
Trois extraits du cours de Jean-Yves Girard sur les algèbres d’opérateurs

[en bas de la page 2 ]

1.3.1 Dimension finie

L’exemple le plus naturel vient de la géométrie euclidienne, l’espace de Hilbert n’étant qu’un espace
euclidien complexifié : au lieu de Rn, on considère Cn, muni de ⟨x⃗|y⃗⟩ =

∑
1≤i≤n

xi.yi. La complexifi-

cation permet de diagonaliser les rotations en résolvant l’équation det(M − λI) = 0, par exemple,
pour une rotation d’angle α, (cos α−λ)2+sin2 α = 0, i.e., λ2−2λ cosα+1 = 0, équation qui n’a de
racines réelles que pour cos α = ±1 : les solutions complexes sont cos α± i sin α, et correspondent
aux vecteurs propres

√
2/2.(1,±i). L’involution sur la partie droite évite les vecteurs isotropes, i.e.,

de “norme” nulle : comparer l’interprétation euclidienne (bilinéaire)

⟨
√
2/2.(1, i)|

√
2/2.(1, i)⟩ = 1/2.(1 + i2) = 0

avec la version hermitienne (sesquilinéaire 1)

⟨
√
2/2.(1, i)|

√
2/2.(1, i)⟩ = 1/2.(1 + i.(−i)) = 1.

Il ne s’agit pas, loin s’en faut, de la seule façon de construire un espace de Hilbert sur Cn. On peut
chercher la forme générale : si {e1, . . . , en} est la base canonique, on peut poser bij := ⟨ei|ej⟩ ; la
condition (3) devient bij = bji, i.e. la matrice (bij) est hermitienne, égale à sa transconjuguée, quant
à la condition (4), elle dit que les racines du polynôme caractéristique de (bij) (qui sont nécessai-
rement réelles) sont strictement positives ; en d’autres termes, (bij) est un hermitien strictement
positif.

Il s’agit en fait d’une remarque générale : si H est un espace de Hilbert et si u est un hermitien
positif, voir plus bas, ⟨u(x)|y⟩ définit une autre structure d’espace préhilbertien sur H. L’espace est
hilbertien par rapport à la nouvelle forme quand u est inversible.

[bas de la page 15 ]

3.4 Petite taxinomie des opérateurs

Les éléments d’une algèbre stellaire, et donc les opérateurs sur un Hilbert, sont principalement
étudiés en fonction de leur relation à leur propre adjoint. Voilà les cas les plus typiques :

- Normal : se dit d’un opérateur qui commute à son adjoint : uu∗ = u∗u. Alors l’algèbre
stellaire engendrée par u est commutative et u possède une espèce de “diagonalisation”. Parmi
les opérateurs normaux se trouvent les hermitiens et les unitaires.

- Unitaire : se dit d’un opérateur u d’inverse u∗, i.e., tel que uu∗ = u∗u = I. Ce sont les
isométries de H, car ⟨u(x)|u(y)⟩ = ⟨x|u∗u(x)⟩ = ⟨x|y⟩, et ils forment donc un groupe. Le

Référence : http://recherche.ircam.fr/equipes/repmus/mamux/AlgOpGirard.pdf.
Denise Vella-Chemla, janvier 2026.

1. Le préfixe latin “sesqui ” signifie “un et demi”.
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spectre d’un unitaire est inclus dans le cercle U = {z ; |z| = 1}. C’est évident, car ∥u∥ = 1
(à cause de ∥uu∗∥ = ∥u∥2) et donc Sp(u) est inclus dans le disque unité D ; il en est de même
de Sp(u∗) = Sp(u)−1, ce qui montre que Sp(u) ⊂ D ∩D−1 = U .

- Hermitien : (ou auto-adjoint) se dit d’un opérateur u égal à son adjoint, en d’autres termes tel
que ⟨u(x)|x⟩ soit réel pour tout x. Le spectre d’un hermitien est réel (voir infra), et les bornes
extrêmes de son spectre sont les réels sup{⟨u(x)|x⟩ ; ∥x∥ = 1} et inf{⟨u(x)|x⟩ ; ∥x∥ = 1}.
L’hermitien typique (c’est même un théorème, tout hermitien s’écrit ainsi) est une somme
u+ u∗.

- Symétries : se dit d’un hermitien unitaire, i.e., tel que u = u∗ = u−1. Son spectre est inclus
dans {−1,+1}, et de fait on peut “diagonaliser” u comme la différence des projecteurs (voir
infra) (I + u)/2 (espace propre de +1) et (I − u)/2 (espace propre de −1).

- Projecteur : se dit d’un hermitien idempotent : u = u∗ = u2. Son spectre est inclus dans
{0,+1}, et u correspond à une projection orthogonale sur un sous-espace clos, l’image de u.

- Hermitien positif : se dit d’un hermitien tel que ⟨u(x)|x⟩ ≥ 0 pour tout x. Les hermi-
tiens positifs sont particulièrement importants, car la structure d’ordre de R supplée aux
défaillances de la topologie, par exemple dans les questions de convergence de séries. Les
hermitiens positifs ont un spectre inclus dans R+. L’hermitien positif typique (c’est encore
un théorème, ils sont tous de cette forme) est un produit uu∗, on peut même supposer u
hermitien, et, mieux, u lui-même positif : le fait capital est qu’un hermitien positif a une
racine carrée.

