons proposé une vue d’ensemble de ce paysage mathématique. Nous avons
commencé par un examen détaillé des connaissances actuelles sur la fonction zéta de Riemann et
ses z€ros, puis nous avons passé en revue la remarquable variété des théories mathématiques déve-
loppées au cours des 165 dernieres années pour tenter de résoudre I'hypothese de Riemann : des
méthodes analytiques classiques et de la théorie des fonctions L aux approches modernes via la
théorie des matrices aléatoires, la théorie des opérateurs et la géométrie arithmétique. Nous avons
exploré des formulations équivalentes de I’hypotheése, chacune offrant sa propre perspective sur
les raisons pour lesquelles ce probleme s’est avéré si difficile a résoudre. Si cette étude exhaustive
démontre la richesse des idées mathématiques engendrées par 'hypothese de Riemann, elle révele
également que méme les approches modernes les plus sophistiquées n’ont pas encore réussi a percer
ce mystere vieux de 165 ans.

Dans ce contexte de connaissances accumulées, la seconde partie de cet article a proposé une ap-

proche différente : un retour au point de vue initial de Riemann sous un angle nouveau. Notre
découverte d’'une vaste classe de fonctions directement liées a la forme quadratique de Weil et dont
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les zéros se situent sur la droite critique, de maniere démontrable, combinée aux résultats numé-
riques exceptionnels reliant les produits d’Euler tronqués aux zéros réels de la fonction zéta, suggere
que les intuitions initiales de Riemann pourraient recéler une portée insoupconnée. La précision ob-
tenue en utilisant uniquement des nombres premiers inférieurs a 13 — avec des erreurs aussi faibles
que 2,6 x 107% — ne saurait étre considérée comme une simple coincidence.

Le cadre géométrique présenté ici, utilisant la formule de trace et les méthodes spectrales, offre une
voie prometteuse : démontrer que les zéros de fonctions d’approximation convenablement construites
convergent vers les zéros de la fonction zéta. Cette synthése de découvertes numériques, d’analyse
classique et de techniques géométriques modernes représente une approche novatrice qui honore
I’héritage de Riemann tout en employant des outils mathématiques contemporains.

Reste a savoir si cette voie menera a une démonstration de ’hypothese de Riemann. Toutefois, ce
cheminement a déja révélé des liens inattendus entre la forme quadratique de Weil et le monde de
la théorie de 'information, ainsi qu’entre les résultats numériques et la structure théorique. Comme
nous I’écrivions dans notre lettre a Riemann, les vérités les plus profondes se cachent parfois dans
les observations les plus simples.

Pour des études exhaustives de 'hypothése de Riemann et de ses multiples facettes, voir [6], [37],
[39], [44], [63], [86]. Le présent travail, qui se poursuivra en collaboration avec C. Consani et H.
Moscovici, ouvre un nouveau chapitre dans cette histoire en cours.

Notes

Le théoréme de Wiener-Tkehara stipule que si A(z) est une fonction non négative et croissante et

f(s) = /000 A(z)e™ " dx

converge pour Re(s) > 1, et si f(s) — ¢/(s — 1) admet un prolongement continu & Re(s) > 1 pour une certaine
constante ¢ > 0, alors

Ilgr;o e TA(x) =c.

Ce résultat a fourni précisément le cadre nécessaire pour convertir 'information concernant la non-annulation de la
fonction zéta sur Re(s) = 1 en énoncés asymptotiques précis sur les fonctions de comptage des nombres premiers.

L’application au théoréme des nombres premiers consiste a exprimer la dérivée logarithmique de la fonction zéta
comme une transformée de Mellin de la fonction de Tchebychev ¢ (z) = > .., logp, c’est-a-dire I'égalité —('(s)/((s)

s [T ¢(z)2~#TDdz. La non-annulation de ((s) sur Re(s) = 1, combinée au comportement connu de ((s) en s = 1,
garantit que ¢'(s)/¢(s) + 1/(s — 1) posséde les propriétés analytiques requises pour 'application du théoréme de
Wiener-Tkehara. Ce théoréme implique alors directement que ¢ (z) ~ z, d’ou découle le théoréme des nombres
premiers par des arguments élémentaires.

2Le coefficient de lissage de Selberg était de la forme suivante :

1
o, (1 _ ;;gg)
Dot
n<é

ol les a;, sont les coefficients de la série de Dirichlet de 1/4/((s) avec ay = 1. Il avait besoin d’une moyenne de
|€(1/2 + it)|* multipliée par la quatriéme puissance de ce coefficient de lissage.
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3Pour une fonction méromorphe f dans le plan complexe, la caractéristique de Nevanlinna est définie par
T(r,f)=m(r, f)+N(r f), >0,

ou

1 27 )
m(r, f) = %/0 logﬂf(rele) | do

est la fonction de proximité est

N(r, f) =

/T Tl(t,f)*’ﬁ,(o,f) dtJrn(O,f)logr
0

t

est la fonction de comptage intégrée des poles, avec n(t, f) désignant le nombre de péles de f (avec multiplicité)
dans |z| < t. Pour une fonction entiére, N(r, f) = 0 et donc T'(r, f) = m(r, f).

