
Les propriétés des nombres premiers, p. 99 de Pour l’honneur de l’esprit humain
de Jean Dieudonné “Les problèmes prolifiques” (§B de la section 2 du Chapitre IV.
Quelques problèmes de mathématiques classiques).

B. Les propriétés des nombres premiers

À ma connaissance, dans aucune civilisation antique autre que la civilisation grecque, on n’avait
songé avant le ve siècle avant J.-C. à la décomposition d’un entier en facteurs premiers. Cette
décomposition, que nous écrivons maintenant

(11) n = pk11 pk22 . . . pkrr

où p1, p2, . . . , pr, sont des nombres premiers et les ki des exposants au moins égaux à 1, n’apparaît
pas explicitement chez Euclide faute de notations adéquates. Mais il démontre les trois propriétés
suivantes (exprimées en langage moderne) :

a) Tout entier est premier ou divisible par un nombre premier (Livre VII, 31).
b) Si p est un nombre premier, une puissance pm ne peut être divisible que par les nombres pr

avec r < m (Livre IX, 13).
c) Si un nombre premier divise un produit ab de deux entiers et ne divise pas a, il divise b (Livre

VII, 32).
À partir de là, il est facile, en raisonnant par récurrence, d’établir l’existence et l’unicité de la
décomposition (11).

Rappelons que nous avons cité au chapitre II, § 5, le plus beau théorème de l’arithmétique grecque,
le fait qu’il y a une infinité de nombres premiers. La démonstration donnée par Euclide est très
simple (voir Hardy, [7], p. 28, et Appendice I) ; mais je préfère en présenter une autre, due à Euler,
parce qu’elle a ouvert la voie à ce qu’on appelle la “théorie analytique des nombres premiers” ; on
peut toutefois la présenter sans utiliser autre chose que l’algèbre élémentaire.

C’est un raisonnement “par l’absurde”, où on suppose que

p1 = 2, p2 = 3, p3 = 5, . . . , pr

(rangés par ordre croissant) sont les seuls nombres res premiers, et on va en déduire une conclusion
absurde. Par (11), tout entier n se décomposerait en le produit du second membre d’une seule
manière, en admettant cette fois que certains des exposants ki peuvent être 0 (le facteur pkii étant
alors alors remplacé par 1). Prenons un entier N arbitrairement grand et considérons le produit

(12) SN,r =

(
1 +

1

2
+

1

22
+ . . .+

1

2N

)
×
(
1 +

1

3
+

1

32
+ . . .+

1

3N

)
. . .

(
1 +

1

pr
+

1

p2r
+ . . .+

1

pNr

)
.

Pour effectuer ce produit, il faut prendre un terme dans chaque parenthèse et en faire le produit,
puis faire la somme de tous ces partiels s’écrivent 1/n où n est de la forme (11), mais avec la res-
triction que 0 ≤ ki ≤ N pour tous les exposants. Par l’unicité de la décompositiontous ces produits
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partiels sont différents ; mais la remarque essentielle est que tous les entiers n compris entre 1 et 2N
apparaissent (une seule fois d’après ce qui vient d’être dit) dans un produit partiel 1/n. En effet, si
1 ≤ n ≤ 2N , dans la décomposition (11) aucun des exposants k2k3, . . . , kr ne peut être plus grand
que N − 1, sans quoi le nombre n serait au moins égal à 3N alors qu’on l’a supposé ≤ 2N ; 1/n
apparaît donc bien comme un des produits partiels dans l’expression de SN,r. Bien entendu, il y a
dans SN,r d’autres produits partiels, mais ce que l’on a montré c’est que l’on a

(13) SN,r ≥ 1 +
1

2
+

1

3
+

1

4
. . .+

1

2N − 1
+

1

2N
.

La somme du second membre n’est pas facile à évaluer, mais on peut la remplacer par un nombre
plus petit de la façon suivante : on groupe les termes en sommes partielles s’arrêtant aux puissances

de
1

2
:

1 +
1

2
+

(
1

3
+

1

4

)
++

(
1

5
+

1

6
+

1

7
+

1

8

)
+ . . .+

(
1

2N−1 + 1)
+

1

2N−1 + 2
+ . . .+

1

2N

)
La première parenthèse a 2 termes au moins égaux à 1/4, donc elle est ≥ 1

2
. La seconde a 4 termes

au moins égaux car elle a 2k−1 termes au moins égaux à 1/8 donc elle est ≥ 4/8 =
1

2
. Continuant

ainsi, on voit que chaque parenthèse est ≥ 1

2
, car elle a 2k−1 termes et tous sont ≥ 1/2k. Comme il

y a N − 1 parenthèses, on a finalement

(14) SN,r ≥ 1 +
1

2
N.

Mais on peut exprimer SN,r autrement par la formule donnant la somme d’une progression géomé-
trique

1 + a+ a2 + . . .+ aN = (1− aN+1)/(1− a)

d’où

(15) SN,r =

(
1− 1

2N+1

)(
1− 1

3N+1

)
. . .

