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TrE object of the present paper is to investigate the expressions which present
themselves in the solution of the problem of the conduction of heat in an ellipsoid of
revolution. For although the question of the stationary temperature of ellipsoids in
general has been completely solved by means of the functions introduced by GREEN
and Lawmg, the corresponding problem of conduction has not been so successfully dealt
with. M. MAtrHiEU, indeed, in his ‘Cours de Physique Mathematique,” has shown
how to reduce the solution to ordinary differential equations, and for the special case
of an ellipsoid of revolution has shown how to approximate to their solutions. His
method, which is novel and remarkable, enables him to calculate a few terms of the
expressions, but does not afford a view of their general constitution and properties.
In the present paper the question is treated in a more direct and general manner.

Choosing with M. MATHIEU, as coordinates of a point, the azimuth ¢ of the
meridional section through it and the parameters o and B of the ellipsoid and hyper-
boloid confocal to the surface which intersect in the point, it is first shown how to
transform the general equation of conduction to these coordinates. This equation is
then satisfied by a series of terms of the form e cos m¢ 9,*(8)02,/(«), in which £ is
determined by an equation whose roots are infinite in number.

The function 9 is expanded in what Mr. TopHUNTER, translating HEINE'S term,
calls associated functions of cos 8, and we shall also follow HEINE in denoting by

- P,(n) the expression (‘u,g-—l)%(p,”"’”— &c.). The language of harmonic analysis has
been greatly benefited by Professor MAXWELL’s introduction of the words type and
degree into the specification of a tesseral harmonic, though we prefer to replace the
term type by order. We shall therefore call the product P,"(u) cos m¢ the tesseral
harmonic of the m™ order and n® degree, and the factor P,(u) the associated function
of the m™ order and n degree. The expansion of the function $ will then consist of a
series of associated functions of the m™ order.

It is shown that the roots of the equation in £ fall into two classes, and that the
corresponding expressions for § take different forms, for one of which the difference
between the degree and order of the associated functions involved is an even number
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118 PROFESSOR C. NIVEN ON THE CONDUCTION

and for the other odd. The values of £2(«) divide themselves in like manner into two
classes. These values are expanded, in the first instance, in terms of the minor axis
of the confocal ellipsoid, and afterwards in terms of the major axis, the former series
proceeding by functions which satisfy the differential equation

Of the two solutions of this equation, which are both finite in form, one S, is finite
when =0, while the other T, becomes infinite.

The expression S, plays for spheres the same part that Besser’s function plays for
circular cylinders, and as HeiNe has employed the term cylinder-function for the
latter, it would seem consistent with analogy to use the term spherical-function for
S,. When 02 is expressed in terms of the major axis of the confocal ellipsoid two
expansions are given, one in terms of spherical functions and the other in terms of
associated functions, and it is shown that each of these series possesses special
advantages in relation to particular points which arise in the problem of the con-
duction of heat.

The properties of these functions are afterwards further considered.

The above expansions being found, I have next discussed the system of equations
which determine %, following more or less closely the analysis which HEINE has given
of a similar system, and it is proved that the values of % are all real and definite in
position, and that for these values the expansions of $ and £2 converge rapidly when
a sufficiently large number of terms is taken.

I then show how to express, by successive approximation, the roots of the equation
in £ in powers of a quantity e which depends on the eccentricity, and have entered
with some fulness of detail into the numerical calculation of a few of the smaller roots
and of the corresponding coeflicients of the functions % and £, more especially in the
case of the first of the two classes into which they fall. Besides these particular
values, however, the general formulee are given, which will furnish them to a certain
degree of approximation for all values of m and for any value of £.

With regard to the special problem of the conduction of heat, the boundary con-
dition is supposed to be either that the surface is kept at a constant temperature, or -
that the body is cooling by radiation. The former is mathematically the simpler, and
we might imagine it realised in the case of a body kept in the midst of an infinite
fluid after a sufficient time has elapsed for the surface to take the temperature of the
fluid. With this assumption the different values of N might be found from the equa-
tion £2,/==0; and the roots of 2,°=0 are investigated up to ¢*. The general condition
of radiation is next considered, and it is shown how it may be brought theoretically
within the range of analysis. I have not, however, thought it necessary to do more
in this direction than indicate how the successive approximations may be found.

Although the calculations were undertaken in the first instance for the case of an
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ellipsoid whose major axis is that of revolution, it is proved that the expressions and
results may be easily transferred to the case of a planetary ellipsoid. And as the chief
object of the paper is to examine the forms and properties of the functions which
present themselves in the mathematical treatment of the subject, I have not thought
it necessary to enter on the discussion of the movement of heat in a shell bounded by
two confocal ellipsoids, or in an infinite solid from which an ellipsoidal cavity has been
taken—questions, however, which might be easily treated by introducing the functions
T, as well as S,. The analysis would seem also to be applicable to other physical
problems relating to ellipsoids of revolution.

Perhaps I should explain that if I have entered somewhat minutely into points
which are not new, I have done so for the purpose of rendering the argument clearer
and more coherent.

2. When a solid body is heated in any manner and left to cool, the equations which
have to be satisfied are, first, the general equation of conduction

AV &V V14V
At T @ dzzfdt""""f(l)

wherein V is the temperature at any point, f the “thermal diffusivity” of the body;
20 the boundary condition, which we shall suppose to be one or other of the forms

V_..Oor—-+f)V P 1)

wherein Zg ZC;Z-F CEY_'_ — | m n being the direction cosines of the normal N to
the surface measured outwards, and B is a constant.

The first of these conditions corresponds to the case where the surface of the body
is maintained everywhere at uniform temperature, for we may suppose the zero of
temperature so chosen as to coincide with the given temperature, whatever it may be.
The second is the usual condition of radiation according to NEwToN’s law of cooling.

We have also a third condition, that which gives the initial state of the body :—

V=V,=f(x 9,2, whent=0 . . . . . . . . (3)

The general course of solution, whatever the solid may be, is to put
V=SA.e‘f)k2/.1') ° . . . . . . . . a (4)

where v is a function of @ ¥ 2, so chosen as to satisfy the equation

dw  dw  dWw
"‘@ @é d22 = — )\Z’U . . & . . . . . » (5)



120 PROFESSOR C. NIVEN ON THE CONDUCTION
and the boundary condition

dv
v=0or - o+h=0. . . . . . . .. (6)

When the appropriate functions » have been found, in general triply infinite in
number, to satisfy (5) and (6), the constants A may be determined from condition (3).
Now it is obvious from the nature of the case that any solution of the equations which
satisfies (1) and (2) and reproduces (3) when =0, will be the solution sought, and the
same conclusion can be readily demonstrated by analysis, With regard to equation
(6), 1t serves two purposes : first in enabling us to select the appropriate form of v, and
secondly in furnishing the values of )\, which determine the types of heat-movement
which take place. PoissoN has shown, in a very elegant way, that the values of \ are
always real, and as his results are of importance as showing also how the constants A
are to be found, I shall here reproduce them.

Let v and " be two functions of x y 2 satisfying the equations (5) and (6), and let

2 stand for L4 P ih
Vv © stand 1or BT apT i en

(\2—\?) [vv’dwolyolz:f(v’ v w—ovv %' )dadydz
,dv AV
='(<v (ﬁ—v(i—ﬁ%l‘s,
ds being an element of the surface ; hence, if either form of (6) be true,
[odadydi=0. . . . ... @)
It follows from this equation that the equation in A\ cannot have imaginary roots;
for, v being always a function of X, if A=p-qy ’—1, there will be another root
N'=p—q./—1, and the corresponding values of v will be respectively L+M,/—1 and
L—M,/—1. Equation (7) now becomes

[T+ M2)dadydz=o,

which is clearly impossible. We may also employ (7) to find A, for

V,=3Av
A=I};‘;ZZE, dE=dxdydz . . . . . . . . . (8)

in which the integration is extended throughout the whole of the solid.
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3. For the case of a solid sphere whose radius 7=, these equations become, in
polar coordinates,

dv 4l BV _p VL V) _1ay
ZR da {( '“>d,4 PanTizpadg [Tt at’
av
V=0or — +HV=0, when r=1,
Vo=£(r, 1 $),

dE= —dr.r*d¢du, where p= cos 6.
The general type of the solution is’
V=¢"%A cos m¢p+B sin m¢)P,’R, B )]

in which m may have all integral values from 0 up to o, P,”cos m¢ is the tesseral
harmonic of the m? order and #* degree, and R, satisfies the equation

&R, 2 dR, a(n+1)
LA s —
et +<)\ 3 >R”_O N e )
The two particular solutions of this equation are

. 1 d\» smM , d \* cos A
oL =2 e

r dr r dr r

(as will be presently shown), of which the former only is appropriate to the case of a
solid sphere, the other becoming infinite at the centre. We have therefore to choose
R,=S8..

