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PREFACE 

THIS book is an introduction to algebraic geometry, with 
special reference to the operation of inversion. It originated 
in the effort to show the use of modern views in compara­
tively elementary and practical questions; and thus to 
afford both a review of these questions and a suitable pre­
liminary to many specialized courses. 

The algebra is ordinary algebra, where one adds and multi­
plies numbers. At the outset one should avoid any limita­
tion of these numbers. They are represented as the points 
of a plane. In this plane is a line on which are represented 
the so-called real numbers. 

The geometry is in the beginning Euclidean, and throughout 
we have a Euclidean background. This conception is at 
once so familiar and so convenient that it is essential for the 
purpose of an introduction to spatial universes. 

In Part I we go over the application of numbers to Euclid's 
planar geometry, and arrive at the Euclidean group of opera­
tions. By adjoining an inversion we get the wider inversive 
group. We thus get the idea that by isolating a point of a 
sphere (which point we call infinity) we have the Euclidean 
case of the plane. But also we get the idea that it would 
be convenient to isolate, say, a circle of the sphere. The 
geometry is now non-Euclidean; it has a non-degenerate 
infinity, and, as infinity affords the best reference-scheme, 
it is a better geometry in general. So for the consideration 
of the space around one it is convenient to regard it as bounded 
by a sphere. This way of introducing Cayley's absolute 
seems pedagogically entirely proper. 

So far we have sought to apply Klein's views of a geometry 
to the inversive group. A chapter follows on flows of the 
simplest kind, which may serve to introduce the subject of 
conformal or isogonal mapping, and to emphasize the fact 

v 



vi INVERSIVE GEOMETRY 

that the study of an analytic function is the study of a region. 
And a chapter is added on Differential Inversive Geometry, 
with reference to the recent work of Pick, Liebmann, Kubota 
and others. 

The chapters in Part II are mainly of the nature of ap­
plications. Some are quite elementary; for instance if one 
seeks invariants or co variants under the Euclidean group 
of a set of points or lines it is proper to begin with the triangle. 

We believe that the tradition that simple geometric and 
mechanical questions are to be handled only as Euclid or 
Descartes might have handled them is very hampering; that 
the ideas of Riemann, Poincare, Klein, and others have 
pleasant reverberations in the investigation of elementary 
questions by students of proper maturity and leisure. 

These applications may well be studied first, and the 
theoretic chapters referred to as occasion requires. 

It is a pleasant duty to express thanks to the University 
of California where in a course of summer lectures the plan 
of this book originated; to The Johns Hopkins University 
where the analytic geometry, to which this aims to be an 
introduction, could be further discussed; and to the Carnegie 
Institution of Washington for its benevolent interest in the 
publication. We are also grateful for the courtesy and care 
of the publishers and printers. 
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CHAPTER I 

OPERATIONS OF ELEMENTARY 
GEOMETRY 

§ 1. Instruments - Euclid's plane geometry deals with 
figures, such as triangles, parallelograms, circles, in a plane. 
These are not pre-existent; they have to be either drawn or 
printed. In the phrase of Enriques, * they are werdende, 
not fertige. The drawing is done by instruments such as 
a straight rod or rule, or a combination of rods such as a 
triangle or a pair of compasses. 

Let the instrument be a card lying on a table. We can 
then (thanks to the axioms) move the card freely over the 
table. 

The card has a boundary; we take as the boundary a 
triangle, with three straight edges 1, 2, 3, and with the upper 
face marked. What we understand by straight is that the 
card can be turned over, keeping, say, the edge 1 fixed. 
The card will again fit the table, if both card and table are 
flat, and if the edge is straight. The marked face is now 
down. 

We take this overturn as one of the fundamental opera­
tions of Euclidean geometry. If at first a point marked b of 
the card is over a point marked a of the table, then after the 
overturn the point marked b is over another point, say, ii of 
the table. There is then set up in the table a correspondence 
of points with a line of fixed points, which we call a reflexion. 

In the table is the record of the operation. By a usual 
trick of language, the same word reflexion will serve both 
for the operation and the correspondence which it sets up. 
Thus, instead of overturn we write reflexion. 

Let us now make a second reflexion or overturn of the 
card, say about the edge marked 2. The marked face is 
now up. It seems that the result of the two reflexions could 

* Encyklopiidie der Mathematischen Wissenschajten, vol. 3, 1 Teil, Seite 6. 
1 



2 OPERATIONS OF ELEMENTARY GEOMETRY 

be obtained by moving the card along the table. Thus we 
get the idea that a planar displacement can be analysed into 
two reflexions. And this we take as a definition: a planar 
displacement is the product of two reflexions. 

