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Introduction. A certain nilpotent Lie group plays an important role in the study
by H. Weyl [13] of the foundations of quantum mechanics. The same group
appeared once more in some recent number-theoretic investigations by A. Weil
[12], whose explicit purpose was to throw the theta-functions away from those
parts of analytic number theory where they have played a predominant role in
the hands of Hecke and Siegel (among others), or better to replace them by
appropriate group-theoretic constructions.

We would like to reverse the whole process and to show how most of the
classical properties of theta functions fit into the general group-theoretic frame-
work. The main point is that, whereas the above quoted group has essentially
one equivalence class of irreducible unitary representations, there are a manifold
of concrete realizations of them. More precisely, they can be represented in many
different ways as induced representations, and a generalization of Frobenius’
reciprocity law, already apparent in some recent work by I. Gelfand and
I. Piateskii-Shapiro [5], enables us to compare the different representations. One
ought to give better foundations to the results of the two last named authors,
and we plan to do it at some later occasion.

The first part of the present work is a brief exposition of the Heisenberg com-
mutation relations, and the Schrédinger’s and Fock’s realizations of them. We
describe also H. Weyl’s procedure to convene these commutation relations into
the realm of group theory. Our second part is devoted to the detailed study of
the Weyl’s group and its irreducibi. representations and sketch the application
to the theory of theta-functions. It ought to be a pleasant task to recast the whole
theory of theta-functions in this framework, but what we have done is just a
modest beginning,

The author extends his warmest thanks to N. Katz who wrote a preliminary
version of these notes during the Boulder Conference, and to D. Mumford whose
ideas about theta-functions greatly helped him to frame his own results. His debt
towards A. Weil is of a more subtle kind, but nonetheless real.

I. Commutation relations

1. Schriodinger representation. According to the general postulates of quantum
mechanics, to every physical system S there is associated a certain complex
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Hilbert space .#. Every vector of norm one in ) defines a possible state of S, and
two vectors a and b define the same state if and only if there exists a constant w
of modulus one with b = w - a. Moreover, every physical quantity whose measure-
ment depends upon the observation of § is represented by a certain self-adjoint
operator in J, in most cases unbounded.

For instance consider the case where S is a mechanical system with a finite
number n of degrees of freedom. Choose n position coordinates g, -, g, and
the corresponding momenta p,,-*-,p,. We assume that any combination of
values of the g, corresponds to some physical state. In that case, the elements
of # = i, are pairs of functions f(q,,"*,q.) and f(p,, -, p,), both assumed to
be square-integrable and related to each other by the Fourier transformation
formulas

(1) f(ql" ) Qn) =h"2 J.' ' 'J.f(Pn' e spn)' e(plql ha .’;‘ ha pnqn) dpl Tt dpn’

) j(Pla e pa) = honi2 J .. 'Jf(qh ERNAL e(_ P1q: + ; + pnqn)dql -~ dg,.
Here h is Planck’s constant and e(t) is an abbreviation for e**". Of course, each
of the functions f(q,," " *,4.) and f(p,,"*, p,) determines the other and the rela-
tions (1) and (1') are equivalent, but there is some advantage putting f and fon
the same footing. The scalar product in ) is computed according to the equiv-
alent formulas

) (flg) =J""ff(ql,'",qn)'g(ql,“',q..)dql"'dq..,

@) S1g) = [ [ 7 @00 81~ P dp, -+~ dp,.

The operational meaning is the following. Assume that S is in a state corre-
sponding to the pair (f, f). In an experiment aimed at the determination of the
position of S, the most we can do is to assert the existence of a probability
distribution in the space of the variables g,,-:-,q, with probability density
1@, ", qu)|% Similarly, we have a probability distribution in the momentum
space with density |f(p,," -, p,)|®. These assumptions are compatible with the
convention associating self-adjoint operators g, to g, and p, to p, in the following
way :!

(3) (qkf)(qli'“’qn) = qk‘f(‘]l’“'aqn)’
3) @) Ps ) = P F 1+ P

! The domain of ¢, consists of square-integrable functions f for which the integral

[ [attsan-- a0 da, - da,

is finite. Similarly for p,.
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Generally speaking, the commutator of two operators A4 and B in J is defined
by [4,B] = A-B — B- A.? With the previous definitions, we have now the
famous Heisenberg commutations relations:

, h
4) (g, ad =[ppd =0, [ppad = 5= 9x,

where 6 is 0 if j # k and the identity operator I in case j = k.

2. Fock representation. Another example of a physical system is an assembly
of so-called bosons each of which is capable of n different states e, -, e,. For
instance, one can consider the photons present in a beam of monochromatic
light travelling in a well-defined direction; here there are two states e; and e,
corresponding to two independent states of polarization. For the purpose of
clarity, we shall in the subsequent discussion call e, - - -, ¢, the polarization states
of the bosons.

In this case, the Hilbert space #" has an orthonormal basis {u(c,," -, c,)}
where (c;,- -, c,) runs over all possible combinations of positive integers. In a
state of the assembly (to be contrasted with the polarization states of the individ-
ual bosons) described by a vector

(5) f= Z f(cl,"‘,c,,)‘u(cl,"',c,,),

one can ascribe the probability | f(c,, -, c,)|* to any combination of ¢, bosons
in polarization state e,," -, ¢, bosons in polarization state e,. This is a bona fide
probability distribution because

(6) X ey el =1£1* =1
e
The meaning of u(cy, -, c,) is therefore that of a pure state in which we can
observe ¢, bosons in polarization state e, for k = 1,---,n, and a general state
is a mixing of such pure states.

The occupation operators N,,---, N, are defined by*"

(7) Nk‘u(cla‘”scn)=Ck'u(cl"”’cn)

2 Let 4 and B be two operators in # with respective domains 9, and 9. The operators 4 + B
are defined on the domain 9, " 95 by (A + B)-a= A-a + B-a and the operator A4 - B is defined
by (A-B)-u = A-(B-a) on the domain consisting of those ¢ in %, for which B-a lies in 2,. We
write A < Bin case ¥ ,%gand A-a = B-afor everyain 2,.