With regard to the integer =, it must be at least as great as m, but may have any
value from m up to . The form of the solution being now ascertained, the values of
A may be found from the condition that at the boundary

R =00 dR,L

+I)R,,_ 0 when r=r,,

and the arbitrary constants A, B . .. may be found from the initial distribution.

4. We shall now determine the appropriate transformations of (1) and (2) for an
ellipsoid of revolution, and shall confine ourselves in the first instance to the case of an
ovoid ellipsoid, reserving that of a planetary ellipsoid for subsequent treatment.

The axis of z being that of revolution, put x=p cos ¢, y=p sin ¢ ; equations (1) and
(2) become

MDCCCLXXX. R
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s
dz? dp? " pdp  pPd¢?T t di

V=0 o ld-*v+n[g+f)V 0,

in which I n are here the direction cosines of the normal to a meridian section. Let
us now replace p and z by

p=csinhasin B, z=ccoshacosB . . . . . . . (11)

where a and B are the thermometric parameters of the confocal system which includes
the principal elliptic section of the bounding surface for which e=a,, and whose axes
are therefore 2¢ sinh e, 2¢ cosh «;.

Since p and z are conjugate functions of e, S,

AN APV { dp dp\¥|(d*V | VN _ s oo [PV BV
LA < ) +< <d,ﬂ+d/9 =c*(cosh *a—-cos *B) Z‘~’+(lzg>'

da? AT aB “P
Moreover
av . av . av
= cosh a sin B'&;—I-c sinh & cos B g
vV . av A
%=c sinh « cos ,8% —c¢ cosh a sin ,8—2,
whence

. .1 NAY
¢(cosh? o sin® B4sinh? a cos? ,8) ip = cosh a sin ;8 + sinh & cos ,8 i3

and
cosh? & sin? B+ sinh? & cos® B=cosh® & —cos® B.

By the help of these formule we may transform the general equation of conduction
into
Al Loy LNV 2 ehe 2 gV .
i ot o thzx —|— tB <sing,6'+ . “>d¢2 f(cosh o—CoS B)dt . (12)

sinh?

In a similar manner, the equation to be satistied at the boundary becomes

-~ dV
V=0 or else—~+%c,/cosh® a—cos® BV=0, when a=a, . . . (13)

We must also find the space element, dE,
dp dp
da d,B

dE=pdd.dpdz=pd q')dad,B

(Zoc IZB
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and finally,
dE=c?sinh « sin B(cosh? a—cos? B)dpdadB . . . . . (14)

5. We proceed to find the solution of (12) which is appropriate. We may satisfy
it by putting V=3(cos m¢pU,+ sin m¢U,), where U, and U, both satisfy

dZ:J +dl; ~+coth och-i— ot B _"'mz< s sin? ,3>U— ¢ (cosh? a—cos? B)d

a sinh?® «

U

And with regard to m, it must be observed that it cannot be other than a whole
number, since the value of V must repeat itself in going round the surface of the
ellipsoid in the ¢-direction ; that is to say,

_ m=0,1,2...0. . . . . . . . . . (15)
We may also put
U=e?to
v=.9m"(,3).Q,f(a)}' (16)

where 9 and Q are functions of B alone and of « alone respectively, determined trom
the equations

d& dy__m? 202 cog?
-|- tB s1n2,89")w cos? BY—Fk3 . . . . . . (18)

m?

dQ+ tha =—Necosh’ Q-+ . . . . . (19)

da sinh? «

wherein % is a constant, as yet undetermined. In the sequel it will appear that k
has an infinite number of values for a given value of m and a given value of \, and one
of the objects of the present investigation is to furnish the equation which determines
it, and to approximate to its different values when the eccentricity of the ellipsoid is
small. In this respect the present problem differs essentially from the corresponding
one for a sphere in which % is independent of A ; it is then given by

=n(n+1), where n=m, m+1, m+2,...0 . . . . . (17)

If we put cosB =v, the equation in 3 may be written

(18)

#y _d
(1—) ls s

and, if we write £=\c¢ sinh a, the equation in Q is
R 2
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fZQ fZQ A? dQ) _m%??»g

(E24N 2) 7_}_2{-‘ C_ZE 7 — (N4 EHQ 410
or, more conveniently,
NaY a . ., g of P01 dQ @f _
£GP+ a0 < Bt 52‘Q> 0. (19)

It will be observed that these transformations are suggested by the consideration that,

when ¢=0, the equations in $ and Q should reproduce the corresponding equations in

£, is the semi-axis minor of the confocal ellipse, and we shall

P,»and R, for a sphere; N

use X to denote in like manner the semi-axis major.

6. I shall now show how equation (18) may be satisfied by a series of associated
functions of the order m. If we compare the functions P,”*1, P, P, in which the
constant multipliers are so chosen as to make the coefficient of the highest power of v in.
their rational factors unity, it is known that

2
. n+l TP o=l
VP//L - P/n 47?/2 1 P w0
and hence
202 + 20— 2m? —1 (n2—m?)(n—12—m? .,
21:) J= n+2  n L P o=z
P, @Cn—-1)2n+3) ~" + (4n® - 1)(4n—12— 1)P”Z (20)

It appears from this that the last term will vanish both when n=m and when
n=1+m, the theorem reducing then to

2P e n+d
Pm P/II + 97” + A:; //i )

and to

;z+1

2]3 m+1__ m+3
/}i +97n + yv

It is clear, generally, that v¥P,* can be expanded in a series of associated functions
) & Y
of an even or odd degree, according as n is even or odd. Bearing in mind that

m?

2
[ (1=0) =20 =kl [P — (a4 1) =P,

we can obviously satisfy (18) by the expression
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C(aIOPmm___aJAPmm+2_|_GQPmm+4<___ .. :taer/m%?a'_'_ L. )’
or by the expression > (21
D(bo]_)mﬁﬁl__Z)].Pmm+3_|_ .. ___‘:aSPmm+2.9+1+ . ),
in which
L I1.
1 ’ 1 4
Z’l“].:'e‘("o—k)% p 1b1=;(’< o—k)b, )
1 , 1,
Pzaz-_—"e‘(’(l_k)“l“% p 2b2=;(’< 1—k)b,—b,

1 Lo,
Pss= ;(Kz'_k)%—“x (22)

o | =

Pt == Ra=0 b= (€= Bh=b., |

wherein Mc?=e¢,

_2n9+ 2n—2m?—1

__(nP—m? (n—12—m?)
=G —1)(2n+ 3)

e+n(n+1), 1’1““(4%-2—1)(4.91,—12—1)’ n=m-2r

;207 + 20 —2m* —

. (=) (n—=12—m?)
K= o —1)(2n+3)

1
e+n(n+1), p = oY =T—1y n=m-2s-41.

‘The arbitrary constants C and D are introduced that there may be no loss of
generality when we put one of the series ¢y, @, . . . equal to unity, or one of the series
by, by . ... The two sets of formule I. and II. above are precisely identical, making
allowance for the difference in the values to be assigned for n, and therefore the con-
clusions drawn from I. will be in general true also for IL ; and on this account we
shall confine ourselves more especially to the former of these two systems.