(
1− 1

pN+1
r

)
(
1− 1

2

)(
1− 1

3

)
. . .

(
1− 1

pr

)
Si on remplace tous les facteurs du numérateur par 1, on a une inégalité

(16) SN,r ≤
1(

1− 1

2

)(
1− 1

3

)
. . .

(
1− 1

pr

) = Ar

et le second membre ne dépend plus de N . Comparant (14) et (16) on obtient 1 +
1

2
N ≤ Ar où

N ≤ 2(Ar − 1) et comme N est aussi grand qu’on on est arrivé à une absurdité.

L’idée d’Euler, qui a été le germe de tous les progrès ultérieurs, fut de remplacer dans (12) les
inverses 1/pj des nombres premiers par une puissance (1/pj)

m où l’exposant est plus grand que 1
(mais non nécessairement entier). Mais la formule que l’on obtient ainsi ne peut malheureusement
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se décrire qu’en utilisant des notions d’analyse, séries et produits infinis, que nous ne pouvons em-
ployer ici (voir Appendice II).

Une fois acquis le fait que la suite des nombres premiers ne s’arrête pas, on peut du moins faire des
tables donnant les nombres premiers inférieurs à un certain nombre. On a eu assez tôt des tables
qui allaient jusqu’à 3 ·106 (trois millions), et les ordinateurs peuvent faire beaucoup mieux. La plus
ancienne méthode connue pour fabriquer ces tables est ce qu’on appelle le “crible d’Ératosthène”.
Pour avoir les nombres premiers ≤ x, on écrit la suite de tous les entiers 2, 3, 4, 5, . . . , x ; on barre
les multiples de 2 à partir de 4, puis les multiples de 3 à partir de 6, les multiples de 5 à partir de
10, et ainsi de suite : de façon précise, après la k-ième opération, les k+1 plus petits nombres non
barrés sont premiers, et si pk+1 est le plus grand d’entre eux, la (k + 1)-ième opération consiste à
barrer les multiples de pk+1< à partir de 2pk+1. On peut s’arrêter au dernier nombre premier pr qui
est ≤

√
x ; en effet, si un entier m est tel que

√
x < m ≤ x et est non barré, il ne peut être un

produit ab avec a > 1, b > 1, car un au moins des nombres a, b serait ≤
√
x, donc divisible par un

des nombres premiers déjà trouvés, et m aurait dû être barré. Ainsi, tous les nombres non barrés
et >

√
x sont premiers.

Il y a des méthodes plus puissantes pour établir des tables de nombres premiers ; mais le crible
d’Eratosthène est peut-être le procédé qui a suggéré à Euler de considérer le nombre Ar de la for-

mule (16) : en effet, pour un nombre premier p ≤
√
x, il y a

(
1− 1

p

)
x nombres tels que 1 ≤ m ≤ x

et qui ne sont pas multiples de p. S’il n’y avait pas dans le “crible d’Ératosthène” des nombres qui
sont barrés plusieurs fois, il y aurait à peu près

(17)

(
1− 1

2

)(
1− 1

3

)
. . .

(
1− 1

pr

)
x

nombres premiers inférieurs à x, où pr est le plus grand nombre ≤
√
x ; le facteur de x dans (17) est

précisément le dénominateur du nombre Ar. Il dépend naturellement de x, et Euler put montrer qu’il
tend vers 0 lorsque x croît indéfiniment. Cependant, l’examen d’une table de nombres premiers fait
apparaître une extrême irrégularité dans leur distribution ; on connaît un grand nombre de nombres
premiers p tels que p+ 2 soit aussi premier 1 (on dit qu’ils forment une paire de nombres premiers
“jumeaux”) et on soupçonne même qu’il y en a une infinité, bien qu’actuellement, on ne sache pas
le démontrer. D’autre part, il y a dans la suite des entiers des “trous” aussi grands qu’on veut où il
n’y a aucun nombre premier, par exemple la suite

n! + 2, n! + 3, . . . , n! + n.