Dauns le cas de la fonction zéta de Riemann ((s), méromorphe dans C avec un unique pole en s = 1, on peut définir
T(r,{) de la méme maniére. Un résultat classique de Borchsenius et Jessen (1948) montre que :

logr
27

T(r,¢)

/“ log+|C(rew) | do (r = 00),

et, plus précisément, ils ont obtenu le comportement asymptotique

1
T(r,¢) ~ = rlogr lorsque r — oo.

Ainsi, la caractéristique de Nevanlinna de ((s) croit essentiellement comme rlogr, ce qui est du méme ordre de
grandeur que la croissance de log M (r, (), ott M (r,() = max|s—, [((s)].

4Le théoréme stipule que pour o > 1/2 fixé, les valeurs
1 T
— / f(og (o +it))dt
T Jo

convergent lorsque 7' — oo pour les fonctions continues bornées f : C — C, la distribution limite pu, est une mesure
de probabilité sur C telle que :

- Elle ne posséde pas d’atomes (distribution continue)

- Son support est tout le plan complexe lorsque 1/2 < o < 1.

De plus, malgré 'ambiguité qui entoure la définition de log (o + it) en présence de zéros de zeta, le théoreme de
Borchsenius-Jessen ne suppose pas I’hypotheése de Riemann.

®Qutre le théoréme de Hahn-Banach, on utilise le lemme suivant (voir lemme 1.15 de Laurincikas) : Soient
z1,...,&n € H et solent by,...,b, des nombres complexes avec |b;| < 1,7 = 1,...,n. Alors il existe des nombres
complexes ay,...,a, tels que |a;| =1,5 =1,...,n, tels que :

n n 2 n

2
> ajmp = bl <4 |yl
j=1 j=1 j=1

511 est de la forme Zg(fl)jdim HI(X,0(D)) = 1D.(D - K)+ x(X) ol D est un diviseur, O(D) son faisceau de
sections, x(X) est le genre arithmétique.

"Le fait que ce livre utilise une convention cachée n’est pas clair, mais la formule suivante est écrite dans la section

1.15 “Le terme impliquant les racines p”
-1 2 g
L=, o
c+ logt o logu
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(avec le commentaire “ou la seconde intégrale porte sur un chemin passant au-dessus de la singularité en v = 17)
égalise deux termes qui ne peuvent étre égaux puisque l'intégrale de gauche prend des valeurs différentes lorsqu’on
271

log(z)
t

z

e

en utilisant plutét la fonction Ei(z) = / ?dt qui présente une discontinuité de branche dans le plan complexe z
— 00

allant de —oo & 0. La forme correcte de (11) est

remplace 3 par S+ tandis que 2” reste inchangé. Cela implique que la formule de Riemann doit étre réécrite

< 1 dt
z) = Li(x) — Ei(plogx) + Ei(plogx —_-— —log?2
fl@) =Liw) = 3> (Bilploga) + Fi(ploga)) + [ g 7o —los
Jm(p)>0
ou la somme porte sur les zéros de la fonction zéta ayant une partie imaginaire positive.
$Plus précisément, on a : h = 1% hy — 522 ho, ]| =1, K] = /35

9La notion d’angle entre deux sous-espaces fermés d’un espace de Hilbert — ou, de maniére équivalente, entre
deux projections orthogonales P et () — a été étudiée par J. Dixmier dans : “Position relative de deuzr variétés
linéaires fermées dans un espace de Hilbert”, Revue Sci. 86 (1948), 387-399. L’idée essentielle est qu’une paire (P, Q)
correspond a une représentation unitaire du groupe diédral infini. Ses représentations irréductibles sont classées par
un angle , qui, dans le plan réel, représente I’angle entre deux droites réelles. La relation P cos? o = PQP détermine
lopérateur d’angle sur chaque composante irréductible.

0Le module s’étend & une application multiplicative | ® |s de 'anneau Ag = [I,cs Qv a Ry, et par construction,
cette application passe au quotient comme une application Modg : Ys = Ag/T' — R,..

Mods(u) := |(uy)ves|s = H |ul, € Ry.

Les groupes d’ideles et les groupes de classes d’ideles

GL1(As) = [] GL1(Qy), Cs = GLi(Ag)/T

peS

agissent naturellement par multiplication sur le quotient Yg et 'orbite de 1 € Ag induit un plongement C's — Y.
Le complémentaire de C's dans Yg est de mesure nulle pour le produit des mesures de Haar des groupes additifs des
corps locaux (produit préservé par l'action du groupe dénombrable I'). En utilisant la dérivée de Radon-Nikodym
des mesures de Haar des groupes multiplicatifs par rapport & la mesure de Haar des groupes additifs, on obtient une
identification unitaire.

wg : L*(Ys) — L*(Cs)  (see [18] Proposition 2.30).

Nous rappelons également (voir [18], [Eqgs. (2.223) et (2.239)]) que Cgs est un groupe localement compact modulé de
module
Mods(A) = [Als := [ Xl YA = () € Cs
peS

qui est (non canoniquement) isomorphe & R* x Kg, ot Kg est le noyau de Mods. La formule de trace sous la forme
de (22) est la spécialisation de la formule de trace générale de [17] & la partie invariante Kg.
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