Les propriétés des nombres premiers, p. 99 de Pour l’honneur de l’esprit humain
de Jean Dieudonné “Les problémes prolifiques” (§ B de la section 2 du Chapitre IV.
Quelques problémes de mathématiques classiques).

B. Les propriétés des nombres premiers

A ma connaissance, dans aucune civilisation antique autre que la civilisation grecque, on n’avait
songé avant le ve siécle avant J.-C. & la décomposition d'un entier en facteurs premiers. Cette
décomposition, que nous écrivons maintenant

(11) n = p]flpé” .. .p,’fT

ou pi, P2, -- -, Pr, sont des nombres premiers et les k; des exposants au moins égaux a 1, n’apparait
pas explicitement chez Euclide faute de notations adéquates. Mais il démontre les trois propriétés
suivantes (exprimées en langage moderne) :

a) Tout entier est premier ou divisible par un nombre premier (Livre VII, 31).

b) Si p est un nombre premier, une puissance p™ ne peut étre divisible que par les nombres p"
avec r < m (Livre IX, 13).

¢) Si un nombre premier divise un produit ab de deux entiers et ne divise pas a, il divise b (Livre
VII, 32).

A partir de 13, il est facile, en raisonnant par récurrence, d’établir existence et 'unicité de la
décomposition (11).

Rappelons que nous avons cité au chapitre II, § 5, le plus beau théoréme de 'arithmétique grecque,
le fait qu’il y a une infinité de nombres premiers. La démonstration donnée par Euclide est trés
simple (voir Hardy, [7], p. 28, et Appendice I); mais je préfére en présenter une autre, due a Euler,
parce qu’elle a ouvert la voie & ce qu’on appelle la “théorie analytique des nombres premiers”; on
peut toutefois la présenter sans utiliser autre chose que ’algébre élémentaire.

C’est un raisonnement “par ’absurde”, ot on suppose que

b1 :271)2 :37p3:57’”7pr

(rangés par ordre croissant) sont les seuls nombres res premiers, et on va en déduire une conclusion
absurde. Par (11), tout entier n se décomposerait en le produit du second membre d’'une seule
maniére, en admettant cette fois que certains des exposants k; peuvent étre 0 (le facteur pfi étant
alors alors remplacé par 1). Prenons un entier NV arbitrairement grand et considérons le produit

(12) Syp=(14od et ) (1t Ly LRI
Ny = 5 52 5N 3 32 3N o p% piv .

Pour effectuer ce produit, il faut prendre un terme dans chaque parenthése et en faire le produit,

puis faire la somme de tous ces partiels s’écrivent 1/n ou n est de la forme (11), mais avec la res-

triction que 0 < k; < N pour tous les exposants. Par 'unicité de la décompositiontous ces produits
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partiels sont différents ; mais la remarque essentielle est que tous les entiers n compris entre 1 et 2V
apparaissent (une seule fois d’aprés ce qui vient d’étre dit) dans un produit partiel 1/n. En effet, si
1 <n <2V dans la décomposition (11) aucun des exposants koks, ..., k. ne peut étre plus grand
que N — 1, sans quoi le nombre n serait au moins égal a 3" alors qu'on I’a supposé¢ < 2V: 1/n
apparait donc bien comme un des produits partiels dans ’expression de Sy,,. Bien entendu, il y a
dans Sy, d’autres produits partiels, mais ce que I'on a montré c’est que l'on a

(13) S >1—|—1+1+1 + ! —1—1
Mr=2To T3 Ty T oy 1 TN
La somme du second membre n’est pas facile a évaluer, mais on peut la remplacer par un nombre

plus petit de la fagon suivante : on groupe les termes en sommes partielles s’arrétant aux puissances

1
de — :
°3
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1
La premiére parenthése a 2 termes au moins égaux a 1/4, donc elle est > 3 La seconde a 4 termes

1
au moins égaux car elle a 2871 termes au moins égaux a 1/8 donc elle est > 4/8 = 7 Continuant