Même Euler était découragé par ces tables et pensait que la répartition des nombres premiers était
“un mystère auquel l’esprit humain ne saurait jamais pénétrer”. Mais, à la fin du XVIIIe siècle,
Legendre et Gauss, indépendamment, eurent l’idée qu’en moyenne, la répartition des nombres
premiers obéissait à des lois simples. Gauss considérait tous les nombres premiers entre un nombre
x et le nombre x+1000 ; si N(x) est ce nombre, il observa sur les tables que lorsque x est grand, le
rapport N(x)/1000 est voisin de 1/log x. S’il s’agissait d’une couche continue de matière répartie

1. En 1985, on connaissait 3 424 506 nombres p ≤ 109 tels que p et p+ 2 soient premiers.
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sur une droite et de densité 1/log x, la quantité comprise entre 2 et x serait

li(x) =

∫ x

2

dt

log t

qu’on appelle le logarithme Gauss pensa donc que le nombre π(x) des nombres premiers compris
entre 2 et x devait être “approché” par le nombre li(x).

On précisa cette idée en conjecturant que lorsque x croît indéfiniment, le rapport π(x)/li(x) tend
vers 1 ; c’est ce qu’on appela le “théorème des nombres premiers” ; si p1, p2, . . . , pn est la suite crois-
sante des nombres premiers, on montre que ce théorème équivaut à dire que le rapport pn/nlog n
tend vers 1.

L’examen des tables montre que ces conjectures sont vraisemblables ; par exemple, pour x = 4 ·1016,
on a

π(x) = 1 075 292 778 753 150, li(x)− π(x) = 5 538 861.

Pendant tout le XIXe siècle, beaucoup de mathématiciens s’attelèrent à la démonstration du théo-
rème des nombres premiers. Mais il ne fut prouvé qu’en 1896, presque simultanément par J. Hada-
mard et C. de la Vallée-Poussin. Malheureusement, toutes les méthodes de démonstration reposent
sur l’étude d’une fonction notée ζ(s) introduite par Riemann, et qui exige des techniques avancées
d’Analyse, que nous ne pouvons songer à décrire.

Mais les mathématiciens ne se sont pas contentés de ce succès ; ils voudraient savoir comment se
comporte la différence

π(x)− li(x)

Une conjecture de Riemann sur les propriétés de sa fonction ζ(s) entraînerait, si elle était vraie,
que

π(x)− li(x)

x
1
2
+α

tend vers 0 pour tout exposant α > 0. Malheureusement, malgré 130 ans d’efforts, personne n’a
encore pu prouver ni infirmer l’hypothèse de Riemann, qui reste un des problèmes ouverts les plus
importants des mathématiques, parce que sa résolution entraînerait de grands progrès dans de
nombreuses parties de la théorie des nombres.

On a longtemps cru que l’on a toujours π(x) < li(x) ; les tables montrent que c’est vrai pour
x ≤ 108. Mais Littlewood a établi qu’il y a une infinité d’entiers x tels que

π(x)− li(x) >

√
x

2 log x

et aussi une infinité d’entiers x tels que

π(x)− li(x) < −
√
x

2 log x
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On ne connaît pas encore la valeur du plus petit entier x0 pour lequel π(x)− li(x) change de signe,
mais il est certainement très grand. Ce résultat confirme évidemment l’impression d’extrême irré-
gularité dans la distribution locale des nombres premiers.

En 1785, Legendre, en vue d’applications à la théorie des formes quadratiques, eut besoin d’une
précision au théorème d’Euclide, à savoir que si a et b sont deux entiers premiers entre eux, il y a
une infinité de nombres premiers dans la progression arithmétique an + b. Dans certains cas par-
ticuliers, cela se voit aisément en généralisant convenablement la méthode d’Euclide, par exemple
pour les progressions arithmétiques 4n + 3 et 6n + 5 (Appendice 1). Mais la preuve du théorème
général n’a jamais être obtenue par des moyens élémentaires ; elle fut donnée par Dirichlet en 1837,
par l’utilisation de fonctions qui généralisent la fonction ζ(s) de Riemann.

On note π(x; a, b) le nombre de nombre premiers au plus égaux à x dans la progression arithmétique
an+ b ; Hadamard et de la Vallée Poussin ont étendu leurs méthodes pour obtenir une estimation
de π(x; a, b) ; ils ont montré que le rapport

π(x; a, b)
x

log x

a pour limite 1/φ(a), ù φ(a) est le nombre des nombres m premiers à a et tels que 0 < m < a ;
cette formule avait déjà été conjecturée par Legendre.