3We consider 0 a positive number!

*The domain of N, consists of the vectors of the form (5) for which Vv Chlf (e, s s
finite. Similarly, the common domain of a, and a} is defined by the restriction

Z Cklf(ch"'scn)lz < +o00.

C1-een
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in accordance with the previous discussion. But an important role is played by
the creation operators a,,- - -, a, defined by

8) ayulcy, 6 = (e + Douley, o o0+ 1,00, ¢,)

and their adjoints, the annihilation operators a%,-- -, a* given by
ay-u(cy, v ,c) =0 ifeg=0

©)

=cfulcy, e —1,000,¢,) i 2 L.
With these definitions, we have the following commutation relations:

(10) (aj,a] = [a},a] < 0,  [af, 4] < Op.

The role of the creation and annihilation operators is clarified by the following
remarks. The vector Q = u(0,---,0) with no bosons present in either polariza-
tion state is understandably called the vacuum. It is characterized up to a multi-
plicative constant by the following relations:

(11) at'Q=---=a*-Q=0.
Moreover we have

(12) ulcy, o, co) = @ ap-Qfley ! e)h

The operators a,,"--,a, form a commuting family and by (12) the vectors
P(a,, --,a,) Q where P runs over the polynoms in n variables with complex
coeflicients form a dense subspace in .¢. Note also the relations

(13) . Ny = a;"af,
(14) al?.P(ali."!an)'Q=P;;(al,"'tan).go

where P, is the k-th partial derivative of P.

3. Harmonic oscillator. We shall now relate the two previous constructions.
For that purpose choose two real numbers 4, u such that hiy = =, and define
in the space %, of the Schrédinger representation operators a,," - -, a, by

(15) a,= A q—ippy

fork = 1,---,n From (4), one deduces (10) by an easy computation. By reference
to (11), one looks now for solutions of the equations

(16) atf=-=at-f=0
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which are easily transformed into the differential system

0 ;

(17) (a_+2’1'2qk).f(ql,“.1qn)=o (k=1:”"n)-
dk

A normalized solution of this system is given by

(18) Qqy, > 4n) = An Y exp[—2%(q} + -~ + ga)])

If we define the functions u(c,, - -, ¢,) by (12), the relation (8) and (9) are satisfied
and also (7) if we define N, to be equal to a, - af. Moreover, we have

(19) u(cb Y cn)(qla T, qn) = Hq(‘h) e Hc,.(q,.)

where the normalized Hermite functions H(q) are defined as follows:

(20) HiQ) = sy — e"“z(i)c(e'ﬂ’“’)

¢ 245" (et dq )
From the properties of orthonormal polynomials, one deduces that the functions
u(cy, " -, c,) form an orthonormal basis in the space of square-integrable functions
of n real variables q,,- -, q,. Otherwise stated, the Schridinger and Fock repre-
sentations are equivalent.

The physical meaning of this equivalence is depicted by the theory of the
harmonic oscillator. According to Newton’s mechanics, a particle of mass m
bound to a straight line with coordinate q subjected to a force —K - q oscillates
sinusoidally with frequency v = (1/2n)(K/m)*; the momentum p is m-v where
v is the speed and the total energy is

p2 K- q2
21) E= o + >
According to the general quantum-mechanical recipes, we must consider the
operator E in s, obtained by replacing q by q and p by p in (21). Here the
functions Hy, -, H,,--- form an orthonormal basis in 5, and provided we
choose 4 according to )

x\*
22) A= (71) (Km)?
we have E = hv(a - a* + 3), that is
(23) E-H =(c+%h-H, forc=0,12-"-.

This justifies Planck’s initial assumption and can be expressed by saying that a
quantum-mechanical harmonic oscillator is equivalent to an assembly of bosons
each having one polarization state and energy hv.’

5 That the vacuum is given the energy hv/2 is meaningless in view of the fact that energy differences
only have a definite physical meaning.
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4. Weyl commutation relations. We shall now transform the Heisenberg com-
mutation relations in a form given first by H. Weyl [13]. Consider for that purpose
two self-adjoint operators 4 and B in some Hilbert space s## and the one para-
meter groups of unitary operators they generate according to Stone’s theorem

(24) U(s) = €4, Ut) = €5

Assume now that there exists a real constant ¢ such that®

25) [4,B] < ic- 1.

If we allow power series expansion of operator exponentials (which is fully
justified if A is bounded but not otherwise) and use a well-known formula by Lie
(26) X Y-e¥= Z l' X,--[X,Y]---]], nfactors X

we get at once
27 U(s)B-U(s)"! =B —sc- I

Going to the exponentials in both sides of (27) and multiplying to the right U(s),
we obtain

(28) U(s)- Nt) = e™ ' Nt) - U(s).

The steps going from (25) to (28) are fully reversible and the Heisenberg-like
commutation relation (25) is formally equivalent to the Weyl-like commutation
relation (28).

The previous “proof” is open to some criticism and much pain has been
devoted to fulfill the gaps. While the equivalence of (27) and (28) makes no
difficulty, it appears hard to justify the use of Lie’s formula (26) for unbounded
A. Rellich [10] and Dixmier [3] have proved the equivalence of (25) and (28)
under the assumption that there exists a dense subspace V of 5 contained in the
domains of 4 and B, stable under both 4 and B, such that the restriction of
A? + B? to V be essentially self-adjoint. A general criterion, due to E. Nelson [8]
and valid for general Lie groups, fully contains the equivalence of (25) and (28)
under Rellich-Dixmier assumptions. Another method, used by the author [2]
and generalized to the case of unbounded operators in Banach spaces by Kato [6],
rests on the use of Laplace transform and the resolvant formula

29) J‘ e - U@)ds=(p-1—i-A)! (p real > 0).