We must first examine somewhat more closely the sense in which the series (21, a)
satisfies (18). If we stop at the term Ca,P,”** in forming the expression

(1 —112)%21;%—21/6(%—(%—2 +\%? 2—k>3,
it is not precisely zero, but equal to C(—ea, P>+ eq, ,P***); hence it is only when
a, and a,., are either zero or indefinitely small that the differential equation is
satisfied. '

We have, therefore, to show that, for certain values of ¥ which are definite in
position, a, tends to zero as r becomes infinitely great. In other words, the values of
k are the roots of the equation

a,=0 . . . . . . . . . . . (28

®
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Similarly, when n—m is odd, the values of £ are the roots of

b,=0, . . . . . . . . . . . (24

e

and we have to show that these roots converge to fixed values.

But before entering on this discussion it will be convenient to take up the con-
sideration of equation (19), and show that it can be satisfied by a definite series of
known functions corresponding to the same values of % ; and, preparatory to doing so,
I shall digress briefly into the solutions of the equation

@4_% @_‘_()\2 7z(n+l)>R 0.

dr® " dy

My reason for doing so is that, for the transformations which follow, a connected
view of the properties of these solutions is necessary.
7. If we write x=»Mr, the equation may be written

A*R 2 dR
+- +<1 —@'qij 1>R=O.

dx® ' x dr

We shall now show that the equation is satisfied by

Rew L) sy, oty R=T=e(P L) 22 )

© de da z

If we write R=a«"u,, we find

da? un 1 a?u,Z

o T2+1)= =0,

If we differentiate this equation, we may readily put the result into the form

(Z 1 d’lb,l 14d 1 dun .
((L dw>+2( +2)-3 lx(m dr” ”>+:L dw =03

da?

and, comparing this with the former equation, we find

1d
Upgr=_ Uy e (26)

1d\*
We thus obtain, generally, u,= < dw) (.

And it is easily seen that u, is given by
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A (uy)
da®

+u Ugr=0

or
sin 2 COoS &

Uy=A — +B

The two values of R are therefore those given by (25).
We may readily find these values as expansions in powers of x, by putting ¢ for ®

sin /7 cosﬁ

and expandlng Jran 7;
v (__1)nmn lﬁ (1;2 1 " j
S =15 (ot 1){1"'1.(277,+3) o T i2@n DG 4 } l# .
T,= ( l)wld .(2n—1) 1+ 1 @ 1 g | . (27)
et { 1.@2n—1) 2 +1.2.(2n—1)(2n—3) 4+ T }J

Since the differential equation is unaltered by replacing n by —(n41), it follows
that S_,_; and T_,_, are also solutions of it; and in fact it is clear, in comparing

corresponding terms, that
S_im=(—1)"T,

—)1—1 - ( ) )

the constants, introduced by integration in S_,_;, being so adjusted as to make the
first n4-1 terms agree ; no constants are to be introduced in determining T_,_,.

BV
quoted by Lord RAyLEIGH,

S’”=(_1)% /\/gw_%JH'I-%(w) 5
ety A/ TR

The finite expansions of S, and T, are

_ 1 w@w=1) 1  a(=1)n"—-2)n'-3) 1 . nr
S_<m 12 22x3+ 1.2.34 E R ke G

*og t e . .
The form S,= 2”tz<dt> in ‘/ also indicates the expansion as a BesseL’s function,

SO

(28)

7 —1)w=2) 1 nr
+<1 22 123 23x4+"'>cos<m+2>
(= 1 ur

T,= " TR > cos <w+ 2)
nw

1 / —9 _ o
<T 22 (n 1. z(;,% ) 2:w4+ Ce >sm (\m+%73>

in which #” stands for n(n+41), and #'—»'=@n—7r)(n4r-+1).




128 PROFESSOR C. NIVEN ON THE CONDUCTION

Lord RayreieH has given another form for S, in terms of differential coefficients
with regard to @ only, but what we are principally concerned with here are the
expressions (27) which show that S, alone is finite at the centre, and with equation
(26) which gives rise to the following formule of reduction.

8. Replacing in (26) u, by S,, we find successively

as n
dd_‘; == b71+1 +5 Sm

[z S, 2 t 1

-1
—Su+2+ 1L+1+%(n ) S/z

If we substitute these expressions in the equation which S, satisfies, we find

In+3
n+2+ ‘ IIQ-1+S}&—'O

Whence

2n41 .
» /&+S/£+1+Sﬂ_l-—0

(2n+ 1)%: (n4+1)S, 1 —nS,_;
and finally,

Suia ‘ 28, Sy 1
T (2n+ 1)(27b+3)+(2n —1)(2n+ 3)+(2n—1)(2n+1) ]

> . (29)
ds, n+1 S, NSy lr

de— (2n+1)2n+3) Serst (2n—1)2n+ 3)+ (2n—1)(2n+1)

R &l;u:

We have to substitute these values in

dars,  1dS, . omP
da? +4 ——+SIL<J- - {L'E>,

% dx

which may also be written

n(n+1) —m? 1d8,

a? "xode

(n+1)?—m? 2n® + 2n—2m* —1 n®—m?

=ent)@or3) 2 @@t O Eamneern

If we now write
135 ... (2n—1)

S”‘“((%—1>2—m2><n~ ) L Ty 2 e (30)

&3, _;_ LS — 20° + 2n —Zm? —1 (02 —m?) (n—12—m?)

: -
£ dt Cn—1)2n4-3) 7" (4 —1)(dn—10—1) - (31)
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If we now turn to equation (19), and compare the result just obtained with (20),
we see that we can satisfy the equation (19) by

Q=Cl(a/02m—a12m+2+a22m+4,-' e ). . . . . o . (31,)

Where «y, o, a, . . . are connected by the same relations as before—namely, I. of
(22), and the values of k are still, as before, the roots of a_=0.

It will be observed that this result depends on the identity of the forms of the
right-hand members of (31) and (20). But the transformation (30) depends essentially
on the hypothesis that n—m is even. For the values of £ which depend on n—m odd,
and give rise to the second class of expressions for 9, this method fails completely ;
in other words, distributions of heat which are not symmetrical about the equator of
the ellipsoid cannot be represented by Q-functions of the type we have just found.
I was led however to expect, from other expressions which will be given presently, that
the true form in this case was to be discovered by putting

Q_—_A/f;_”ffn N )|

After substitution and reductions, we obtain

2—@4-25 Y 0 ko N 2(‘?‘; 2‘fg+n+?—n> 0.

Now the value of the expression

d*s, 148, 1—m? - 3dS,  n(n+1)+1—m?
ag —E d,§+sﬁ+ Ez S”_—{: df+ g Sn,
by (29)
_ (n+2p2—m? g P+ 20 —2m?—1 S 4 (n—1)2 —m?
T @ FDEn+3) T 2e—1)@2n+3) ' Cn—D)@n+1)
If we put
. 185 ... @n—1)

”=(n2—m2)(n—22—m2) oo (mE12—m?) Q
where n—m is an odd number, we find

20% 4+ 2n—2m? —1 (n?—m?)(n—12 —mg)

d
O R L T ey L

It appears therefore that Q' can be expanded in a series of the form

Q’ = bOQ’ﬂH- 1= Z)IQ”H'ES + l)sz.{. 5 . . . . . . . (3 3)
MDCCCLXXX, S
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9. But we may also express Q as a function of », the major semi-axis of the confocal
ellipsoid. And, if we turn to the original equation in Q (19) and put therein
n=AXAc cosh e, we find

. Qo dQ mPA ,
(772—7\%02)W+an—n—mﬂ=—ngﬂ+kﬂ. e (19)

We shall first replace @ by W, where Q=(5*—\%?)*W, the equation becoming after
substitution and reduction,

, PW dW
(n=—vcz)f(h7—2+ 2+ 1)y G --Hinn+ ) W=—n*W+4W.