1
ainsi, on voit que chaque parenthése est > —, car elle a 28! termes et tous sont > 1/2*. Comme il

y a N — 1 parenthéses, on a finalement
1
(14) Sy > 1+ 5]\7.
Mais on peut exprimer Sy, autrement par la formule donnant la somme d'une progression géomé-

trique
l+at+a*+...+a¥=(1-ad"™)/(1—a)

d’ot

(st (o) (o)
T )

Si on remplace tous les facteurs du numérateur par 1, on a une inégalité

1

1 1 1
l— =) (1—5)...(1——
2 3 Dr
1
et le second membre ne dépend plus de N. Comparant (14) et (16) on obtient 1 + §N < A, ou

N <2(A, —1) et comme N est aussi grand qu’on on est arrivé a une absurditeé.

(16) SN;/‘ S = Ar

L’idée d’Euler, qui a été le germe de tous les progrés ultérieurs, fut de remplacer dans (12) les
inverses 1/p; des nombres premiers par une puissance (1/p;)™ ou 'exposant est plus grand que 1
(mais non nécessairement entier). Mais la formule que 1'on obtient ainsi ne peut malheureusement
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se décrire qu’en utilisant des notions d’analyse, séries et produits infinis, que nous ne pouvons em-
ployer ici (voir Appendice II).

Une fois acquis le fait que la suite des nombres premiers ne s’arréte pas, on peut du moins faire des
tables donnant les nombres premiers inférieurs & un certain nombre. On a eu assez tot des tables
qui allaient jusqu’a 3-10° (trois millions), et les ordinateurs peuvent faire beaucoup mieux. La plus
ancienne méthode connue pour fabriquer ces tables est ce qu’on appelle le “crible d’Eratosthéne”.
Pour avoir les nombres premiers < x, on écrit la suite de tous les entiers 2,3,4,5,...,x; on barre
les multiples de 2 a partir de 4, puis les multiples de 3 a partir de 6, les multiples de 5 & partir de
10, et ainsi de suite : de fagon précise, aprés la k-iéme opération, les k£ + 1 plus petits nombres non
barrés sont premiers, et si pryq est le plus grand d’entre eux, la (k + 1)-iéme opération consiste a
barrer les multiples de pyi1- & partir de 2pg,1. On peut s’arréter au dernier nombre premier p, qui
est < y/x; en effet, si un entier m est tel que /x < m < z et est non barré, il ne peut étre un
produit ab avec a > 1,b > 1, car un au moins des nombres a, b serait < y/z, donc divisible par un
des nombres premiers déja trouvés, et m aurait di étre barré. Ainsi, tous les nombres non barrés
et > y/x sont premiers.

Il y a des méthodes plus puissantes pour établir des tables de nombres premiers; mais le crible
d’Eratosthéne est peut-étre le procédé qui a suggéré a Euler de considérer le nombre A, de la for-

1
mule (16) : en effet, pour un nombre premier p < \/x,ily a (1 — —) x nombres telsque 1 < m < x
p

et qui ne sont pas multiples de p. S’il n’y avait pas dans le “crible d’Eratosthéne” des nombres qui
sont barrés plusieurs fois, il y aurait a peu prés

00

nombres premiers inférieurs a x, ol p, est le plus grand nombre < \/x; le facteur de z dans (17) est
précisément le dénominateur du nombre A,. Il dépend naturellement de x, et Euler put montrer qu’il
tend vers 0 lorsque z croit indéfiniment. Cependant, I’examen d’une table de nombres premiers fait
apparaitre une extréme irrégularité dans leur distribution ; on connait un grand nombre de nombres
premiers p tels que p + 2 soit aussi premierE] (on dit qu’ils forment une paire de nombres premiers
“jumeaux”) et on soupgonne méme qu’il y en a une infinité, bien qu’actuellement, on ne sache pas
le démontrer. D’autre part, il y a dans la suite des entiers des “trous” aussi grands qu’on veut ou il
n’y a aucun nombre premier, par exemple la suite

n!+ 2, n!+ 3, ey n! + n.