L’analogie courante est la suivante : les opérateurs sont une version “non-commutative” de leur
spectre, autrement dit, les hermitiens sont les “réels non-commutatifs”, les unitaires jouant le rôle
des arguments complexes eiθ, et d’ailleurs, la décomposition polaire (infra) exprime tout opérateur
comme le produit d’un module (hermitien positif) et d’une isométrie (partielle, cependant).

[bas de la page 23, haut de la page 24 ]

Mn(C) est isomorphe à B(Cn) (Note : ici, à confirmer, B signifie “algèbre stellaire simple sur . . .”
(i.e. algèbre sans idéal bilatère fermé autre que B et 0 )), l’adjoint correspondant à la transconju-
guaison (transposition + conjugaison). En dimension infinie, B(H) contient un unique idéal bilatère
clos non trivial : celui des opérateurs compacts, voir infra.

La fonction φ de Mn(C) dans Mn(C) qui remplace chaque coefficient aij par une matrice de
taille m × m formée de coefficients tous égaux à aij sur la diagonale, nuls en dehors, est un *-
isomorphisme. Si n0 < n1 < . . . < nk < . . . est une suite croissante d’entiers dont chacun divise
le suivant, on obtient ainsi un système direct d’algèbres stellaires. Ce système admet une limite
directe algébrique munie d’une (unique) norme stellaire, ce qui permet de le compléter pour en
faire une algèbre stellaire, la limite directe du système. On peut classer les algèbres ainsi obtenues
par l’exposant de chaque nombre premier dans la suite nk (un entier ou ∞), ce qui permet de les
caractériser à isomorphisme près. L’exemple le plus courant est celui de nk := 2k, ce qui donne les
exposants : ∞ pour 2, 0 pour p > 2, ce qu’on écrit 2∞ (algèbre CAR). Mais on pourrait tout aussi
bien construire une algèbre correspondant à 3∞ · 52 · 11∞, ou encore à 2 · 3 · 5 · 7. . .
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Paragraphe “Géométrie non-commutative” extrait de La logique comme géométrie du
cognitif, Manifeste 2

9. La géométrie non-commutative

Ce constat est rendu un peu obsolète par la géométrie non-commutative. L’exemple classique est
celui d’un tore, i.e., une chambre à air mathématique ; si on le découpe aux ciseaux en suivant une
orientation constante, le résultat va dépendre de l’angle d’attaque s’il est mal choisi (cas le plus
courant), on n’en finit plus de redécouper le tore en une lanière de plus en plus fine ; en d’autres
termes on crée une trajectoire dense, i.e., qui semble passer partout, alors que ce n’est pas une
“courbe de Peano”. Comme si le tore était “trop serré”, comme s’il manquait de points. Mais on ne
peut pas trouver les “points manquants”, et c’est l’idée même de tore-ensemble qu’on doit remettre
en cause, par l’introduction des tores non-ensemblistes, “non-commutatifs”, dit Connes. Technique-
ment parlant, un tore au sens habituel peut être appréhendé au moyen de l’espace de ses fonctions
“lisses”, qui est une algèbre commutative. Si on oublie la commutativité, les algèbres restent mani-
pulables, mais ne proviennent plus d’une “vraie” variété comme le tore, elles ne sont plus “réifiables”.

Cet exemple devrait suffire à nous convaincre qu’on assiste à une véritable expulsion des ensembles
et au début d’une nouvelle approche fondationnelle, en harmonie avec le miracle quantique. À vrai
dire, Groethendieck en son temps avait déjà voulu expulser les ensembles au profit des catégories :
malheureusement ses topoi sont “réifiables”, i.e., ils ont quand même un substrat ensembliste “na-
turel”, ce qu’on ne saurait trouver pour les algèbres d’opérateurs.

Mais quid du commutatif ? Des opérateurs commutent quand ils sont tous “diagonaux” dans une
“base” 3 commune. Le non-dit commun à la logique, à la théorie des ensembles, aux catégories, c’est
l’accord implicite sur une telle “base”. Tout ce beau monde, ensembles, éléments, preuves, modèles,
langage, objets, morphismes, fonctions, arguments... “commute”. On ne s’accorde sur rien, sauf sur
cette base, “arène” ensembliste, où tout se joue, tout se mesure. Tout le monde est donc calé sur
les mêmes repères, mais imaginons un choc et que les gyroscopes se décalent... Les questions ne
tombent plus pile sur leurs réponses, les billes dans leurs cases. Pourtant, si la logique est aussi
augustinienne que le monde physique, l’interaction a lieu malgré son absence de statut formel. En
physique, on sait qu’elle se fait au moyen de la réduction du paquet d’ondes. Voilà ce qu’il faut
importer en logique pour pimenter le relation objet/sujet !

2. Référence : http://repmus.ircam.fr/_media/mamux/documents/girard-logique-2004.pdf
3. Caractérisations d’algèbres commutatives comme espaces C(X) ou L∞(X,µ).
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