0

6 According to our conventions, this relation means that [A, B] multiply by ic any vector in its
domain.
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An easy and rigorous argument shows the equivalence of (27) with the relation
(30 (p-I—i-A"'BcB-(p-I—i-A) '—c(@p-1-iA >

Right multiplication by (p-I — i- A) gives the fully equivalent relation

(31) pI—-iA) VB (pIl—i-A)cB—c-(p-1—iA)!

from which one gets easily the following criterion: The relation (28) holds if and
only if (25) holds and the domain of B-(p-I — i- A) is contained in the domain of
A - B for every p > 0. It has been shown by Kato [6] that the last condition needs
only to hold for one value of p.

We give now the Weyl form of the Heisenberg commutation relations (4).
Using the fact that two self-adjoint operators commute if and only if their
associated one-parameter groups commute, and replacing the relations [py, q,]
< (h/2mi) - I by their Weyl analogue, we obtain

(32) Wt,s,u)- Wit',s',u) = Wt +t + s us+ s,u+ u).
Here we used the definition

—oft). o519 ... [5nn). (H1P1]) ... [UnPn

s =ofg)o () o) o) 7

for t real and two real n-vectors s = (s;," -, s,) and u = (u,, -, u,); moreover
s-u is the scalar product s u; + - + s,u,.

5. Uniqueness of the representation of commutation relations. The problem of
uniqueness of the representation for the Heisenberg commutation relations can
be formulated as follows:

Let be given in some Hilbert space #' a family of self-adjoint operators q," " -,
qn> P1>" ", Py Such that

’ !’ ’ / U ’ h
(33) (49}, 91) = [P)j> Pi] = 0, (pj-qi] = 2—m.5jk-
Assume that these operators share with the operators in_Schrodinger representa-
tion the irreducibility property, viz. no closed subspace of #' distinct from 0 and "
itself reduces simultaneously the operators q; and p;. Does there exist an isometry
U of #' onto A such that

(34) U-q;:U'=gq;, U-p;-U'=p;, (j=1--,n)?

As appropriate counter-examples show, the answer may be negative.” The
known proofs that uniqueness holds indeed under suitable auxiliary assumptions

7 For instance, let #'be the space of square-integrable functions on the closed interval [0, 1] and
let ¢’ be the bounded operator defined by (g“ f)(x) = x- f(x) for 0 < x £ 1. Let @ be a complex
number of modulus one and define p’as the differential operator (h/2ni)(d/dx) with domain the set
of absolutely continuous functions f with square-integrable derivative satisfying the boundary con-
dition f(1) = w- f(0). ¢
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proceed by reduction to the uniqueness problem for Weyl commutation relations.
To formulate this problem, we first remark that in the Schrédinger representation
we have

(35) W, s, f(@) = e(‘ *,f"’) f@ + 1)

with vector notations, and this in turn implies (32). Moreover, the group law

(36) s u-t,su)=t+t' +s us+s,u+u)

makes a real Lie group G out of the real (2n + 1)-space.

J. von Neumann [9] and M. Stone [11] have simultaneously proved the
following uniqueness theorem :

Any two irreducible unitary representations of the group G, mapping (t, 0, 0) onto
the operator e(t/h) - I are unitarily equivalent.

This result solves completely the uniqueness problem for Weyl commutation
relations.

II. A certain group and its representations

6. Description of the group G. We begin by giving a more invariant descrip-
tion of the Weyl’s group. We consider a real finite-dimensional vector space V
equipped with a nondegenerate alternating bilinear form B on V x V. The as-
sumptions imply that the dimension of V is an even number 2n.

The group G is the set of pairs (¢, v) where ¢ is a real number and v a vector
in ¥, together with the multiplication law

@37 t,v)-(,v) =t +t + $B(,v),v + V).
The one-parameter subgroups in G are given by®
(38) g =@A-v)  (Ain R).

It follows for instance that the unit element in G is e = (0,0) and the inverse of
(¢,v) is (—t, —v). The Lie algebra of G shall be denoted by g; according to (38)
the vector space g is the direct product R x V. We imbed V in g by identifying v
with (0, v) for any v in ¥, and we denote by 3 the one-dimensional subspace of g
generated by z = (1,0); therefore g is the direct sum of 3 and V. Moreover,
according to general recipes, we get the bracket in g by antisymmetrizing the
bilinear terms in the group law (37), that is [(t, v), (¢, v')] = (B(v, v'),0), or with
the previous conventions

(39) [z,0v] = 0, [v,v'] = B(v,v)" z

for v,v' in V. Since B is assumed to be nondegenerate, 3 is the center of g.

8 We use standard notations: R is the field of real numbers and C that of complex numbers.
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According to (38), the exponential mapping from g to G is the identity map of
the set R x V. For the sake of clarity, we distinguish between a pair (t, v) con-
sidered as an element of g or as an element of G. The element (0, v) of G is nothing
else than e’ and (¢, 0) denoted «, or «(t) is €"*; more generally, the pair (¢, v) as ele-
ment of G is ¢, - €". It is immediate that the group Z image of the homomorphism
¢« of R into G is both the center and the commutator subgroup of G. By definition
of the group law, we get

(40) e e’ = 3B(v,v))e’
for v,v" in V. Finally we have an exact sequence
41) 0->R->GSH5V-0

where « is given by k(t,v) = v.
The characters® of Z are given by the formula

42) xal) = e(r)

where 4 runs over R. The infinitesimal character® associated to y, is the linear
form on the Lie algebra 3 of Z given by

(43) Xa(2) = 2mid.

For the purpose of explicit computations, we may introduce a symplectic
basis for V with respect to B, let say {P,,--*,P,,Q,," ", Q,}. We then get a
basis {z, P,, ", P,,Q,, ", 0Q,} of g with the property that the only nonzero
brackets among basic elements are

(44) [PJ’Q]]=Z (.]=l”n)

Such a basis of g shall be called a normal basis.

7. Infinitesimal representations. We consider any (unitary) representation (r, 5#)
of G. That is, # is a Hilbert space with scalar product (a|b) linear with respect to
b and norm |a| = (ala)}, and = is a homomorphism of G into the group of
unitary operators in # satisfying the following continuity condition :

(R) For any pair a,b in 5, the function ¢, , defined on G by ¢, ,(g) = (a|n(g) - b)
is continuous.