Appendice I

Les nombres premiers de la forme 4k − 1 ou 6k − 1

Un nombre premier autre que 2 est nécessairement de l’une des formes 4k+1 ou 4k−1 avec k > 1 ;
le raisonnement d’Euclide, légèrement modifié, montre qu’il y a une infinité de nombres premiers
de la forme 4k − 1.

On considère la suite croissante de nombres premiers de la forme 4k − 1

(1) p1 = 3 < p2 = 7 < . . . < pr

On forme le nombre

(2) N = 4p1p2 . . . pr − 1,

Il ne peut évidemment être divisible par aucun des nombres de la suite (1) ; d’autre part, il ne peut
être produit de puissances de nombres premiers de la forme 4k + 1 , car tout produit

(4a+ 1)(4b+ 1) = 4(4ab+ a+ b) + 1

est encore de la forme 4c+1, donc aucun produit de facteurs premiers de la forme 4k+1 ne peut être
égal au nombre N défini par (2). Un des facteurs premiers de N est donc de la forme p = 4k− 1, et
pest distinct des nombres de la suite (1). Tout nombre premier autre que 2 et 3 est nécessairement
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de l’une des formes 6k + 1 ou 6k − 1 ; en remplaçant 4 par 6 dans le raisonnement précédent, on
montre qu’il y a une infinité de nombres premiers de la forme 6k − 1.

Appendice II.

La décomposition de ζ(s) en produit eulérien

Soit p1 < p2 < . . . < pr < . . . la suite croissante (infinie) des nombres premiers. Soit d’autre part s
un exposant plus grand que 1. La formule d’Euler sur les nombres premiers est la suivante :

(1)
1(

1− 1
ps1

)(
1− 1

ps2

)
. . .

(
1− 1

psr

)
. . .

= 1 +
1

2s
+

1

3s
+ . . .+

1

ns
+ . . .

où au second membre figurent tous les entiers, chacun une fois. Pour donner un sens à cette formule,
il faut prouver trois choses :

I) Si, pour tout entier m, on pose

F (m) = 1 +
1

2s
+

1

3s
+ . . .+

1

ms

la suite (F (m)) a une limite S.
II) Si on pose

G(r) =
1(

1− 1
ps1

)(
1− 1

ps2

)
. . .

(
1− 1

psr

)
la suite (G(r)) a une limite P .

III) On a P = S.

Preuve de I : Si m < m′, on a évidemment F (m) < F (m′). Comme au § 2, B), on considère
différence F (2N)− F (2M) pour M < N , qui s’écrit(

1

(2M + 1)s
+ . . .+ (

1

2(M+1)s

)
+ . . .+

(
1

(2N−1 + 1)s
+ . . .+ (

1

2Ns

)
.

Dans chaque parenthèse,
1

(2k + 1)s
+

1

(2k + 2)s
+ . . .+

1

2(k+1)s

il y a 2k termes, et chacun est plus petit que 1
2ks

, donc la somme des termes de la parenthèse est plus
petite que 1

(2s−1)k
. Par suite F (2N) − F (2M) est plus que la somme de la progression géométrique

de premier terme 1
(2s−1)M

et de raison 1
(2s−1)s

soit

(2) F (2N)− F (2M) ≤ a

(2s−1)M
− a

(2s−1)N

où
a =

1

1− 1

2s−1
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On a ainsi formé des intervalles
[
F (2M), F (2M) + a

(2s−1)M

]
qui sont emboîtés, de longueur tendant

vers 0 et qui contiennent tous les nombres F (m) pour m > 2M ; le principe de Cauchy montre
que la limite S de la suite (F (m)) existe, l’unique nombre commun à tous ces intervalles, et on a
F (m) < S pour tout entier m.

Preuve de II) et III) : Si r < r′, on a G(r) < G(r′). Pour chaque entier N , il y a un entier rN
tel que, pour tous les entiers n ≤ 2N , la décomposition de n en facteurs premiers ne contient que
les nombres premiers p1, p2, . . . , prN ; le raisonnement de § 2. B) montre que l’on a F (2N) ≤ G(rN).
D’autre part, pour chaque entier r fixé, G(r) est limite, pour M croissant indéfiniment, de(

1− 1

psM1

)(
1− 1

psM2

)
. . .

(
1− 1

psMr

)
(
1− 1

ps1

)(
1− 1

ps2

)
. . .

(
1− 1

psr

)
et ce nombre est au plus F ((p1p2 . . . pr)

M) < S. Pour tout r > rN , tous les nombres G(r) sont donc
dans l’intervalle

[F (2N), S]

et le principe de Cauchy montre que la suite (G(r)) a une limite P égale à S.

Le nombre S, valeur commune des deux membres de (1), se note ζ(s).
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