"When we study Euclid from the point of view of the 
operations involved, it is essential to distinguish a point of 
the table (which is given or fixed) from the coincident point 
of the card. It is convenient to call the latter (fixed in the 
card) a particle. 

I t will be understood that a figure in a table or a card on 
a table is merely suggestive. We need not act-we can 
imagine. And the imagined figure or operation is accurate. 
"When we have introduced algebra, the appropriate symbolism 
or shorthand, we have the other extreme, the manipulation 
of symbols. Between the two-the material and the sym­
bolism-lies the geometry. 

And so for a space, a solid body is suggestive only. The 
idea of the Euclidean space and the solid body lying on it 
(not in it) is accurate, both for the space and the body. 
To connect the body and the idea of it requires an axiom 
stated by Einstein * thus: "Solid bodies are related with 
respect to their possible dispositions, as are bodies in Euclidean 
geometry of three dimensions." 

A second experiment is to fold a sheet of paper. Mark a 
point a on the paper, and fold the paper about a line not 
on the point. After folding the point is marked on both 
sheets; we have coincidence of two points a and ii. When 
the paper is unfolded we have a and ii as images on the line 
of the fold. The correspondence thus set up is again a 
reflexion. 

A reflexion is then a mutual or involutory correspondence, 
said to be of period 2 because when repeated it gives 
identity. It is convenient to state it by an axiom. Thus, 
after Hjelmslev,t we state the axiom of reflexion: 

Among one-to-one mutual correspondences of the points 
of a plane there is one and only one other than identity which 

* Side-lights on Relativity, London, Methuen, p. 32. 
t Math. Annalen, vol. 64. See also Pascal, Repertorium der H6heren Mathe­

matik, Teubner, 1910, vol. 2; and Schur, Grundlagen der Geometrie. 
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leaves all points of a line 1 fixed; which leaves no other 
points fixed; which assigns to any line 11 a line [1' and which 
assigns to any point x of 11 a point x of [1' 

This is necessary for the existence of a line. I t is in no 
way sufficient, for it is true of circles. For a suitable form of 
the other axioms, when reflexion is made primary, we refer to 
Hjelmslev. 

§ 2. Rotations - The line and the reflex ion are so inter­
woven that it is convenient here to use the same letter L for 
both. The context shows which is meant. 

A point a under a reflexion LI becomes aLI; under two 
reflex ions Lv L2 in this order it becomes aLIL2. A reflex ion 
effected twice gives identity, I. Thus aL2 =a, or simply 
L2=1. 

Consider two reflex ions, in an assigned order, about lines 
which meet at c. Their product is the operation known as 
a rotation. The point c is the fixed point, or centre. As 
a continuous motion the card rotates about the point c, 
through an angle which is twice the angle which L2 makes 
with LI. The motion is rigid. A point of the card de­
scribes an arc of a circle. Any integer number of complete 
revolutions may be included. They do not affect the dis­
placement. 

In general L2LI is the reciprocal or undoing of LIL2, since 
LIL2L2LI =1. Identity for rotation is any number of 
revolutions. 

In general, then, LIL2 is not L2LI. "When they are the same 
we have a semi-revolution or reversion. The lines LI and L2 
are then perpendicular; or at right angles, or orthogonal, or 
normal. The reflexions are also said to be orthogonal or 
normal. 

"When LIL2=L2LI, then LIL2LIL2=1. This is written 
(LIL2)2=1. 

Similarly we have (LIL2)3=I when the two lines make an 
angle± 'IT/3. And (LIL2)n=I when the angle is 'IT/n. 

Any point other than c gives under the operations (LIL2)±n 
a sequence of points which is a special geometric progression; 
it is an unclosed regular figure which we may call an elliptic 
scale. "When for a given n and no smaller integer (LIL2)n = I, 
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the sequence is closed and is the vertices of a regular polygon, 
convex or crossed. 

If four lines Li (i = 1, 2, 3 or 4) form a rectangle, we have 

(LIL2)2 = (L2La)2 = (LaL4)2 = (L4Ll)2 =1. 