We let 5, denote the vector subspace in J# consisting of those a’s for which
¢, is a function of class C® whatever be b in 5 ; the elements in J,, are called
C®-vectors. Among the C®-vectors are the vectors

(45) f ¢(g)[n(g)- a] dg
G

° A character of a Lie group G is a continuous complex-valued function x on G such that [x(g) = 1
and x(gg) = x(g)- x(g) for g,g’ in G. The associated infinitesimal character is the linear form x’ on
the Lie algebra g of G characterized by y(exp X) = exp x'(X). -~
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where a is any vector in 3 and ¢ is a C*-function on G with compact support,
and the integral is with respect to some Haar measure on G. It has been shown
by Garding [4] that such vectors form a dense set in 3, and therefore #, is
dense in #

For any X in g, there is a (generally unbounded) operator #(X) on s defined by

(46) #(X) a= ling—:--[n(e"") ‘a — a)

with domain the set of all a’s for which the limit exists (strong or weak, it is the
same). It can be shown that ., is the intersection of the domains of all finite
products (X ,) - - #(X,) where m > 0 and X, -, X, run independently over g.

Let us choose for the moment any basis {X, -, X} of g (where p = 2n + 1).
We define on #, an increasing sequence of Hilbert norms N,, by
47) Nnla)* = ' IZ 17X )™ - #(X ) - all?

alsm

with the standard abbreviations a = (2,,"**,a,) and |a| = a; + - + «,. The
norms depend obviously on the chosen basis of g, but the topology they define
on #, does not; that makes 5, a complete metrizable vector space (an (F)-
space). We define s#_, as the set of all continuous antilinear'® forms on #, and
we identify # with a subspace of #_, by associating to a vector a the antilinear
form b (bla) on £, (note that 3, is dense in JF).

It can be shown that the representation of G in 3 extends in a natural way to
a representation 7 of G in the (nontopological) vector space J#_,. Moreover
there is a linear representation n’ of the Lie algebra g in the vector space #_
with the following property: for any X in g, the domain of #(X) is the set of
vectors a in # < #_, for which n'(X)- a is in 5%, and we have n'(X)-a = #(X)-a
for such an a. The following relations hold:
48) n(Adg)- X) = nlg) m'(X) n(g) ",
(49) (a7’ (X)- b) = —(7'(X)- alb)
for a,b in #,, for X in g and g in G; we denoted by Ad g the automorphism of g
associated to the inner automorphism g'+— gg’'g™ ! of G. It can be shown that 5,
is stable under the operators n(g) and ='(X).

The previous properties are valid for any representation of any Lie group.

They will be considered in detail in the forthcoming paper alluded to in the
introduction.'?

8. Induced representations. We recall the classical definition of such repre-
sentations as given for instance in [1] and [7] under more general circumstances.

10 A complex valued function F on a complex vector space is called an antilinear form in case the
following relations hold F(v + v') = F(v) + F(v') and F(c - v) = ¢ - F(v) where ¢ is the complex number
conjugate to c.

1012 4dded in proof. L. Schwartz informs me that he defined the spaces #,, and J#_, and stated
their main properties in his report at the “‘Second Colloquium on Functional Analysis” held at Liége
(Belgium) in May 1966 (see Proceedings, pp. 153-163).
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Let x be a character of some closed subgroup H of G. We let #, denote the
Hilbert space consisting of all functions f on G satisfying the following conditions :
(@) fis Borel-measurable on G;
(b) f(hg) = x(h) f(g) for g in G and h in H;
(c) the integral [y |f(g)|* dg is finite.
The norm on #, is given by

(50) IfI? = f |f(g)l* dg.
M

A few words of explanation are in order. First of all M = H\G is the space of
cosets Hg in G. Since G is nilpotent, there exist biinvariant Haar measures dg
on G and dh on H, and a measure m on M invariant under the right translations
by the elements of G. We abuse the notations by denoting the integral fuddm
as [y@(g)dg in case ¢ and ¢ are related by ¢(g) = $(Hg). The integral in (50)
makes sense because |y(h) = 1 implies that |f|? is constant on every coset Hg
by virtue of (b).

To every g in G, there is associated a unitary operator =,(g) on 5, by

(51) (m(g)- N)g) = flgg)

(right translation). The pair (n,, #,) is a representation of G, called the repre-
sentation induced by the character y of H.*!

It can be shown that (), is the set of all C*-functions f on G satisfying
condition (b) above such that L-f be square-integrable modulo H for every
left-invariant differential operator L on G. Accordingly, (5£,)_, can be identified
with the set of distributions which can be represented as finite sums ZGL,- fa
where the f,’s are in ), and L, is a left-invariant differential operator for every a.
The representation n’ of g in (), is given via the action of the left-invariant
vector fields on G. The evaluation map

¢— ¢le)
considered as a functional on ()., is an element u, of (#,) _ ,, called the canonical

one. It can be identified with the distribution on G given by u,(¢) = Jud(h)x(h) dh
for every test-function ¢ on G. It satisfies the following equation

(52) nh) - u = x(h)-u (h in H)
which amounts for connected H to be equivalent to the equation
(53) w(Y) u=yx(Y)u

for every Y in the Lie algebra of H.

"I This construction can be expressed in the framework of fibre bundles as follows. On the trivial
bundle G x C over G with fiber C, the group H operates to the left by h(g, c) = (hg, x(h)-c) and G
operates to the right by (g,c)- g = (gg’, ¢). The space E of the H-orbits in G x C is therefore a line
bundle over M = H\G, on which G operates to the right. Moreover, there is a function q on E taking
the value |c|> on the H-orbit of any point (g, c). The space 5, can therefore be identified with the
space of square-integrable sections s of E over M (square-integrable means s is measurable and
{uma(s)- dm < o0). The action of G on the sections is given via the actions of G on M and E.
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A weak form of Frobenius’ reciprocity law reads as follows:
The induced representation (r,, ) is irreducible'? in case the only solutions of
the equation (52) are the constant multiples of the canonical element u, .

