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1. Introduction
IT has been shown that, if the Riemann hypothesis is true, then the
relationship between the distribution of the non-trivial zeros of the
Riemann zeta-function and that of the logarithms of the powers of
prime numbers can be expressed in various ways closely connected
with Fourier and Hankel transformations.!

In the present paper I discuss two pairs of Fourier cosine-transforms
which illustrate one aspect of this relationship. I have previously
discussed a related pair of Hankel transforms,! but it is of some
interest to construct a result which only involves the simpler Fourier
cosine kernel. In each of the present pairs of transforms one function
has simple.discontinuities of magnitude (2n)i/x when the argument x
pass88"t?tifough a zero of t,(\-\-ix), while the transform has simple

. discontinuities of magnitude l/mpim when the argument passes
ihrotig'ft a value of logpm, where pm is a positive integral power- of a
prime p.

I also derive an alternative proof of an infinite-series formula for
N(T); the number of zeros of £(s) in 0 < I(a) < T.

All the results described above require the assumption of the
Riemann hypothesis. Some simpler analogous results requiring no
unproved hypothesis are given in the last section.

2. First pair of transforms
Suppose that the Riemann hypothesis is true, and let \±iyn

(n = 1,2,3,...; 0 < yn ^ yn+i) run through the non-trivial zeros of
£(«).§ Then

2
Y»<x 1

t A. Wintner, Duke J. of Math. 10-(1943% 99-105 (99), and A. P. Guinand,
Proc. Lond. Math. Soc. (to appear shortly), referred to in the sequel as (A).

t (A), Thedrem 1.
§ If i+iyn is a multiple zero of £(s) of order r + 1 then we put

Yn = yn-n = - = Yn+r-
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since yx = 14-13 > 1.

Nowt N{x) = ±logl-l+l
where R(x) = O{logxy.

Hence (2.1) becomes

1 . x 1- R{x) , Cl, t ,\ dt , C jy,.M t 7 . 1 fdt

l i i

= -—log2a;—•—Iog27rloga;—— (l+log27r)+
477" ZiTf ZlT

^ ) , (2.2)

where m

= limj V — log2x+—Iog27rloga; .
x-H»l^yn 4T7 2TT j

Now put

F{x) = (2ff)

where the dash indicates that the terms yn = x, if they occur, are to
be halved. Then

-V F{t)cosxtdt

o

-sI(H+-+rjr
— — I logHcosxtdt-\--log.2n log t cosxt dt — 2k cosxtdt

o o -» o
•f E. C. Titchmarsh, The Zeta-function of Riemann (Cambridge, 1930), 4.

Y'

YN
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V= - V (—| I-...H )(sinxyn+1^aiaxYn)—

- ^ logViv sin xyN-Sr— I log t sin xt-f+
ZTTX TTX J t

0

Yg

-\ log27rlogyjVsina^/iV — — Iog277 s in j ; ( - si
TTX TTX J t X

0

_ 2 ^ sin xyn ,
~~xZ~y^~ +

n=l '"

+ - sin xyj^ J ^ logViv+^ log 277.log ViV - kJ +

+ i - f logfBintf*--Llog&r f rin^+ote^V (2.3)
0 0

Now, by (2.2), the expression in the brackets { } is. Of 1. Also
\ YN I

C, , . .dt f. du , r . du
I log£8ina;tf— = logiisinM — — loga; sin«—
J t J u J u

where C is Euler's constant. Hence (2.3) becomes

, J_ /logj^\

Now it is known thatf

Z p-a
where p runs through the non-trivial zeros of £(s); 8 ^ 1, — 2q, p; and
y > 1. If we put e = \, p = \±iyn, y = ex, then it follows, after
some manipulation,% that the series

2ysinxyn

t E. C. Titchmarsh, The Zetafunction of Riernann (Cambridge, 1930), 81.
j See (A) for details.
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converges to the sum

/—i p
l i x

+arctane~*x—|C—J77—^Iog877. (2.5)
Substituting (2.5) in (2.4) and making N tend to infinity, we have,

after rearrangement,
—wo

~Y f F(t)cosxtdt
0

= G(x), say.

That is, G(x) is the Fourier cosine-transform of F(x), and the integral
converges in the ordinary sense.