§ 3. Translations and Reversions - "When we take two 
parallel lines we call the operation Ll L2 a translation, T. It 
is a rigid displacement of the card over the table. If it 
carries a point of the card (or particle) from the position 0 
of the table to the position 1, then it carries the particle 
originally at 1 to a position marked 2. Thus T2 carries the 
particle at 0 to 2, and so on. The repetitions of T give an 
arithmetical progression of points. 

The operation L2Ll is T-I, the reciprocal or undoing of T. 
It carries the particle at 0 to the position - 1. Generally 
T±", where n is a natural number or positive integer, gives 
the complete arithmetical progression, or linear scale. 

"When we have two perpendicular lines Ll and L2 we call 
the operation LIL2 (or L2L1 ) a semi-revolution (of the card) or 
a reversion (in the table), about the point where the lines 
meet. 

The point and the reversion are so interwoven that it is 
convenient for the moment to denote either by the same 
letter P. 

We note that p2=1. Thus operations which, done twice, 
give identity-the square roots of identity-are, so far, I 
itself, any reflexion, or any reversion. 

Exerci8e 1 - The operations of Euclid which leave the figure of two points 
invariant form a group of four operations, namely, reflexion Ll in the join, 
reflexion La in the axis, LIL., and I. 

Under a reversion P, a line L becomes a parallel line or 
is fixed. For if Land LP meet, say at a, they meet also 
at aP. 

Two points a, b and the points aP, bP are successive 
vertices of a parallelogram. Conversely a parallelogram is a 
figure (a special quadrangle) which admits an operation P, 
or is invariant under P. 

A reversion about the base-point 0 is denoted by the minus 
sign. Thus a and - a are reverse points, as to o. 
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§ 4. The Product of Reversions - To compound PI and P 2 
we consider the join L of the two points and the lines Ll and 
L2 perpendicular to L at the points. Then 

PI =L1L and P 2=LL2 

Hence 
PIP2=LILLL2=LIL2 

The product is then the product of reflexions in two 
parallel lines, that is a translation. 

FIG. I 

Thus a translation can be broken up into two reversions, 
one of which is arbitrary. If we have two translations 
T 1, T 2, then we can write 

whence 
TIT2= P 2P 1 

That is, the result of two translations is a translation. Or 
symmetrically if we take three reversions Pi then P 2P a, 
PaP!> P 1P 2 are three translations whose result is identity. 
This is illustrated in fig. 1. There is a triangle and the mid­
points Pi of the constituent edges. Marking the inner 
triangular region as I (identity), the outer triangular regions 
will be Pi. P 1P 2 sends region PI into I, and I into region P 2, 
that is PI into P 2. This is a translation and the product 
P1P 2 . P 2P a . PaPl is identity. 

A translation as applied to a given point is called a vector. 
Mark this point o. Then, if the translation Tl brings the 
particle at 0 to the point a, and T2 brings it to the point b, 
then TIT2 brings it to the point c, where 0, a, c, b is a parallelo-
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gram (fig. 2). This is the parallelogram law, a definition of 
addition for vectors. We write 

c=a+b 

It is to be emphasised that a and band c are not yet 

p--_:--':'--~>9c 

-u 

-b 
FIG. 2 

numbers. To have a number we must both add and multiply. 
We must have what are called in algebra terms and factors. 

The vector is a term, and two vectors can only be added. 
It is better then to speak of the addition of points. We add 
two points by the parallelogram law. The addition is com­
mutative-that is, 

Fig. 3 serves to show that this addition of points is also 
associative-that is, that 

(a+b) +c=a+ (b +c) =a +b +c 

It suggests a parallelepiped; 
and it is to be noted that this 
process of addition is applicable 
to a Euclidean space, or to any 
Euclidean spread. 

Exercise 2 - If for four reversions 
P1PsP.P4 =I, show that the four points 

b+c c form a parallelogram. 
FIG. 3 Exercise 3 - A quadrangle is reversed 

about the mid-point of each edge, and 
again about the mid-point of the opposite edge, and so on. Show that the 
plane is covered and covered once. 

Exercise 4 - If a, b, c, d are successive vertices of a parallelogram, then 
a+c=b+d. 
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We have here the equal vectors b - a from a to b, and c - d from d to c; 
or d - a and c - b. * 

§ 5. Stretches - So far operations have conserved both shape 
and size. There is next the case when the size is altered, as 
in Euclid's theory of similar triangles. 