If we now replace W by w where W==5""w, we find after reduction

2,
o W

"7‘@,72

d*w  2m dw

dw 2 __y2.9f W
+ 29 o F+nPw—kw=>\% <d"72

1
m(m;l— )w>

+

n dy 7

and we can satisfy this equation by a series of S-functions.
Before doing so, we calculate the value of the expression

azs, _27_n£l_S_n+m(m~l:“1)S —_g 2.(m+1) ds, %(n+1)+m(m+1)s
dn* g dy 7o n dy 7 "
__(nFm+D)(n+m+2) 202+ 2n—2m?—1 (n—m)(n—im—1)

T @2n+1)(2n+3) Surs (2n—1)(2n+3) v (2n—1)(2n+1) Siez by (29).

Putting

_135... (2n—1) (34)

Se=123.. C(nm) T

whether n—m be even or odd, we obtain

(2

& m(m+1)>H —H _ 202+ 2n—2m—1 (n*—m?)(n—12—m?)
2 n=—ILy49
dp* m dn Ui

2 @n—1)2n+3) T (AP —1)(dn—12—1) T =2
The equation in w may, therefore, be satistied by either of the forms

w=aH,+oH,potaH, o+ ... \!

) 'w=bon+1+b1Hm+3+bgHm+5+ S |
and ?ﬁ } » . 1y 3 . .
2_)\'2 2\ 2
Q=("7 = )

(35)



OF HEAT IN ELLIPSOIDS OF REVOLUTION. 131

It was the consideration of these formuls, including as they do both the cases of
n—m even and odd, which suggested the transformation (32).

10. We shall now sum up the results of the last two articles and shall replace, in
doing so, the symbols 3, Q, H by S. Neglecting unnecessary constants, we obtain

(1) n—m even, distribution symmetrical on opposite sides of the equator,

'9'=a-0Pmm—OLIP4,Z7”+2+OL2Pmm+4—OL P m+6+ . =~
1 1.3
Q’(f)—aosm 2m+3 oo ¢/z+2+(27nm aSm+4
1.3.5
T 2m+T)(2m+9)(2m+11) USnsot - - - (36)

Q)= (n? —)»202)2{ , m+2(m+ 1) 0,80+ 2%(m+1)(m+2)

2m+3 @2m+5)2m+1T) WS

23(m 4+ 1)(m +2)(m + 3) 0l
(‘)77l+7)(2m+9)(2m+11) 42} m+6+ }J

+

(2) n—m odd, distribution equal and opposite on opposite sides of the equator,

'9=b()Pmm+1_ 11) m+3+b P m+5_b P m+7+ ~

Ez+7\‘2({_2) 3.5
Q(é)= £ {b Sup— 2m+5 n+5 b, S"“’?’_{_(Zm+ T(2m+9) DS

3.5.7
T (2m+9)(2m +11)(2m+18) DaSusrt . } >. (37)

=Ny’ 2m+1) 2(mt m+2)
Q(’?) 7" {bo m+1+ 2m+5 bl m+3+(2m+7)(2m+9) b. Sm+5

23(m+1)(m+2)(m+3) bS

+(2m+9)(2m+11)(2m+13) mirt } )

It will be observed that all these expressions for Q, notwithstanding the factors in
the denominators, are necessarily finite at the centre.

The first equation of last article (19’) suggests yet another form for @ which we shall
find of service in calculating the coefficients.

Putting {= cosh a= )%, that equation may be written

(1—@2)&25—%—(1%— l—z’?a:vc%z&)—kn;

and a comparison of this equation with the corresponding one (18) in 3 shows that we
may satisfy it by
$ 2
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Q__._aOPmm(g)_OLIPmm+2(§)+ . _|_(_l)raerm+2r(C)+ ..
Q=P —b P '

or by (38)

according as n—m 1s even or odd.

The function P,”({) may be written ({*— 1)%]3,,/"({) and we know that

(n+m)!

n —

B (1)—2’"'777.! 1.35 ... (2n—1)
(m+1)m+2) ... (m+7r)

@Cm+2r+1)2m+27+3) ... Cm+4r—1)

n=m-2

— T

and
(m+D)(m+2) ... (m+7)
@m—+27+3)2m+2r+5) ... 2m+4r+1)

— 7

n=m-+42r-+1.

This relation enables us to find the constant factor by which Q({) differs from Q ().
For when { is infinitely near to unity,

2 222 >
Q(C):%%fo—)z(aOPm’”(l)—a]_P,,,”’+2(1)+ ... ), n—m even

=N P () =D P, (1) 4 ), nm 0dd,

xm cﬂl

while 0(¢) then reduces to
Y e Gt

)\lcbofm(_l)m*l
3...@mtsy T odd,

n—1m even

terms above £”*1 being neglected in both sets of formulee.
Hence if
() =K.0({), n—
(é) (), n—m even} (39)

=K'0Q({), n—m odd,

2(m+1) 2%(m + 1) (m + 2\
2m+8 1 + (2m+ 5)(2m + 7 ¢
28(m +1)(m+2)(m+3)
T @2m+T)(2m+9)2m+ 11) st :]
2(m+ 1) 22(m+1)(m+2) b,

1\t 1y\m+1amt+] e —
(=111 K L3...(2m—|—3)[bo 29mt b ]+(2m+7)(2m+9)

(_1)7”)\’”0’”010K=1‘3 . (2’)77/"‘1)[0{‘0_

L (40)

22(m+1)(m+2)(m+3)
_(27714-9)(2711,_!_ 11)(2m+13) b3+ . ]J
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11. We now return to the consideration of equations (22), confining ourselves in the
first instance to the first system which, for the sake of convenience we shall rewrite,

1
101“1:-; (kg—k)a,

1.
—_—f
Palo= . ey —k)ay—a,

1
P:—s%::;("sz?'k)%_“l

1
p7‘+1a7‘+1=; (Kﬂ'—]c)%*_av'_}_;
in which e=\°c?,
__ 27+ 20— 2 — _@—m)(n—=1—m?)
@n—1)2n+3) e-l-n(n+ 1), p= (=T (T =1y n=m-2r.

We are to endeavour to discover the nature of the convergence of the series
O, Oy, g, . . . and the nature and position of the roots of the equation e, =0. A
similar system of equations has been discussed by HEeiNe in his ‘Handbuch der
Kugelfunctionen,” second ed., p. 406, and the following investigations are mainly
modelled on the principles which he has used.

(1) Treating the constant a, throughout as positive, we observe that the series
@y ¢y . .. a, are all positive when k=— oo, and alternatively positive and negative
when k=+ . Moreover, as in STURM's functions, no change of sign is lost or gained
by the passage of any of the intermediate members of the series through zero; and
since the whole series gain r changes of sign as k passes from —oo to 4 oo, it follows
that all the = roots of a,=0 are real.

(2) We shall now show that all the  roots of «a,=0 lie below «,; but, previous to

. . . . 1
doing so, we must inquire more closely into the values of p, and ;(KH_I—K,.).

(n—m?)(n—1 1P —m?)
@) P =11’
and L¢,_,p,=+%

(0)

hence p, lies below 1% (neglecting the case of m=0)

1 4n 46 4mP—1
;(K,.+1 K7>-—~ 7\22-{— D@ @ (41)

and, as the present discussion turns upon having thbis quantity greater than 14 i
we must assure ourselves that this is the case. Now, since Ac¢ is not always necessarily
small, and n need not be large, this expression is not always >1+4+'%; but by choosing
r and therefore n large enough we can ensure that this is the case whatever value Ac
may have, and the present proof will commence with such values of » as certainly give
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1 .. . .o 1
;(K,._I—K,._2)> I4+%. When this is true it follows, @ fortiori, that E(K,V_I—K,._S),
1 1 1 .

;(Kf_l—/g._é) ce ;(Ki.—xf._l), ;(K,.H—K,.) .. . are all greater than +Z.