Further, it follows from (2.2) that F(x) belongs to L2(0, oo). Hence
G(x) also belongs to £2(0, oo), and,-since F(x) is of bounded variation
in any finite interval excluding the origin, it follows by a theorem
of Titchmarshf that

—WO

F{x) = (-}* I G(t)cosxtdt.
o

Thus we have
THEOREM 1. / / the Riemann hypothesis is true, and

F(X) = (2n)

where k is chosen so that lim F(x) = 0, and
x-*m

G{x)=l-{ y ^
w x\ Z-, p

mlogp^x

—wo

then, forx>0, F(x) = (-J2 j G{t)cosxt di,
o
—*•(»

and . G(x) = l-\* \ F(t)cosxldt.
o

E. C. Titchniarsh, Fourier Integrals (Oxford, 1937), Theorem 5S.
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3. $econd pair of transforms
We use the following lemma :f

LEMMA. Iff(x) and g(x) belong to L2(0, oo) and are a pair of Fourier
cosine-transforms, then'the functions

00 X

/(*)- .J/Wy. 9(x)~jg{t)dt
x 0

are also a pair of Fourier cosine-transforms belonging to L2(0, oo).

Now suppose that |an} is an increasing sequence of positive numbers
tending to infinity, that {«„} is another sequence not necessarily
increasing or positive, that A (x) is everywhere diff erentiable, and that

belongs to L2(0, oo). If we choose M so that a^_x < x ^ % , and put
N > M, aN = T, then

X

N , N ,M-1

a- a » /—i x f
n " n = l n = l

4(T) A(x) C dt
~T x J ( ) T

t This follows immediately from E. C. Titchmarsh, Fourier Integrals
(Oxford, 1937),. Theorem 69.
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Now the first expression in (3.2) is equal to f(x). Hence, making T
tend to infinity, we have

where

K

Using a similar notation for bn, fin, and B(x), and putting

where L is a constant, then, if g{x) belongs to L2(0, oo), an argument
similar to the above'shows that

*•

X- * .•
1 /* 1 / \

^(x)— p(<) d< == - V ' bn—B(x) .

If we now put fin = yn, bn = (2TT)*, L = k, and

then,gr(») is equal" to F(x) of Theorem 1, and

W - ^ I o g ^ , (3.3)

o

where î 0(x) = J ' 1 =

Further, if we put

an = mlogp, an = logp/pim, A(x) = 4 cosh \x—<f>(x),

and ^(x) = Alog(^^Wi7r-arctaiie-**+4e-**, (3.4)
\ t * •/
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then f(z) is equal to G(x) of Theorem 1, and, by the lemma, the
Fourier cosine-transform of (3.3) is accordingly

£ mlogp«x i 1
(3.5)

where

[ T
\ —L 2fsinhi*--
/-, mmpim J t

snlogjXT * j

-u i
vmlogp

'
If we write I for the last limit above, then

1 0
Substituting this in (3.5) we have

(3.6)

Now the function f <j>'(t)— . (3.7)
X

does not reduce to any simple expression, and it is more convenient
to eliminate it. The.Founer cosine-transform of (3.7) is

00 00

| j * ( COBZtdt f f ( t » ) ^

0 (

<=0
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Differentiating (3.4) we find that
2\

ch^a;—2e~K
1/ 2\<f>'(x) = - jcosech^a; I

• l m f l , .. 21. tdt , 1 /2U F
— - I {cosech*< Jsina^.-'— - | r
4x\7r) J \ t) t 4X\ITJ J

On substituting this in (3.8) the integrated terms vanish, and (3.8) i

becomes

• • • * _

t

CO

e~*'8inzt—
t

o

g-27,), say. (3.9)

Now,t if R{z) > - 1 ,

Putting z = — \±_ix and taking the difference we get

= {̂ c"1 : si
J I e ' - l
o

I f f u n= - - J (CoSech^

H * <3io)
0 0

Now the second expression in (3.10) is a Frullani integral, and is equal
to xlogx. Further, for B(a) > — 1,

J (
r(«+l)( 1—

H1

t This follows from Binet's first integral formula for logT(z). Cf. C. A.
Stewart, Advanced Calculus (London, 1940), 493.
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Letting s -> 0, we find that
00

I \ t ft
0

and hence (3.10) gives

Iy = — 2{&m.Y(\+ix)—x\ogx+x), (3.11)

where am Y(\+ix) is defined by putting am F(£) = ; 0 and continuing
analytically along the line \-\-ix.