In arithmetic, viewed geometrically, one takes a rectangular 
card and marks the line midway between two opposite ends, 
for instance, by folding so as to bring the ends together. 
Marking the ends as 0 and 1, the mid-line is!. Of the two 
halves we again mark the mid-lines, for instance by folding 
twice. These mid-lines are 1 and 1-. 

The binary notation is here convenient. In the scale of 2, 
the line! is ·1, the line 1 is ·01, the line 1- is ·11. A third 
halving of the four quarters gives the new lines -1J, j-, i, and t, 
or in the binary notation ·001, ·011, ·101, and ·111. We 
assume that by continuing this process we can distinguish 
between a proposed line and any other line. That is, that 
any line parallel to the ends can be named by the series 

al/2 + aJ22 + as/23 + 

where a.; is either 0 or 1. 
For the ends themselves, every ai is 0 in the one case, 

and 1 in the other. 
Having so constructed a ruler, to the approximation 

desired, we translate it over the plane, end to end. We have 
then on the plane an infinite strip, with not only the lines 
0, ± 1, ± 2 ... marked, but all intervening lines. 

Two points, 0 (zero) a.nd 1 (unity), being then taken in a 
plane, we assign to each point of the ray from 0 to 1 a positive 
number 

where au is an integer n, including 0, and to each point of the 
complementary ray from 0 to -1 a negative number, the 
same expression where au is a negative integer. 

We call the first ray the base-ray, and the positive number 
the distance from 0 to the point. The second ray is the 

* There is need of a notation for the line on two points a and b. We shall write, 
on occasion, the line a - b, or b - a. 



8 OPERATIONS OF ELEMENTARY GEOMETRY 

negative-ray, and the negative number is the negative 
distance. 

The whole line, in the sense from 0 to 1, is the base-line, 
or the axis of real numbers. Positive and negative numbers 
are real numbers or simply reals. This measuring-that is, 
the process of naming the points of a line by a real number­
depends on the repeating of an operation, or doing it n times, 
and halving it or doing it half a time. 

Another important case of measuring is to name an angle at 
a point o. In this case we have a natural unit-the right angle. 
To this we can assign any real number we please; the con­
venient number is the transcendental number w/2. To 
name an angle" in the first quadrant" from the ray 0 to the 
ray w/2 we bisect the right angle from 0 to w/2 internally, 
getting the mid-ray w/4. Of the two halves we again mark 
the mid-rays, which are w/8 and 3w/8. We assume that by 
continuing this process we can distinguish between any pro­
posed ray and any other ray, both in the first quadrant. That 
is to say, to any such ray can be attached a positive number: 

e = ulw/4 + U2w/8 + usw/16 + 
where each Ui is either 0 or 1. 

This number is the acute angle. 
For any ray we may add the right angle w/2 or subtract one 

or two right angles. We have then a positive angle, for 
which e is between 0 and w, and a negative angle, for which 
e is between - wand o. The principal angle is e, where 
- w < e <;; w. The rotation as a displacement is the same 

for e and for e ± 2nw. As a continuous motion, the actual 
amount of turning is of course essential. 

By adding the numbers we add the angles. But the sum 
of principal angles may not be a principal angle. 

Exercise 5-Apply the formula i=i-!+i ... to the trisection of an 
angle. 

If now we take the ray from 0 to any point a, we can name 
any point on this ray by ap, where p is a positive number. 

And taking two points a and b, we take ap on the ray to 
a, bp on the ray to b. Euclid's theory states that a - band 
ap - bp are parallel. 
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If we join (fig. 4) b to ap, the parallel on bp gives ap2. If 
we join a to bp, the parallel on b gives alp or ap-l. We 
construct thus on either ray a geometrical progression with 
positive ratio or radial scale. The point 0 is inaccessible. 

Equally if we take the line on 0 and a, any point on it is 
ap where p is a real. And taking a second line on 0 and b, 
the join of ap and bp is parallel to the join of a and b. 

We have then for a given real p a one-to-one correspondence 
in the plane: to any point x there is a point px. This is 
(using Clifford's word) a stretch, about the fixed point o. 

A convenient instrument is the pantograph. 

o u up 

FIG. 4 

As effected by a continuous operation a stretch is a case of 
flow (Chapter X). 

A stretch sends a triangle into a positively similar triangle. 
Corresponding edges are parallel. They are positively par­
allel when p is positive, and negatively parallel when p is 
negative. 

A stretch about 0 is then multiplication of a point by a real 
number. It is important to notice that two stretches about 
o are commutative-that is, that pp' is p' p. 