Let us also suppose, for the sake of clearness, that » is even ; then, if we substitute
k=k,_; in the equations, ¢y, @), ¢y, . . . a,_, are alternately positive and negative and
each is less than 4 of the one after it ; we have, in fact,

1 .
bhay=-— ;(Ki‘—l —Ko)y

1
P.z%:";("r—l—"l)“l_ao’ &e. ;

and since when k=k,_;, p,0,=—0a,_y, a, will also be negative. But, in the same
manner, when we substitute k=« or any greater quantity, the series ¢, a, . . . a, are
alternately positive and negative, and remain so as £ changes from «, to +w. We
infer, therefore, that all the roots of @,=0 lie below «, and that one root lies between
Kkr—p and k.

(¢) Moreover, only one root of «,=0 lies between «,_; and . For when k=x,_,
the series a; . . . «,_; have 7—1 changes of sign and retain these ever afterwards as k
increases ; therefore the subsequent changes of % can introduce only one more change
of sign into the series ¢, @, . . . . :

(d) When k=p, one of the roots of @,=0, the expressions %(K" 1—p); 1(K,.+2—p) e

€

" . 1
are all positive and greater than 1-++%; and, for this value of £, ]07.+2a,.+2=;(1<7.+1— P) i1y

' 1 .
pr+3a¢+3=g(x¢+2-—p)a¢ +o—0py1 + . .3 thus a,,, @, ... have all the same signs and each

is less than &% of the one after it, and these signs are opposite to that of a,_;. But
as k increases from one root p to the next p’ of a,=0, a,_, must have undergone one
change of sign; hence ¢, ¢, ... must have each undergone one change of sign.
In other words, each of the equations @,,,=0, ¢,,,=0 ... has one root between each
pair of a,=0.

(¢) It is clear, therefore, that each of the functions ay, ag . .. vanishes once for values
of & lying in the intervals between —oo, kj, k... and but once. Let us there-
fore conceive these lengths cut off on the axis of £, and construct the curves a, ,=f,(£),
a,=f5(k), a,_;=f5(k)... When =0, ¢,,,==—16a,_, ultimately when » becomes

. . €
very great ; and when a,,,=0, a, and a,_, have like signs and a,‘=';:]; ., there-

fore becomes indefinitely small compared to a,_;, and reference to equations (22) shows
that then a,_; is indefinitely small compared to ¢, ... The points, therefore, in
which the curve a,=f,(k) cuts the axis converge to fixed points as » becomes infinitely
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great; and, in the heighbourhood of these points, the functions ... a,_g, @y @
converge with great rapidity.

The reality of the roots of @ =0 is thus proved, and the convergency, for them, of
the series of coefficients. Similar considerations will apply to the roots of b, =0 and
the corresponding series of b-coefficients.

We proceed to approximate to the values of & in series ascending by powers of e.

12. Although the existence and reality of the roots of «_ =0 are thus established,
it is a hopeless task to attempt to find them generally. But if we suppose the
ellipsoid of small eccentricity, and confine ourselves to those values of N which are not
very great, we may treat \c? or € as being a small quantity ; and, if we conceive the
roots expanded in ascending powers of €, a few terms of the series will be sufficient.

When ¢=0 we know from the corresponding solution in the case of the sphere that
the values of k£ are given by k=n(n-+1), where r=0, 1, 2, 83 . .. o ; we are therefore
to expect that the new roots will consist of series of the form

k=n(n+41)+ket+ke+ke+ . . .,

where £, . . . are numerical coefficients. And here it may perhaps be proper to antici-
pate a difficulty which may occur to the reader. The roots, as given above, are
expressed in powers of \, which are themselves as yet unknown, being determined by
the conditions to be satisfied at the surface of the ellipsoid. And the values of \
depend again upon the particular root selected. Thus an apparent indeterminateness
presents itself, which however is only apparent; and it will be seen, a little further
on, that the roots form a perfectly regular series, and that we can always choose the
pairs of values of A and £ which correspond to each other. For the present therefore
we shall assume A to be known, and proceed to calculate the various roots of the
equation in k. |

If we write ¢, instead of k—£k, and calculate successively a,+ag, ay+a,. ..
we find

€'p1oy + =1,

EP1Patta+ ty= ¢0¢1<1 - GZ;%>
P PyPstls + thy= ¢0¢14’2{ 1— 62<£—;1 + (;:i; > }

epipapipsti+ = b 1= L e ) APV

And, in general,

PPy« - P T O=doPiPy o o Py (L =€ S F e Sy =€ Sg+ L) L L (42)
Wherein

S, is the sum of the quantities -, L2 . £
! a bub bihs " Pt

S, the sum of the products of every two non-adjacent terms of this series,
S5 the sum of the products of every three non-adjacent terms, and so on.
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The effect of having only non-adjacent terms is that no ¢ occurs in a higher degree
than the first, as would otherwise be the case.
The equation which determines k is therefore

bbb (1= Sdet So— .. )=0 . . . . . . (43)

If we neglect € altogether, the several factors reproduce simply the values of & given
by k=n(n+1), »=0,1...

Before proceeding to approximate more closely to these roots, I shall state two
properties of these sums which will present themselves in the reductions, the proof of
which is so simple that it is scarcely necessary to dwell on it—

7-Sl=r-1s 1+ (]5,{); b

Sy=-L S 4, Sy— Ll
=g g SitaS—gtat

These properties will be of great service in proceeding to a second approximation,
and in calculating the coefficients.
Let us concentrate our attention on the (r-41)% root, for which an approximate
value is given by ¢,=0, viz.,
20+ 2n—2m?—1
@n—1)2n+3)

k=n(n+1)+ (44)

The equation may be written in full
P P
—elptan T ettt )

R Er v R e o e SRR e wad R AR

it being observed that no two consecutive p’s can occur in the products.
Multiplying the equation by ¢,, it becomes

bmel bt G =

We see from this that up to € the value of ¢, will be

[ pr 101'+1>
= —+5—). . . . . . . . . . (45
¢ (¢’ 1 Plrn (4)

Wherein ¢',_, and ¢',,, represent what ¢,_, and ¢,,, become when we substitute for
k its first approximate value (44).
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To obtain a third approximation, we must substitute this value of % in the above
equation (43).
The third series of terms may be arranged

4 Pr [ P Y4 Pr—g Prio
¢ ¢,‘_l<¢o¢1+¢1¢2+ RS S )

Praf Py Po Dy Prag
+€ ¢'+1<¢0¢1+¢'1¢2+ e +¢r-—2¢r—1+¢r+2¢r+g+ " >’

while the coefficient of ¢, in the second series is

of P1_ Po Pr—y DPrya
€ <¢0¢1+¢1¢2+ e T e >

On putting, therefore, the value of ¢, given by (45) in these terms, we see that we
shall have

e Rt B (e Bt s
T o) TG ot T ) T | (46)

where, in ¢”,_;, ¢",,; we have to substitute the value of % given by the second approxi-
mation. This gives % as far as €.

I proceed to find its value up to €.
Having n=m--2r, n’=m-2+’, we shall put

D ,=n/(w'41) ~n(n41)
s 202420 —2mP—1 202+ 2n—2mP—1 )
T (20 —1) (20 + 3) (2n—1)(2n+3) ’

and, for a first approximation, obtain

20+ 2n—2mP —1

k=n(n+1)+ @n—1)2n+3)

for a second approximation,

k=n(n+1)+

2n® 420 —2m*—1 Dr D1\ o WOr1r | Prarbraar) g
(2n—1)2n+3) € <D,.__1,?.+D, L e+ Dar_m‘l' D%, ) e+... . (47)

and, as a third,

2 —_— 2 ~
k=n(%+1)+2ﬂ: +2'n 2m/ 1 €—< .pf‘ + .p7'+1> Eg_l_(prs)-_l’r-l-pr_l_lar_‘_l’r) 63

@n—1)@2n+3) Drrr” Drsa D%y’ Dy
4 D Dr+y Dr Pray 2y Pria®iag
— —_ L .
+ € { <Df~—l.4‘ + D7‘+1,7'> <D2r—1,r+ D2r+1,7-> Dsr—],r D 37-+1,r ’ (4 8 )

Dralr _ PraPres } +
D r—2,¢'D2r-—1,r D21'+1,7'Dr+2,r
MDCCCLXXX. T
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This formula becomes simplified for the first of the series of roots corresponding to
a given value of m, that, namely, for which »=0; in the above expression p,=0, and

the value of & is

]Jl +l’1 1,0 5+<101' P181 0__ PPy > et

0__'}%(’)77./—'- 1 ) + 2777/ + 3 D13 0 D13 0 D12,0D2.0

To reduce these expressions we observe that

D, ,=@n"—n)(n'4+n+41),
Dr+],fr= 2 (2’N/+ 3)7 D/‘+2,¢‘= 4(277/+ 5)’
D._,,=—22n—1), D,_,,=—4(2n—38).

