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1 Preliminaries

Goldbach conjecture states that any even integer n greater than 2 can be expressed as a sum of two prime
numbers. These prime numbers p and q are called the Goldbach components of n. We assume here that
Goldbach conjecture holds.

Let us remind four facts :

1) Prime numbers greater than 3 are of the form 6k ± 1.

2) n being an even number greater than 2 cannot be the square of a prime number which is odd. If p1, p2, . . . , pr
are prime numbers greater than

√
n, one of them at most (perhaps none) belongs to the Euclidean decomposition

of n into prime numbers since the product of two of them is greater than n.

3) The n’s Goldbach components are to be found among units of the multiplicative group (Z/nZ,×). These
units are coprime to n, their quantity is an even number and half of them are smaller than or equal to n/2.

4) If a prime number p ≤ n/2 is congruent to n modulo a prime number mi <
√
n (n = p + λmi), its

complementary to n, q, is composite because q = n − p = λmi is congruent to 0 (mod mi). In that case, the
prime number p can’t be a Goldbach component of n.

2 Algorithm

Taking into account these elementary facts gives rise to a procedure from which one obtains a set of prime
numbers that are Goldbach components of n.

We shall denote mi (i = 1, . . . , j(n)), the prime numbers 3 < mi ≤
√
n.

The procedure consists in first ruling out numbers p ≤ n/2 congruent to 0 (mod mi) then in cancelling numbers
p congruent to n (mod mi).

For this purpose of elimination, the sieve of Eratosthenes will be used.

3 Case study

Let us apply the procedure to the even number n = 500.

Let us first note that 500 ≡ 2 (mod 3). Since 6k − 1 = 3k′ + 2, all prime numbers of the form 6k − 1 are
congruent to 500 (mod 3), so that their complementary to 500 is composite. We do not have to take these

numbers into account. Thus we only consider
⌊500

12

⌋
numbers of the form 6k + 1 smaller than or equal to

500/2. They run from 7 to 247 (first column of the table).

Since b
√

500c = 22, moduli mi different from 2 and 3 are 5, 7, 11, 13, 17, 19. Let us call them mi where
i = 1, 2, 3, 4, 5, 6.

The second column of the table provides the result of the sieve’s first pass : it cancels numbers congruent to
0 (mod mi) for any i.

The third column of the table provides the result of the sieve’s second pass : it cancels numbers congruent to
n (mod mi) for any i.
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All modules smaller than
√
n except those of n’s euclidean decomposition appear in third column (for modules

that divide n, first and second pass eliminate same numbers).

500 = 22.53. Module 5 doesn’t appear in third column.

The same module can’t be found on the same line in second and third column.

500 is congruent to 0 (mod 5), 3 (mod 7), 5 (mod 11), 6 (mod 13), 7 (mod 17) and 6 (mod 19).

ak = 6k + 1 congruence(s) to 0 congruence(s) to r 6= 0 n-ak remaining
eliminating ak eliminating ak numbers

(i.e. congruence(s) to n)
7 (p) 0 (mod 7) 7 (mod 17) 493
13 (p) 0 (mod 13) 487 (p)
19 (p) 0 (mod 19) 6 (mod 13) 481
25 0 (mod 5) 6 (mod 19) 475
31 (p) 3 (mod 7) 469
37 (p) 463 (p) 37
43 (p) 457 (p) 43
49 0 (mod 7) 5 (mod 11) 451
55 0 (mod 5 and 11) 445
61 (p) 439 (p) 61
67 (p) 433 (p) 67
73 (p) 3 (mod 7) 427
79 (p) 421 (p) 79
85 0 (mod 5 and 17) 415
91 0 (mod 7 and 13) 409 (p)
97 (p) 6 (mod 13) 403
103 (p) 397 (p) 103
109 (p) 7 (mod 17) 391
115 0 (mod 5) 3 (mod 7) and 5 (mod 11) 385
121 0 (mod 11) 379 (p)
127 (p) 373 (p) 127
133 0 (mod 7 and 19) 367 (p)
139 (p) 6 (mod 19) 361
145 0 (mod 5) 355
151 (p) 349 (p) 151
157 (p) 3 (mod 7) 343
163 (p) 337 (p) 163
169 0 (mod 13) 331
175 0 (mod 5 and 7) 6 (mod 13) 325
181 (p) 5 (mod 11) 319
187 0 (mod 11 and 17) 313 (p)
193 (p) 307 (p) 193
199 (p) 3 (mod 7) 301
205 0 (mod 5) 295
211 (p) 7 (mod 17) 289
217 0 (mod 7) 283 (p)
223 (p) 277 (p) 223
229 (p) 271 (p) 229
235 0 (mod 5) 265
241 (p) 3 (mod 7) 259
247 0 (mod 13 and 19) 5 (mod 11) 253

Remark : let us go back on the first part of the algorithm, to rule out numbers p congruent to 0 (mod mi)
for any i. As a result, it cancels all the composite numbers with any mi in their Euclidean decomposition,
eventually including n, cancels all the prime numbers smaller than

√
n, but keeps all the prime numbers greater

than
√
n which is smaller than n/4 + 1.

The second part of the algorithm rules out the numbers p whose complementary to n is composite because
they share a congruence with n (p ≡ n (mod mi) for any i). The second part of the algorithm rules out the
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numbers p of the form n = p + λimi for any i. If n = µimi, no such prime number can satisfy the previous
relation. Since n is even, µi = 2νi, the conjecture implies νi = 1. In case when n 6= µimi, the conjecture
implies that there exists a prime number p such that, for some i, n = p + λimi, which can be written as
n ≡ p (mod mi) or n− p ≡ 0 (mod mi).

First and second passes can be led independently.
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