Méme Euler était découragé par ces tables et pensait que la répartition des nombres premiers était
“un mystére auquel 'esprit humain ne saurait jamais pénétrer”. Mais, a la fin du XVIII® siécle,
Legendre et Gauss, indépendamment, eurent 1'idée qu’en moyenne, la répartition des nombres
premiers obéissait a des lois simples. Gauss considérait tous les nombres premiers entre un nombre
x et le nombre =+ 1000 ; si N(x) est ce nombre, il observa sur les tables que lorsque x est grand, le
rapport N(z)/1000 est voisin de 1/logz. S'il s’agissait d’une couche continue de matiére répartie

1. En 1985, on connaissait 3 424 506 nombres p < 10° tels que p et p + 2 soient premiers.



sur une droite et de densité 1/log x, la quantité comprise entre 2 et x serait

Todt

li(x) = —
i() 5 logt

qu’on appelle le logarithme Gauss pensa donc que le nombre 7(x) des nombres premiers compris
entre 2 et = devait étre “approché” par le nombre li(x).

On précisa cette idée en conjecturant que lorsque x croit indéfiniment, le rapport m(x)/li(z) tend
vers 1; c’est ce qu’on appela le “théoréeme des nombres premiers” ; si py, po, . . ., pn €st la suite crois-
sante des nombres premiers, on montre que ce théoréme équivaut a dire que le rapport p, /nlogn
tend vers 1.

L’examen des tables montre que ces conjectures sont vraisemblables ; par exemple, pour z = 4101,
on a
m(x) = 1075292 778 753 150, li(z) — 7(z) = 5 538 861.

Pendant tout le XIX® siécle, beaucoup de mathématiciens s’attelérent a la démonstration du théo-
réme des nombres premiers. Mais il ne fut prouvé qu’en 1896, presque simultanément par J. Hada-
mard et C. de la Vallée-Poussin. Malheureusement, toutes les méthodes de démonstration reposent
sur I'étude d’une fonction notée ((s) introduite par Riemann, et qui exige des techniques avancées
d’Analyse, que nous ne pouvons songer & décrire.

Mais les mathématiciens ne se sont pas contentés de ce succés; ils voudraient savoir comment se
comporte la différence

m(x) — li(z)

Une conjecture de Riemann sur les propriétés de sa fonction ((s) entrainerait, si elle était vraie,
que
m(x) — li(x)
x%+a

tend vers 0 pour tout exposant a > 0. Malheureusement, malgré 130 ans d’efforts, personne n’a
encore pu prouver ni infirmer '’hypothése de Riemann, qui reste un des problémes ouverts les plus
importants des mathématiques, parce que sa résolution entrainerait de grands progrés dans de
nombreuses parties de la théorie des nombres.

On a longtemps cru que l'on a toujours 7(z) < li(x); les tables montrent que c’est vrai pour
x < 108. Mais Littlewood a établi qu’il y a une infinité d’entiers z tels que

JT

2 logx

m(x) —li(z) >

et aussi une infinité d’entiers x tels que

JT

2 logx

m(z) —li(z) < —



On ne connait pas encore la valeur du plus petit entier 25 pour lequel 7(z) — li(z) change de signe,
mais il est certainement trés grand. Ce résultat confirme évidemment I'impression d’extréme irré-
gularité dans la distribution locale des nombres premiers.

En 1785, Legendre, en vue d’applications a la théorie des formes quadratiques, eut besoin d’une
précision au théoréme d’Euclide, a savoir que si a et b sont deux entiers premiers entre eux, il y a
une infinité de nombres premiers dans la progression arithmétique an + b. Dans certains cas par-
ticuliers, cela se voit aisément en généralisant convenablement la méthode d’Fuclide, par exemple
pour les progressions arithmétiques 4n + 3 et 6n + 5 (Appendice 1). Mais la preuve du théoréme
général n’a jamais étre obtenue par des moyens élémentaires ; elle fut donnée par Dirichlet en 1837,
par l'utilisation de fonctions qui généralisent la fonction ((s) de Riemann.

On note m(z;a, b) le nombre de nombre premiers au plus égaux a x dans la progression arithmétique
an + b; Hadamard et de la Vallée Poussin ont étendu leurs méthodes pour obtenir une estimation
de m(z;a,b); ils ont montré que le rapport

m(x;a,b)
—

log

a pour limite 1/p(a), u ¢(a) est le nombre des nombres m premiers a a et tels que 0 < m < a;
cette formule avait déja été conjecturée par Legendre.