Furthermor | since 2’102+2%—2m9—1_i . wﬂ:_]__
u €, @n—1)2n+3) ~ ? Gr—D@n13))

5, 2w =D —m)m +n+1)
" (2n—1)(2n43) (20" —1) (20 +3)’

8(2m+1)(2m—1)(2n+5)

402m+1)(2m—1)

Ore1,= 2n—1)2n+3)(2n+T7) Orsar= (2n—1)2n+3)(2n+T7)(2n+11)
S = 42m+1)(2m—1) S — 8(2m+1)(2m—1)(2n—3)
= T (Op—5)(2n—1)2n+3) T T T (2n—9)(2n—5)(2n—1)(2n+3)

Wherein, as before, n=m-27.
We may also write p in factors as follows :—

(n—m)(n—m—1)(n+m)(n+m—1)

b= (n—3)@2n—1P2n+1)
_(nt2—m)(n+1 —m)(n+m+2)(n+m+ 1)
Pra= (2n+1)(2n+3)*(2n+5)

Putting in these we find, for the first root of the series,

_ 1 2(m+1) 4(m+1)(2m+1)
hy=mm+1)+5 s e S @nt5) ¢ T @t 3 +5@m+7) e (49)

and, in general,

2+ 2 — P —1
f=n(n-+1)+ ?2: 7]’_’)(27;713) S N 1),

where
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hoe=1 (n—m+2)(n—m+D)(n+m+2)(n+m+1l) (@n—m)(n—m—1)(n+ m)(n+m——1)}
L 2{ @2n+1)(2n+3)}(2n+5) (2n—3)(2n—17*2n+1) ’

_ n—m~+2)(n—m+1)(n+m+2)(n+m+1)
7“3"(47”’2_1){ @n—1)@2n+1)@n+3) @n+5)2n+7)

(n—m)(n—m—1)(n+m)(n+m—1)
—(2n—5)(2n—3)(2n—1)5(2n+1)(2n+3)}'

13. The roots of the equation in % being thus approximately found, I proceed to
show how to calculate the coefficients. When we consider that the series for 9,*
reduces to its first term when r=0, and to the term a, P,” when k=n(n-+1) and we
suppose the ellipsoid to become a sphere, it is clear that, for the first root, ¢, must be
the leading coefficient, and that for the (r-41)” root the coefficient a, must be the

leading one of the series. Taking the general case first, we observe that, since none
a, Gy @

. a . . ., .
of the expressions for O—Ll, PR C;’— contains ¢,, it follows that a, contains no terms
0 0 0 0
lower than €, a; none lower than ¢~'... and a,_, none lower than ¢, it being under-

stood that ¢, is finite and of the degree €. It is also true, as we shall see, although it
is not so evident at first sight, that a,,, is at least of the degree ¢, a,,, of degree &,
and so on. We shall work out the first three coefficients on either side as far as €3;
though in the subsequent reductions the coefficients of € in a,.; and a,_; are too
complicated to be worked out fully in general.

‘We have seen that

., )

PPy - - PE é=¢0¢1 o P (=S4 Syt L),
Oy

PrPaPs -+ -+ Pra€ ! Ad;‘lz% oo (1=8 @48t L),

But we have also proved that

SimSt q—bﬁc@_,
S — - S - S _.___2_7’;119_"_;
s = =19t 7 ¢7_1 ¢ 1 FSNCRS

and that, up to €,

Pr Pray 4f _Praa ]9» Dre1Pryg
T 1/ —I— /) ~>_i--€ ( + /3 /‘~>;
o= <¢ 1 en \PraP 1 DD g

hence, putting in this value in the expression for a,,,

a Praa Proa [ Pres
) E,.}.‘| +1_ .. { 2 ; 64‘ y ( 5 ; —_—— S >+ o };
p p +1 (I)O (b ¢) ! + 4) rL ¢ 7-.{-1¢ 7+ b
T 2
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and hence, dividing by the expression for O—Lf, we find
y

“r+1 <1.+/€2p”/2 >,uptoe3 e e e e (51)

Ay ¢ PP rag

In a similar manner
" aﬁ'
D€ = bbb St S L (52)
But

Pria, 1
r+1S1—/—1S +<¢)_1+ ¢1_+1> d)r’

7 S =, S . < Dr 271+1) _ S —M;2TEIJ££,~.
+1M2 1 2+¢1 ¢1~1+¢/+] 1~1 ¢7‘—2¢2T—1¢r

Putting these values into the series on the right-hand side of (52) it becomes, up to ¢,

€Pr11Prg
¢/27'+1¢/r+2,
and finally
Ureo__ 9. L
. @y ®'r119 40
and therefore N 1))
ris__ 3. 1

€ -
Gy & i1 Prea P res J

_1 a,_2 Uy

The series for can be easily found ; for

. a a,

Uy €pr 1—s oS8+ . _ ep,
a, ¢,_1 1—, 18162’1-

[1+(f_1S —aS)Ee+ L ],

and therefore,

Gy __ 9 Pra
a _‘p) < + ¢' 9'—1¢’w'~2)’

O ey
o PP g

Expanding these expressions in powers of ¢, we obtain
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€ ¢ 2.8, 11,

Pr Pra Preg | Orenr 7
Dy D r+1, 7+D r+1, a< Divyr Degiyr " Diggr ™ Doy +

P PO Pre P Pra y P o
U+ H=p e, +D2,,_N.< D, .. 0.0, D)t

ar+] Ap=

oy Ol = - ¢ 1 ————8"“”'+ Orsar €|+
e Dria,r Digor Dis1r Disgyr e

. (54)
PP (1 (S, Sy
CM—Q, 0p= D;-_l,r D,«_z_,-<1 <D,‘_1,7-+D4~_2‘,‘ € + .« e
&
C(/)-+3_-'a/r—Dr-H’TDr+2‘rDr+3;r+ .
PPPrs
61/7—3 a'7 D-_Lr D.;-_Q’,- D.,~__3‘r.€ + .. )

. The determination of the ratios of the remaining coefficients is thus reduced to
algebraical manipulation : the last terms, however, of a,_; and «,,, are very complicated,
and T have not succeeded in giving them a simple form, but they may, of course, be
found in any case where assigned numbers are given for m and 7.

For the others we obtain, on substitution,

€ (2m+1)(2m—1)
2(2n+3)—(2n—1)(2n+3)3(2n+7)52+B3e3+ ..