An elegant geometric proof is supplied by the theorem of 
Pappus. * 

Let two circles meet at a and d, and let a line on a meet 
them at band c, and a line on d meet them at c' and b'. Then 
in all cases 

< bad = < be'd, 
< dac= < db'c, 

mod 7T 

mod 7T 

• G. Hessenberg," Begriindung der elliptischen Geometrie," Math. Ann., vol. 61 
(1905), p. 173; H. G. Forder, Euclidean Geometry, p. 154. 
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Whence 
< be'd + L db'e =7T, mod 27T 

that is, b, e' is parallel to b', e in all cases. 
Adjoin to the figure the circle on d, b, e, meeting the line 

de'b' again at a' (fig. 5). 
Then 

b, e' "e, b' 
e a' II e' a , I , 

a, b' "a', b 

This is the theorem of Pappus: that when we have points 
a, b, e and a', b', e' on two lines, if b, e' is parallel to e, b' and 

FIG. 5 

e, a' is parallel to e', a, then a, b' is parallel to a'b. That is, 
there exist hexagons a, b', e, a', b, e' whose opposite sides are 
parallel and whose alternate vertices lie on two lines. 

Applied to the present case, the theorem says that ap' p - bpp' 
is parallel to a - b; so that the points p' p and pp' are one point. 

§ 6. Parallel Co-ordinates - By adding the point Aa to the 
point fLb, where A and fL are real, we get all points of the 
plane. This is the method of parallel co-ordinates; A and fL 
being the real co-ordinates. Similarly for a space, given the 
points 0, a, b, e, any point is aA + bfL + ev, where A, fL, v are real. 

Exercise 6 - The point (al + bp )/( l + p) is on the line joining a and b. 
Exercise 7 - Three pOints a, b, c are on a line if 

al+bp+cv=O 
where l+p+v=O 
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In the plane, any point c is of the form Aa + fLb--that is, 
there is between three points a relation which we write 
homogeneously as Aa + ph + vc = o. 

The real numbers A, fL, v are the barycentric co-ordinates 
of 0 with regard to the triangle abc. Applying a translation 
so that 0 is now d, we have 

or 

where 

A(a - d) + fL(b - d) + v(c -d)=O 

)..a +fLb + vc +pd=O 
A+fL+V+P=O 

Thus, for any point x, 

A(X - a) + fL(x - b) + v(x -c) +p(x -d) =0 

The real numbers A, fL, v, P are proportional to the areas of the 
triangles abc, dca, dab, cba, or of bcd, - cda, dab, - abc. But 
we cannot as yet express an area. 



CHAPTER II 

ALGEBRA 

§ 7. Algebra - We consider the application of ordinary 
algebra to the geometry of the plane. 

Algebra is the study of a class of symbols called numbers, 
which under two rules of combination called addition and 
multiplication give a number. 

The axioms of addition are: 

(I) Transitive, a+b=c 
(2) Associative, (a+b)+c=a+(b+c)=a+b+c 
(3) Commutative, a+b=b+a 

There is in particular a number 0 (zero) for which 

a+O=O+a=a 

The axioms of multiplication are the same: 

(4) 
(5) 
(6) 

axb=c 
(a x b) xc =a x (b x c) =a x b xc 

axb=bxa 

There is in particular a number 1 (the unit) for which 

Ixa=axl=a 

There is then the axiom of distribution: 

(7) ax(b+c)=(axb)+(axc) 

We may think of a particular number; it is then given or 
a constant. Or we may think of a number as any number; 
it is then a variable. Usually, in accord with tradition, we 
use the early letters a, b, c . . . for constants, the later letters 
. . . x, y, z for variables. 

Thus, if we write instead of (I), 

~) y=x+b 

we think of x as a variable, and y as a second variable, 
depending on or a function of x. Addition has thus 
become an operation or transformation, say T, performed on x. 

12 
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Here xT=x+b, xT2=x+2b, and so on. And, if we write 
instead of (4), 

(9) y=ax 

we have another operation T, such that xT = ax, xT2=a2x, 
and so on. And, if 

(10) 

we have a more general operation, with two constants a and b. 

Here xT =ax + b 

xT2=a(ax+b) +b 

Exercise 1- H xT3 =x, either a9 +a+ 1 =0, or (a-l)x+b=O. 

§ 8. Multiplication - We have already seen how to add 
two points of a plane, and how to multiply any point a by a 
point on the base-line, p. 