CO

Nowf | sech \t cos xtdt = n sech TTX.
o

Integrating with respect to a; we have
CO X

/2 = I sech^tsinxt — = n sechtrudu =. arctan(sinhTrx). (3.12)

o o
CO

Further 73 = f e-*'sinatf-= arctan2z. (3.13)

o
Substituting (3.11), (3.12), (3.13) in (3.9) we find that (3.7) and

1
[—{am Y(%-\-ix)—x log x-\-x}-\- \ arctan(sinh TTX)—4 arctan 2x]

(3.14)

are a pair of Fourier cosine-ttansforms of L2(0,oo). Adding (3.7) to
(3.6)'and (3.14) to (3.3) we oboain another pair of Fourier cosine-
transforms of L2(0, oo). These functions are also of bounded variation
in any finite interval, and hence it follows as in Theorem 1 that the
Fourier integrals concerned converge in the ordinary sense. The
result is:

THEOREM 2. / / the Riemann hypothesis is true, and%
X

t E. C. Titchmarsh, Fourier Integrals (Oxford, 1937), 177 (7.1-.6).
% If necessary we may substitute

x
2 f sinh frj = li(e»*)-li(e-»*)

6
in (3.15).
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where

1
— 2 . , , , „„

and ° BV< (3-16)

a; | 277 2TT

1 2 )
-I arctan(sinh me) arctan 2a;},

477 77 J

—MO

then, for x > 0, #(z) = {-)* f Z(<)cos art d*,
o

—MO

arid JT(x)=f-^ f H(t)cosxtdt. (3.17)
0

4. The formula for ]}?(x)
As before, putting an == mlogp, <xN = T, an = logp/pim, the right-

hand side of (3.17) is .- • 0 0 , < . .

/2\i ,f v ' « T , , du ,1| _ p I { > —- 2 I sinhiii—— /)cos
W J \ £ i t <*n J ' « J

0 v a " % t 0 '

\77/ JV-«o| ^ * yOfj Ci2 " 0Cn) J

T t ,

— 2 I cosx^cU I sinhitt — sina;T
J J u x

a2

T 1
— I sinhiiifsina;?7—sin ant) sina;T

x J 2 v . « x J

T ^ - 2 f sinhiw—-i| + 2 f sinh^sinant—|.
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By (3.16) this is equal to
rp

f- y<^smx<xn+ [-(-)h l i m f - y < ^ s n + [

du

i / 2 u , . r v i -i i • \ f lu • dw

= Jim > r- sinlam log p) — eWsmxy,

ainxTj
LI-T^T Pim )\ x\"i

and by (3.17) this expression is equal to K(x). Substituting the value
of K(x) from Theorem 2 and rearranging the terms, we obtain the
result:

THEOBBM 3.f / / the Riemann hypothesis is trite and x ^ 0, then

> r-sin(icmlog»)— I e^uava.xu

2
l

arctan(sinh TTX) A— arctan 2x,

where amFf^+tt) is defihed by taking amF(J) = 0 and continuing
T{s) along the line « =* ^+ix.

Theorem 3 is, in a sense, analogous to (2.5), and the argument of
this section can be reversed to deduce Theorem 2 from Theorem.3.

5. Simpler pairs of transforms
The pairs of transforms discussed in §§ 2, 3 have simpler analogues

with regularly spaced discontinuities; For example, the functions

t See (A), Theorem 2, for an alternative proof and discussion of the result.
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are a pair of transforms with respect to the kernel 2 cos 27rx. Further,
if x(n) is a real primitive character modulo K (K > 1) and

, n
n=l

then the functions

n=£x

are a pair of transforms with respect to the kernel 2K-*COS(27T2;/K) if
x(—1) = 1, or with respect to the kernel 2*c-*sin(27ra;//c) if

X ( - 1 ) = - 1 . '
These results are easily proved by the method of § 2, using an

drdinary Fourier series in the place of (2.5). The pair of transforms
(5.1) can also be derived as a limiting case of an earlier result.f

t A. P. Guinand, J. of London Math. Soc. 14 (1939), 97-100. Let « -> 1—0