Oy + =

& . 4mP—1 e
8(2n+3)2n+5) 2 (2n—1)(2n+3)@2n+5)2n+11)C T -

al;-+2 -—0,=

&

Uras ™ 0= 180+ 3)(2n+5) (2n+ nt

L (n? —mg)(n-—lz—mz) 4m?—1
G = 5= 0 1) 2 — 1) (2n— 3)[2 (2n—5)(2n—1)*(2n+ 3)° O }
. _(n9—mz)(mz—m?)(n—%—mg)(n—32—m2)r _ 4m?—1
Wr—o ™ =g 90— 7Y (20— 5)* (20— 3)*(2n— 1)*(2n+ 1) Leg 4’(2n—9)(2n—1)2(2n+3)€3+" ]
(n2 —mP)(n—12—m?)(n— 2% —m?)(n— 32 —m?)(n — 4 —m?)(n—b 52—m2) &
Oy g = Ol = =

48(2n—11)2n—9P (2n—TY(2n—BP@n—3)@n—1p@n+1) < T -

14. We proceed now to the numerical calculation of several of the roots and co-
efficients.

I. Let m=0.

(1) Let r=0, n=0; a, is here the leading coefficient and we may put it =1.
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12 4 o 182,
k= 3€ 135¢ taipne Topme T

e € 91 3
67180 Togim e T
€? 1

— 3
%= amsire T

1
s =qggne T

a

(2) Let r=1, n=2, a, the leading term put equal to unity.

94 21388
‘6+ E+53732 et

— — 2
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(8) Let r=2, n=4, leading term a, put equal to unity,

oy 39 TI674 , 2805228
k=20+e +imipne —rminnmne T

1
dg= o3¢ toip 1131362 + -
€? 1
p— —_— 3
U= 1144 +2.7.113.13.196 +...
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II. Let m=1.

(1) For »=0, n=1, leading term a, put equal to unity.
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(2) r=1, n=3, leading term a, put equal to unity.

1064 808976

— 2 3
12+15€+34 B7I11S FeALise T
€ 1
— R
%= T3 Thmisc T
€ 3 5
U= 792 ~@1oitiss T
4 8
W= —imetimgne T
(8) Let r=2, n=5
12188
fo= 30+_€+34.7.11.133€g+ -
III. Let m=2.

(1) If r=0, n=2, leading term a, put equal to unity.

1
k=6+47e— 3732 + '7511€ T+

€ 5
—_— e — 2
“= gTmEe T
& 5
504 73.15.18

S+ ...

uz-:

(2) When r=1, n=4
1 1270

3 2
k= 20-|— — T I1515C + ...
(8) When r=2, n=6
1534
b=t et et
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15. The functions with which we have just been dealing belong to the first of the

two classes of 9. There is, however, a second class in which 9 is of the form

9= boPmm+1 — blem+3+ .

The investigation of these functions will proceed on the same lines as those we have
already treated, and the general formule for the roots and coefficients will still hold
true, with the modification that we must here put n=m-2s+1, where s=0, 1, 2...

For a given value of m, the first root of each series is

6(m+1)

12(m+1)(2m—1)

k=(m+1)(m+2)+

2m+5 (2m+5)3(2m+7) e+ 2m+5)5(2m+T)(2m+ 9)

(55)
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As the mode of formation of the coefficients has been already sufficiently illustrated,
I shall confine myself to writing down a few of the smaller roots of this class.

6 4
—_ e —— ¢
15 3T

23 23114
j— —_— —_ = bttt ‘2
n o m=0, =1, k=124 75 ety €

When m=0, s=0, k= 2+ g

696718
s =0, 8=2, k=60 b €
m=1, s k——()_|-~ 4 2_|_8 8
» M=l 8=0 “TT029€ TapAlS T
37 21192
—1 o—1 I— 0! )
b m=1e=1 k=204 7 etgrypyp
73892

—1 o= h—e—AO_1 = M 9
n M=l s=32, k= 42+55€+3$Hﬁm17 +-

1 2 4
, m=2,s=0, k=124 3 €301 €2+37.11'1*§) e+ ...

. 17 506
,, m=2,s=1, k=304 39 e+34'11'133€ 4+ ...

The larger m and n become the more nearly will the first few terms of the series
represent the value of the root.

16. We shall now show how to find the types of heat-movement which take place
when the surface of the ellipsoid is maintained at a constant temperature zero. The
general equation of conduction is satisfied by any expression of the form

V=(A cos mp+ Bsin mp)e ™ %9,(8)Q,/();

and, in order that the temperature may be constantly zero at the surface, we must
have

0y \, m)=0 . . . . . . . . . . (56)

or, more fully,

OLOSm—Oblsm+2-|- o .

in which the leading term is (—1)'a,S,,,,,, where m-+2r=n.

For given values of m and » this equation has an infinite number of roots; the total
number of values of A is therefore, apparently, triply infinite. Now, in the corre-
sponding problem for the sphere, the equation is S,(M)=0, the' number being doubly
infinite; and there is no theoretical difficulty in using this solution to approximate to
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the roots of Q,'=0, where the eccentricity of the ellipsoid is small. The precise
manner in which each of the roots of the first problem resolves itself into several in
the second is interesting. We observe that S,.,, may be the leading term of Q, either
as the first term of Q°,,,,, the second of Ql, 4 _g, the third of 0%, 4, ... We infer
therefore that each root of S;=0 or of S,=0 corresponds to one for the ellipsoid, each

root of S,=0 or S3=0 to two, each of S,=0 or S;=0 to three; and, in general, that
each root of
S271,= 0, OI' Of S%_H_:O,

corresponds to (n4-1) roots of the equation in X for the ellipsoid.
If, therefore, the total number of values of \ in the case of the sphere be nN, the

total number for the ellipsoid is 71@5'@ N.

All the roots of S,=0 may be found without difficulty by the general processes
given by Professor Stoxes (Camb. Phil. Trans., vol. ix.) and by Lord RavLEiGH
(Proc. Math. Soc., vol. v., p. 119); and, therefore, those of Q," can be expanded in
powers of ¢>.  We shall confine ourselves to determining those of Q,°=0.

Employing the expression for () and putting a,=1, we have

Set3aSyt+HeS,+...=0. . . . . . . . (57)

If we neglect e this equation reduces to S;(\a)=0, whose roots are given by Aa=1um.
Let the full value of Na be ww+le*+let+ ..., ¢ being the eccentricity of the

ellipsoid =§. The elements of the subsequent calculation are briefly as follows :—
e=Nc*=*n%*+2uml et ...

So(Aa) =h? cos im-4 h_ W cos im.et 4
0 T g o tr? ' Tt

S,(Aa)= —-2 cosim— <£—T —%2_5> l,¢*cos v+ .

P*ar?
10 105 .
S4()\a)=<%§;5—- ;;;) cos v ...

2, Loy (2, 2 44\ g
3a1—9%776+ 9Z1Tl1 srtm)e
8 gt

. — "
35 %= a5 ¢ -

Substituting in the above equation, and putting equal to zero the coeflicients of ¢?
and ¢, we obtain finally

. 1. T,
Xa:?m-—l—g@7762—}-4?—0%(@2772+27)e4+... B 1))

MDCCCLXXX. U



146 PROFESSOR C. NIVEN ON THE CONDUCTION

17. When the ellipsoid cools by radiation, the equation to be fulfilled at the
boundary is

iV
: +f)c«/ cosh? o — cos® BV =0, when a=a,
or
av..y
;l‘,g:-l-ix/l——ezcosZBV:O. e e e (39)

observing that -

=-=k¢.

cosh ay @
In its present shape, the process of satisfying this condition is complicated. If,
however, we neglect ¢, the condition then becomes

v {)
Zf V 0.