9. Classification of the representations of G. Let (r, )#) be any irreducible re-
presentation of G. For any element { in the center Z of G, the operator n({) on ¢
commutes with every operator n(g) and is therefore by the irreducibility assump-
tion a scalar multiple of the identity. We know the characters of Z (cf. formula (42),
page 369) and may conclude that there exists a unique real number 1 with

(54) ) =) (in2)

According to von Neumann [9] and Stone [11] we have the following classifica-
tion:

(a) For every 4 # 0, there exists, up to unitary equivalence, exactly one ir-
reducible representation (z, ) satisfying (54).

(b) The case 4 = 0 corresponds to the representations which are trivial on the
center Z of G. They are the one-dimensional representations given by the char-
acters w, of G:

(55) @ (t, v) = e(B(v, u))

(u is a fixed element of V).
Let us choose a normal basis {z, P,,"**, P,,Q,," ", Q,} of g. The relation (54)
is equivalent to the following infinitesimal one:

(56) w'(z) = 2mid- I (m = 3.1415- - - on the right-hand side!)

(on ¥, or #_, at will). The operators p; = n'(P;) and q; = n'(Q;) satisfy on 5 _ ,
the Heisenberg commutation relations

(57) [P,-,Pk] = [qjs 4] =0, [Pja‘h] = 27‘“51&-

10. The Schridinger representation of G. Let E be any n-dimensional subspace
of V with the property that B is identically zero on E x E. From (40) it follows
that the image E of E into G under the exponential mapping from g to G is a
commutative subgroup of G. The invariant subgroup H; = Z - E of G is the direct
product of Z and E and there exists therefore a unique character w, of Hg
inducing x, on Z and the identity on E. Explicitly, one has

(58) @, - e*) = e(it) (teR,weE).

'2 The representation (r, ) is called irreducible in case there exists no closed vector subspace of
except 0 and ¥ itself, invariant under every operator n(g). A useful criterion asserts that this is the
case if and only if any bounded operator in s commuting with every =n(g) is a scalar muitiple of the
identity operator.
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For any 4 # 0, we denote by 2, = (a;, #;, ) the representation of G induced by
the character w, of H.

To further analyse this representation, let us introduce some n-dimensional
subspace E’ of ¥, such that B induces 0 on E’' x E’ and that V be the direct sum
of E’ and E. Such a subspace E’ is known to exist and to be nonunique in case
n = 1. The restriction of B to E' x E put these two vector spaces into duality.
Moreover, any element of G can be uniquely written in the following form

(59 g=y-e"-e (teR,weEwEeE)

By definition, #, ; consists of the functions f on G which are square-integrable
modulo Hj and satisfy the relation

(60) fl-e’-g)=eAs) f(g) (seR,veE,geQ)

It is immediate to define a Hilbert space isomorphism f& ¢ from J, ; to
L?(E’) by means of the equivalent formulas'?

(61) flg) = elit)- p(w),  ¢(W) = f(e*)

where g is given by (59). By means of this isomorphism, the action of G is shifted
to L*(E’) and is given by the following relation:

(62) (0:(8) ) (V') = e(Ar) - e(AB(v', w)) - (V" + W).

Now let {Q,, -, Q,} be any basis of E. Since B puts E’ and E into duality we
can define a basis {P,,---, P,} and a coordinate system {x,, --,x,} for E' by
means of the formulas

(63) B(P;, Q) = 0>
(64) x(v') = B(v', Q).
According to (59), any element of G is of the form

w(t, S, u) =y elel «os eanne“lPl cee e“npn

where ¢ is real and s = (s, -, s,), &« = (u,," ", u,) are real n-vectors. The group
law is given by

(65) ot s,u) ot,s,u)=wlt +t + s us+s,u+u)
and the operator W(t, s, u) = o,(w(t, s, u)) on L%(E’) is given by
(66) W(t, s, u)- ¢(x) = e(At) - e(As - x) - d(x + u).

We are back to the Schrodinger representation with parameter A = 1/h (see
(35) and (36)).

'3 The notation L%(E’) means the space of square-integrable functions on E'.
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The infinitesimal operators p, and g, acting on L?*(E’) are the differential
operators

(67) P ® = 00/0x,, q ¢ = 2milx, " .

More precisely, the general theory of induced representations (see page 371)
shows that the C*-vectors in the representation 2, are the C“-functions on E’
which are mapped into square-integrable functions by any finite product of the
operators (67). These functions form the Schwartz’ space S(E’) whose dual is
the space &'(E’) of “tempered distributions” on E’. The action of g on the space
S(E) = (H#, p) - is still given by (67).

The irreducibility of Schrédinger representation is a familiar result, but it is
instructive to derive it from our general irreducibility criterion (see page 372) and
the following elementary lemma in distribution theory.

LEMMA 1. Any distribution T on the real n-space E’ satisfying the conditions
(68) x'T=0 (k=1-",n)

is a constant multiple of the Dirac distribution & defined by d(¢) = ¢(0) for any
test-function ¢.

Using the classification of the irreducible representations of G given on page 372
and using the preceding result, we obtain easily the following result.

THEOREM 1. Let {w, 5} be any irreducible representation of G, nontrivial on
the center Z of G, and let E be any n-dimensional subspace of V on which B induces
the zero form. The set of solutions of the equation

(69) w'(X)-v=0 for every X in E
is a one-dimensional subspace of #_ .

11. Some discrete subgroups. Let L be a lattice' in ¥ such that B take integral
values on L x L; the complementary lattice L' is the set of all vectors v in ¥ such
that B(v, A) be an integer for every A in L; it obviously contains L. The set of
elements of the form ¢, - ¢* with t real and 4 in L is an invariant subgroup I', of G;
the subgroup I';. is defined in a similar way. Let us consider also the discrete
subgroup A of the center Z of G consisting of the elements ¢,, with m an integer.
The group I';. is nothing else than the set of all g’s for which the commutator
gyg~ 'y~ ! lies in A for every y in [;.