Appendice 1

Les nombres premiers de la forme 4k — 1 ou 6k — 1

Un nombre premier autre que 2 est nécessairement de 'une des formes 4k +1 ou 4k —1 avec k > 1;
le raisonnement d’Euclide, 1égérement modifié, montre qu’il y a une infinité de nombres premiers
de la forme 4k — 1.

On considére la suite croissante de nombres premiers de la forme 4k — 1

(1) PI=3<p=7T<...<p,

On forme le nombre

(2) N =4pips...pr — 1,

I1 ne peut évidemment étre divisible par aucun des nombres de la suite (1) ; d’autre part, il ne peut
étre produit de puissances de nombres premiers de la forme 4k + 1 , car tout produit

(da+1)(4b+ 1) = 4(4ab+a+b) + 1

est encore de la forme 4c+1, donc aucun produit de facteurs premiers de la forme 4k+1 ne peut étre
égal au nombre N défini par (2). Un des facteurs premiers de N est donc de la forme p = 4k — 1, et
pest distinct des nombres de la suite (1). Tout nombre premier autre que 2 et 3 est nécessairement



de I'une des formes 6k + 1 ou 6k — 1; en remplacant 4 par 6 dans le raisonnement précédent, on
montre qu’il y a une infinité de nombres premiers de la forme 6k — 1.

Appendice II.
La décomposition de ((s) en produit eulérien
Soit p; < pa < ... < p, < ... la suite croissante (infinie) des nombres premiers. Soit d’autre part s

un exposant plus grand que 1. La formule d’Euler sur les nombres premiers est la suivante :

1 11 1
I+ —+— 4. +—=+...

S (IR Y CRR Sy FRY W A T

ou au second membre figurent tous les entiers, chacun une fois. Pour donner un sens a cette formule,
il faut prouver trois choses :

I) Si, pour tout entier m, on pose

la suite (F'(m)) a une limite S.

II) Si on pose

la suite (G(r)) a une limite P.
III) Ona P=S.

Prewve de I : Si m < m/, on a évidemment F(m) < F(m'). Comme au §2, B), on considére
différence F(2V) — F(2M) pour M < N, qui s’écrit

L, +(1 +.+ ! + +(1
(2M + 1)5 e 2(M+1)s e (2N—1 + 1)5 T INs | °

Dans chaque parentheése,
1 1 1

@ 1y @2y T ks

il y a 2% termes, et chacun est plus petit que 2%, donc la somme des termes de la parenthése est plus

petite que ﬁ Par suite F(2V) — F(2M) est plus que la somme de la progression géométrique

de premier terme W et de raison ﬁ soit
2 FEVM - FeMy < 2 ¢
(2) (2%) (2%) < (2s-1)M ~ (25-1)N
ou
1
“= 1
B 2571



On a ainsi formé des intervalles [F(2M ), F(2M) + ﬁ] qui sont emboités, de longueur tendant

vers 0 et qui contiennent tous les nombres F'(m) pour m > 2™ le principe de Cauchy montre
que la limite S de la suite (F(m)) existe, I'unique nombre commun & tous ces intervalles, et on a
F(m) < S pour tout entier m.

Preuwve de II) et III) : Sir < ', on a G(r) < G(r"). Pour chaque entier N, il y a un entier ry
tel que, pour tous les entiers n < 2V, la décomposition de n en facteurs premiers ne contient que
les nombres premiers py, pa, . . ., Pry ; le raisonnement de §2. B) montre que 'on a F(2V) < G(ry).
D’autre part, pour chaque entier r fixé, G(r) est limite, pour M croissant indéfiniment, de

() () (=)
(=) (3) - (- 5)

et ce nombre est au plus F((pip2 . ..p.)M) < S. Pour tout r > ry, tous les nombres G(r) sont donc
dans l'intervalle

[F(27), 9]

et le principe de Cauchy montre que la suite (G(r)) a une limite P égale a S.

Le nombre S, valeur commune des deux membres de (1), se note ((s).