The appropriate form of solution in this case is

V=(A cos m¢+DB sin me)e~"*%9,Q,",

A being given by
de

§+QW—O when é=0. . . . . . . . . (60)

If, as before, we neglect ¢* this equation becomes simply

08, b
g TR>=0
the same equation as found for the case of a sphere. It is, therefore, only when we do
not neglect e%? in the expression v/I—¢%? that we obtain results belonging specially
to the ellipsoid. We must accordingly indicate how the problem in its more general
form is to be dealt with. To do so we require various general properties of the
3-functions, to the discussion of which we now proceed. It should be understood
that these properties are of a purely mathematical character, and have nothing to do
with the special series of values which the physical conditions of the problem may
ascribe to . We have seen that for given values of A and m, the different values of %
are perfectly definite, and it may facilitate the apprehension of these values to bear in
mind the approximations which have been given for them in powers of e

The following theorems are well known :—

+1 -+l \ 2 (n,—-m) (n+m)! :
it 7 — )2 — n .
j le P, olV_O,J 1(Pm) dy= Sl {13 ... (2n Dp =J,", say . . . (61)
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+1
and if we denote ( 3.9, dv by (n, %', m, \), or shortly by (n, »’), we obtain the
1o

following :—

(7?/, ’ll/)—"_—Otoa/()jmm-l_({']a/ljmm-'-g+a2algj.7,z7iz+4+ . (62)
(. m) = (0 ()4
It may be easily shown that
(n,”)=0, nnot=n’" . . . . . . . . . (63)
for the differential equations satisfied by 9,7, 3, are
dﬁ Sn d 972 2
Q=) 5 —2— — U g =\ —k, 9"
dv? dy  1—p? L (6 4)
29 49 m? f oot
— 2N 9 R o [/, 2)2 2q# I , !
(1—2% T 1_}/29 N9 — 1,9 J

and therefore
+1 n w'\ |+1
(/C”—k”r)( 9297 oly— lr(l _V2><s_7z’d'9 _'\()ﬁ[}.’_g...>:| =0.
]

_ _d_ll dy -1
From this result we infer that any function may be expanded in a series of 9-func-
tions ; and, first of all, we may invert the series which expresses the 9-functions of
the a-group. This is manifest algebraically ; for if we solve the equations for 9°... 9
in terms of P,”...P,”™¥, we obtain for any one of the P’s the following :—

P;}Zl:‘]l;ygo'l—j’]jg'l‘l'ufé'g'z—" N
where N (1))

-1
fils, )=[" Pgdv=(—1Lyag,r.
1

Now we may assume that any function of » (at least any series of powers of » com-
mencing with »*) may be expressed in one or other of the three forms ZAP,+¥,
SBP, 1, 5(AP, ¥+ BP,*¥+1) and therefore in $-functions of the a-group, b-group,

d*y
> d?

or a combination of these. In particular »*9, »*9 .. . will give rise to 3-functions of

19
the same type as 9, and »9, CC

e to functions of the opposite type. In general, if

Fp)=3C9, (i, )C=| FE)¥dv . . . . . . . (66)

v=-1

The expansion of »*3 may be obtained without difficulty ; for if we combine the first
of equations (64) with
U 2
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AP, » daP,n m?
(1—2»% T — v 5 ——1_1}2137,2 =—n(n+1)P,",

we obtain
+1 +1
Nt 9.P i dv= (b —n(u+1)) [ 9Py
-] -1
= (ky—n(n+1))(—=1)a2).’, n=m+2r,

in which p denotes any even integer.
But
/ v ,
3 mp =a'01] Pmm—a/]_p P mm+2+ L)

hence, remembering equation (63),
)\%Zj 29097 dy=—| m(m~+ 1),y J.>+ o’ (m—+2)(m~43)7," 24+ .. . ] . (67)
=—{p,p'}, say.

The expansion of »%%,# therefore becomes

_ {p, 0} 1}y
129, = — 6[(0 S ] C . (68)

18. These investigations and developments place us in a position to deal with the
boundary condition due to radiation; we may always put

%\/1—e%%”:go”ﬂo+gl”91+gg”'£}2+... N (1))

and all the ¢’s may be expanded in ascending powers of ¢? beginning with €%, except

g.", which commences with . The general equation of conduction is to be satisfied
in this case by the series

V=(A cos m¢p+B sin m¢p)e™(C,9°Q,+C,910,+C,9Q+ . . . ),. . (70)
in which the same \ occurs throughout.
At the boundary, where é=\b,
<d§ +90090>+0190191+0290 Q+ ... =0,
Cugr’ Q0'|‘01< dE +91191>+0291 Q... =0,

a0
0092°ﬂo+0199,1@1+02<g§+ggmz>+ ... =0, &e.
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These are the equations which determine the different values of X and the corres-
ponding ratios Cy: Cp: Gyt . L. When we neglect powers of ¢? beyond e, the equation
determining \ is

1=§§< ),rnot:s; e oo (T
00

. daQ, .
E + gr‘r‘Q'r> <—@ + gs Q&

If the first power of €* alone is retained, this equation breaks up into

=0

+ $0,=0,&c. . . . . . . . (72)

The solutions of these equations may be easily found from the corresponding results
for the sphere, and the quantities ¢,” . . . have been already found.

19. We shall not pursue this inquiry further, but shall now show how the arbitrary
constants introduced into the solution may be determined. As already explained in
Art. 2 of this paper, when the solution is represented by V=3Ae™%y, A is to be
found from

AfdE=(vVdE,
and what we have to find is, therefore,

(zﬂrlrﬁvz sinh & cos B (cosh? a— cos® B)dpdBda . .. . . . (73)
JoJdo

If the surface is kept at a constant temperature zero, or if we adopt the simple law

of radiation ——E+ V 0, we may take

v=cos Mm¢$9,,"Q,"

as the type of solution : the above integral may then be resolved into the components

+1 +1 o @,
f 9. Ydy, f 29 . Ydy, f sinh Q. Qde, I sinh a cosh? Q. Qde ; and of these the two
-1 -1 0 0

former have been already found.
For the accurate solution of the problem of radiation we must take for v an expres-
sion of the form :
cos Mmep(¢yI°Q04 ¢, 9101+ ¢, 920+ . . L),

in which ¢y, ... are known constants, one of which is to be put equal to unity.
When we substitute this expression for v we perceive that we have still another
integral to evaluate, namely,

j “sinh a0 . O'da.
0
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To effect the integrations it will be most convenient to suppose Q expanded in terms
of { in the form
o=K,(a,P,”—a,P,”**+ ... ) (Art. 10).

But, as is well known,

[Bap =l 4y (3 s oy

and may be readily evaluated ; the result we shall denote by j(n, n').
We thus find

1

1 [ QO AL=33(— )" (a0 Ao’ s5) f(m 420, m~+-25) S, (mA- 27, m4-20), } (75)

Kn Kaz'
7 not=s

j‘Q".Q"’dC may be found by putting n=w’, ¢',=«a,. ..

For the remaining integral, combine the equations

d*Q a m?

— T O=\22720, —
(1 z)dé" 2{—; it ]__EZQ_)\CCQ kQ
dl)mn

da¢ {2

d P m

—2L Pm”= NP, —n(n+1)P,"

1=,

whence
1 1 !

e — (e . ) a0 dP,» e
v Ogmp,,;fozg_—_(k—n.wr1>jOQ.P,717Ldg+[(1_gz) <Pm”»dz—ﬂ dgﬂo. . (76)

But o(y)=a,P,"—a, P,/ "+ . .

1
Taking these together, we arrive at the value of r £0.0dL.
0

20. The preceding investigations have related to the laws which govern the move-
ment of heat in an ovoid ellipsoid. For a planetary ellipsoid, we must take

p=ccoshasinB, z=csinhacosB. . . . . . . (77)

The equation which V satisfies is

A*V PV

1 1 \&*V ¢
du 72 tug ap? >

v
+ tanh a_*+ cot ’8(7/3 <%i112,6’ cosh? «)d¢p? f( cos” B+ sinh” @) 7 at’

cosh? «

to satisfy which we must put

V=cosm¢e™"3,"(B)Q," () . . . . . . . . (78)
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where $ and Q are determined by the equations

129 w9

19 .
B ot co ,3[ s B:—)\W cos® BI—ky . . . .. (79)
1 20 .
z "2 4 tanh a2 +~E’é-;h2 = —\¢® sinh? aQ 4+ kQ.

The latter of these equations, on putting é=N\c cosh «, becomes converted into

( 2 dQ  mAAP .
(@) a2 G =@ —Ne)athe . . (80)

These two equations (79) and (80) are of precisely the same form as (18,) and (19)
which we have been discussing, and differ from them only in having —M\%? instead of
+\%% The subsequent formule will, therefore, be the same almost in every instance,
and the investigation need not therefore be repeated.