We denote by = the group of all characters of I'; taking the value 1 on all of A;
we have E = |J,Z, (disjoint union) where Z, is the set of characters of I’y
extending the character y,, of Z (m runs over the set of integers). The general
form of the elements in Z,, is given as follows

(70) Wil - €') = e(mt) - e(3F(2),

4 That is, a discrete subgroup of V generating it as a vector space, or equivalently, the set of
vectors with integral coordinates in a suitable basis of V.
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where F is any real-valued function on L, defined modulo 2, satisfying the con-
gruence:

(71) FA+ p)=F@A) + Flu) + m- B, p) (mod 2).
More simply, the characters in Z, are given by
(72) ¥, - €*) = e(B(vo, 1)

where v, is a fixed element of ¥, defined modulo L’ by this relation.

Let m be nonzero and let ¥,  and ¥, - be two elements of Z,,. We can write
¥Y,r =% -¥,r with some ¥ in Z, Using formula (72), we get after easy
manipulations ’

(73) W, o) = Yurg-y-g")  (inTy

where we can take for g the element g, = exp(m™!

qualifying for (73) form the whole coset go - I',,- 11

A more explicit description of the situation can be given as follows. According
to elementary divisor theory, there exists a normal basis {z, Py, -+, P,, @y, -+, Q,}
of g and integers e,,-- -, e, such that the elements of L (resp. L') are the vectors

- 1) of G; the elements g

(74) A=t;-Pr+ -+t Pot5,-Qy+ -+ 5,0,
whose coordinates are solutions of the congruences

" (75) 5;=0, e'-t;=0(mod1) forj=1,---,n,
(resp.
(75) ej-s; =0, t; = 0 (mod 1) forj=1,---,n)

As a corollary, we get that the index [L' : L] is the square of the integere =e, -+ -¢,.
A special instance of a solution of the functional Equation (71) is given as
follows

(76) Fo(l) =m- (tlsl + -0+ tnsn).
The general solution is given by
(77) FA)= Fy(A) + a;s, + -+~ + a,5, + ey 'byt, +--- + e, 'bt,  (mod 2)

where a,,---,a,,b,, -, b, are real numbers defined modulo 1. Let us remark
that for m even, we might as well take F, = 0 as a particular solution of the con-
gruence (71).

A particularly important special case is provided by the so-called “principal
lattices,” that is the lattices L equal to their complementary L’. For such an L,
the commutator group of I'; is equal to A, and E is therefore the set of all char-
acters of I'; ; moreover any two characters belonging to the same Z,, (with m # 0)
are conjugate to each other by some element of G well-defined modulo I',,-1.
Finally in case of a principal lattice, the ‘“elementary divisors” e,,---, e, are all
equal to 1.
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Assume L to be principal. The Equation (71) is then satisfied for at least one
integral-valued F; in case m is even, it suffices to take F = 0. Assuming therefore
m to be odd, denote by Lthe vector space L/2L over the field with two elements
By reduction modulo 2, the form B defines a symmetric bilinear form B on
L x L and the integral-valued solutions of (71) correspond via reduction modulo
2 to the quadratic forms F on L whose associated bilinear form is B. These
quadratic forms fall into two equivalence classes according to the value of their
*“Arf invariant.” Using again a normal basis {z, P;,---, P,,Q,,- -+, Q,} for which
L is the set of vectors with integral coordinates in ¥, we get the following reduced
forms for the F falling in either one of the two classes:

(78) F(A) =t:8y + -+ + taSns
(79) F'(A) = t,8; + -+ + t,s, + s? + t2.

12. The lattice representations. We proceed now to describe a class of repre-
sentations of G which have so far played no role in quantum mechanics.

We fix a lattice L such that B takes integral values on L x L, an integer m # 0
and a function F solution of (71). The representation of G induced by the char-
acter ¥, p of I'y shall be denoted 2., r. Using the correspondence f = ¢
expressed by the equivalent relations

(80) o) = (), flu-e) = e(m)- $(v),

we shift the action of G to the space #, , r of functions ¢ on V subjected to the
following restrictions:

(a) The function ¢ is Borel-measurable on V.

(b) The integral [|¢(v)|? dv is finite for every fundamental domain P of L acting
by translation on V (for instance a suitable parallelotope).

(c) Functional equation:

(81) S+ 4) = e(-;-m) + 280, a)) - $(0)

forvin Vand 1in L.
The action of G in &, r is given as follows

(82) (Ush)®) = (0 + ) e(ga(v, v'))

where U, = m,(e”) is the operator corresponding to the element " of G. In what
follows, we consider only the case where m = 1, the general case going easily
over to that case by replacing B by m- B throughout. We shall omit the index 1
in the notations ¥, p, #7 1 r, 9., F and 7.

We give now an analysis of irreducibility for the representation 9, r; we shall
eventually prove that the irreducibility is at hand if and only if L is a principal
lattice. To every A’ in L', we can associate an operator A;; commuting to n(G)
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and given via left translation

(83) (A2 1)) = fe* - g)
or equivalently (see formula (80)) by
(84) (429)(v) = (3B, v)(v + 4)

for any function ¢ in #, p. Using (40), we get

(85) Ay Ay = e3BR, 1) - Aya
while (81) takes the form

(86) A, =e3F))-1 (Ain L).

LEMMA 2. Let S be any set of representatives for the cosets of L' modulo L.
The operators A, for s in S form a basis of the algebra of all operators in | ¢
commuting to n(G).

The proof runs as follows. First of all, the infinitesimal representation is given by
@®7) ('(X) - §)(v) = Ox¢(v) + mi- Blv, X)-$(v) (X in V)

where 0 is the Lie derivative!® associated to the constant vector field on V with
value X. More precisely, (#, r), is the set of C®-solutions of the functional
Equations (81) such that n'(X,)---7'(X,)- ¢ be square integrable modulo L for
every sequence of elements X,,---, X, in ¥, and (#,, ) is the set of distribu-
tions on ¥ which can be expressed as finite sums of derivatives #'(X,) - - 7'(X ) - ¢
of functions ¢ belonging to 3, . These distributions satisfy the functional
Equation (81) in a symbolic sense. The canonical element (see page 371) expresses
the distribution u given on any test function ¢ by'®

(88) u(¢) = ;L e(zF(2) - $(2).

The action of 4, on the distributions belonging to (#, r)-,, be expressed by
the same formula which works fo: functions, at least when suitably interpreted
in a symbolic way. This entails the following formula

(89) (A,u)(@) = Y, eGF(A))- eGB(X, 2)- $(4 — 1)

AelL

for A,.u.

15 Defined by
1
Oxf(©) = lim ?[f W + tX) — f()])

16 In this case F = 0, this distribution deserves to be called Poisson distribution because of its
significance for the Poisson summation formula.
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According to the general theory of representations, any operator A in J# r
commuting to n(G) has a natural extension to (¥, r)-, which commutes with
the action of G on (#] f)- . If t = A - u, we have therefore

(90) n(e!)-t = eF (1))t

for every 4 in L. Moreover, A -u is 0 if and only if A4 is 0. It remains therefore to
prove that any distribution in (3, f)_, solution of (90) is a linear combination
of the distributions A, - u, which is tantamount proving the following lemma.

LEMMA 3. Any distribution t on V satisfying the symbolic equations
1) o + 4) = e(F(2)) - edB(v, 1)) - t(v),
(92) e(3B(v, 2)) - tv + 2) = e(}F(2)- t(v)
for every A in L, is of the formt =Y

We can replace the system of equations (91) and (92) by the equivalent system
consisting of (91) and

92) t(v) = e(B(v, 1)) - t(v).

Since L' is by definition the set of common zeros of the functions e(B(v, 1)) — 1
for 1 in L, an easy transversality argument shows that any solution of (92) is
given by!’

(93) ) = Y, T(X)-8(v — X)

A'el’

T(—s) - A,u with suitable constants T(—s).

seS

with a suitable complex-valued function T on L'. This being so, Equation (91)
amounts to the relation (for A in L and A’ in L)

(94) T + 2) = e3F(1)- (- 1)°*2 - TWA)

and implies therefore

t=Y T(-s) Z eBF(2) - (— 1)°D . 5(v — A + 5)
seS Ael
that is
t=) T(—s)-Au.
seS

We can now state the main result of this section.

THEOREM 2. Let L be any lattice in V such that B takes integral values on L x L,
and let F be any solution of the Equation (71) with m = 1. Let L' be the lattice
complementary to L and put [L' : L] = €*.*® Finally, let (w, ) be any irreducible
representation of G such that o(,) = e(t)- I for every real t.

17 By definition, the Dirac distribution 6(v — a) takes the value ¢(a) on any test-function ¢. For
instance, (88) can be written u(v) = ¥, <L €(3F(2) - 8(v — 2) and similarly for (89).

'8 The index [L’: L] is equal to the determinant of the matrix {B(v;, v))} where {v,,---,v,,} is any
basis of V for which L is the set of vectors with integral coordinates.
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(@) The induced representation 9, p is isomorphic to the direct sum of e copies
of (w, ).
(b) The set of solutions of the equations

95) w(e?)-t = eGF(1)) -t (Ain L)

is an e-dimensional subspace of H#_.,,.

Since the algebra of operators in #, r commuting to 7(G) is finite-dimensional
(its dimension being in fact equal to e?), the representation 9, [ splits into a direct
sum of finitely many irreducible components 2,,---, 9,. Since n(,) = e(t)- I, the
classification of the representations of G shows these representations are indeed
equivalent to (w, ). The commuting algebra is therefore isomorphic to the
algebra of all p x p matrices and a dimension argument gives p = e. This proves
(a). As to (b), it suffices to use (a) and to remark that the set of solutions of Equa-
tion (90) is an e*-dimensional subspace of (# )_, by Lemma 3.

13. Fock representation. In order to define invariantly the Fock representa-
tion, we need a real number A # 0 and an operator J in V with the properties:

(96) J = —y,
(97) B(Jv, Jv') = B(v,v),
(98) B(v,Jv) = 0,

for any pair v, v’ of elements of V. We have also to consider the complexification
V. of V, that is a complex vector space containing V such that every one of its
elements can be written uniquely as x = v + iv’ with v and v’ in V. The conjugate
X of the vector x is by definition v — iv". The bilinear form B on V x V extends
to a complex bilinear form B, on V, x V.. The complex extension J, of J to V,
has a square equal to minus the identity operator; it has therefore the eigenvalues
iand —i with respective eigenspacc. some subspace W of ¥, and its conjugate W
(set of all vectors x for x in W). Using (97), one sees that B_ induces the zero form
on both W and W.

If we replace in the definition of G the real pairs (¢, v) by complex ones (that is
t is a complex number and v is in V) and still use the rule (37) to compute the
product, we define a Lie group G, containing G as a closed subgroup, and with
Lie algebra the complexification g, of g. Moreover the set of pairs (¢, X) with ¢
complex and x in W is a closed subgroup P of G, such that GNP = Z and
G- P = G,. We define a continuous homomorphism §, from P to the multiplica-
tive group of nonzero complex numbers by

99) 8.t X) = e(At).
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With all these conventions in mind, we can define the Fock representation as
a kind of holomorphic induced representation.'® Indeed, it acts on a Hilbert space
consisting of all functions f on G, subjected to the following restrictions:

(@) fis holomorphic;

(b) one has f(pg) = d,(p)- f(g) for pin P and g in G_;

(c) the integral [;6|f(g)|? dg is finite.?°
The scalar product is given by the integral

(100) 1) = J @) f(g)dg

2\G6
and the group G acts by the right translations defined by
(101) (Ruf)(g) = f(gh).

In the applications, it is more convenient to shift everything to V as follows.
We denote by ¥, the complex vector space having V as underlying real space in
which J is the scalar multiplication by i. On ¥}, there is a unique hermitian form
H having B as imaginary part; explicitly, one has:

(102) H(v,v') = B(v,JV') + i- B(v, V')

and, according to (98), one has H(v, v) = O for any v.
The correspondence f & ¢ devised by the formula

(103) B(0) = e £(e7)

maps isomorphically the space of the Fock representation onto the Hilbert
space %, whose elements are the C*-functions ¢ on V satisfying the properties

(104) 0,;xp =i-0x0 (for every X in V),
(105) f e O Gy)2 dy < o0.
| 4

The equation (104) is nothing else than the set of Cauchy-Riemann equations in
an invariant guise and expresses that ¢ is holomorphic on V,. As to the scalar
product, it is given by

(106) (¢l¢) = I e~ HHCIG(0)¢(v) dv

| 4

and the operator associated to ¢, - e’ is @, - €*) = e(At) - U, where U, is expressed
as follows

(107) (Uu)() = e m4Ueo2 +HOD. gy 4 ),

191 thank heartfully J. Dixmier for having pointed out to me the importance of this notion and its
bearing to our problems.

20 By condition (b) for p =, we get that | f|? is constant on every coset Zg, giving a meaning to
the previous integral.
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The infinitesimal representation @/, associated to @, is given by
(108) o)(X)- ¢ =0x-¢ —nAHx- ¢

where H is the linear function v— H(X,v) on V. We have to make the usual
proviso, that is (%), is the set of all holomorphic functions ¢ on V; such that
w)(X,)---@)(X,)- ¢ is in F; whatever X,,---, X, is in ¥, and (F)_,, consists
of the finite sums of functions of the form @)(X,)--- w)(X,)- ¢ with X,,---, X,
in V and ¢ in %;. Taking into account the Cauchy-Riemann equations (104) and

the obvious relation H,y = —iH,, we can transform (108) as follows?!
(109) @)(Y)- ¢ = Ox9,
(110) @) (Y)-¢ = —niHy- ¢

where Y is the unique element in W such that X = Y + Y, that is
(111) Y=3X —i-JX)
The main result concerning the Fock representation can be stated as follows.

THEOREM 3. Let J be any operator in V satisfying the relations (96) to (98) and
A # 0 be real. Let W be the subspace of the complexification V, of V associated to
the eigenvalue i of the complex extension J, of J to V..

(@) The Fock representation (w,, %,) is irreducible.

(b) If (w, H#) is any irreducible representation of G which is nontrivial on the
center Z of G, the vectors in #_, annihilated by w'(W)form a one-dimensional
subspace of H,,.

We first prove (b) in case of the Fock representation. According to the descrip-
tion of (#;)_,, and formula (109), an element of (%,)_,, annihilated by w,(W) is
a holomorphic function ¢ on V; such that 6,¢ = 0 for every X in V, that is a
constant.

For every real ¢, one has w,(,) = e(it)- . We may assume m(,) = e(At)-I in
view of the arbitrariness of 1. According to von Neumann results [9], the Fock
representation is therefore isomorphic to the direct sum of a certain number m
(finite or not) of copies of (w, #). Accordingly, the subspace T of (#,)_ . anni-
hilated by @)(W) contains the (algebraic) direct sum of m copies of the space S
in J_,, annihilated by @'(W). Since T is one-dimensional, we get m = 1 and
dim S = 1. This proves assertions (a) and (b) in Theorem 3.

We conclude by some explicit formulas. Since H is a positive nondegenerate
hermitian form on V, we can choose a (complex) basis {Py,---, P,} for ¥, such
that H(P,, P) = 6, and set Q; = J - P;. It is easy to see that

{zaPl""’PmQh"'aQn}

2! We have extended in the obvious way o) to a representation of the complex Lie algebra g..
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is a normal basis of g. Moreover, if we denote by z,,---, z, the complex-linear
functions on V, defined by z,(P,) = J,,, the monomials

u,/z
(112) )."’zl_[ tn '))1/2 z5 a=(a, -,a,

form an orthonormal basis of #,.22 According to (109) and (110), the infinitesimal
operator w)(P; — iQ;) is twice the derivation with respect to the complex variable
z; and @)(P; + iQ;) is multiplication by —2niz;.

14. Definition of theta functions. The whole machinery of Riemann forms can
now be set up. To summarize, let be given:

—a real vector space V of finite dimension 2n;

— a nondegenerate alternating bilinear form Bon V x V;

—an operator J on V satisfying to the relations (96) to (98);

—a lattice L in V such that B takes integral values on L x L;

—a real-valued function F on V such that

(113) FA+p)=FA)+ F(u) + B4,p) (mod?2)

for any pair A, u of elements of L.

By means of these data, a Fock representation (w,, %) (with 1 = 1) is defined
whose irreducibility follows from Theorem 3. By Theorem 2, the solutions of the
equation

(119) w,(e*):t = edF(A))-t  (for every 4 in L)

form an e-dimensional subspace ® of (%)) .. Made explicit, the previous equa-
tion reads as follows

(115) t(v) = v + A)-exp —n[§H(4, A) + H(A,v) + i- F(A)]

and is nothing else than the well-known functional equation defining the theta
functions. We get Frobenius’ theorem that the dimension of the space of solutions
of (115) is given as the square root of the discriminant of B with respect to L.

A few questions to conclude: The group G is nothing but a special instance of
a real nilpotent algebraic group. How can one extend to the general case the
three methods given here to generate irreducible representations of such a group?
What kind of functions on such a group play the role of theta functions?

22 Following Bergman’s well-known procedure, we ought to introduce the kernel
K(v,v') = Y M (v)- M (v)

given here by K(v,v') = e**#®), Its intrinsic meaning is as follows. For every v in V¥, the function
v'+— K(v, v') is an element K, of #; and we have (K, |f) = f(v) for every function fin %,.
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