For the product of two 
points a and x we con­
struct the triangle x, 0, y 
positively similar to the 
triangle 1, 0, a. Then 
(fig. 6) 

y=ax=xa 

This operation for a given 
a may be called a propor­
tion, and y/x or a is a 
ratio. 

The point a has the 
"polar co-ordinates" P 
and O. We regard p as a 
positive stretch S about ° 
which sends 1 into p, and 
o as assigning a rotation R 
about 0, which sends p --....(IO'""-----c1~-----

into a. These are commu­
tative operations-that is, 

FIG. 6 

a 

SR = RS. Applied to the point 1, SR gives the point a. 
Applied to any point x, SR gives xa. 

Thus in terms of the polar co-ordinates Pl, 01 and P2' O2 the 
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product of two points has the polar co-ordinates PIP2 and 
81 + 82• 

From this the commutative and associative laws for 
multiplication are true. 

Since a parallelogram remains a parallelogram under Sand 
R, the points 0, ba, (b + c)a, ca form a parallelogram. That is, 
ba +ca = (b +c)a. 

All requirements are fulfilled, and a point (with reference 
to the points 0 and 1) is a number; or, if preferred, is the 
adequate representation of a number. 

We call the circle with centre 0 on the point 1 the base­
circle. On both the base-line and the base-circle are the 
points ± 1. 

If we make the triangle 1, 0, L positively similar to the 
triangle L, 0, - 1 then 

There are then two points L, the points 1, L, -1, - L being 
successive vertices of a square. Selecting one of these two 
points as L, we have assigned an arrow-head to the base-circle, 
and a positive sense of rotation. 

The vertical line on 0, L, - L is the vertical axis or axis of 
imaginaries. The number L is rotation through a right angle 
in the positive sense. Any point on the vertical axis is by 
the law of proportion LTj, where Tj is real. And by the parallelo­
gram law any point of the plane is g + LTj, where g and Tj are 
real. Here g and Tj are rectangular co-ordinates, abscissa 
and ordinate, of the point g + LTj. 

If now we denote a point on the base-ray by the positive 
number P and a point on the base-circle by t, then by the law 
of proportion the circle with centre 0 and radius p meets the 
ray from 0 to t at the point pt or tp. Thus, with the special 
numbers p and t, any point of the plane is named pt. This 
way of naming points is closely associated with polar co­
ordinates. We may call it polar naming. 

An essential property of a line in a plane is that it sets up 
a reflexion. That is, for any point x there is an image­
point y such that the join is perpendicular to the line and is 
bisected by it. We may express this by saying that the 
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plane can be folded on itself about the line; then x and y 
will coincide. 

We denote the reflex ion in the base-line by y=x (or x=y). 
The points x and X, images in the base-line, are said to be 
conjugate. 

The base-line itself is then given by 

X=X 

Thus a real number is one which is equal to its conjugate, 
or is self-conjugate. 

By the law of proportion xx is a point on the base-ray. 
Such a number is positive. We call it the power of x (or 
of x). 

Again by the law of proportion, to find I/x when x is given 
we make the triangle I, 0, x positively similar to y, 0, I. 
Then xy=l, or y=l/x. We call I/x the reciprocal of x. 

The conjugate of the reciprocal is then 

y=l/x 
or 

yx=1 

The two points x and y, where each is the conjugate of the 
reciprocal of the other, are then on a ray from 0, and at 
reciprocal distances from 0. Two such points are said to 
be inverse as to the base-circle or images in the base­
circle. 

When x = y we have xX = I, the equation of the base-circle. 
Thus the number t is the conjugate of its reciprocal. We 
call it (as a name meant abstractly) a turn. When we write 
a point x in the form pt, we call t the direction of x. 

When x - Xl =pt, t is the direction of the line from Xl to x. 
The undirected line on x and Xl has two directions t and - t. 
The square t2 is called the clinant of the line. * 

The power of the two points, since x - Xl = pIt, is 
p2 = (x - xl)(x - Xl)' The positive square root of this is the 
distance. It is written I x - Xl I when convenient. The 
clinant t2 is (x - xI)/(x - Xl)' 

§ 9. Trigonometry - Let us illustrate the use of direction 
as against angle. For a point on the base-circle, with the 

* F. Franklin, Am. J oUT=l, vol. II. 
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number t and the angle 8, we call the abscissa cos 8 and the 
ordinate sin 8. Hence 

t = cos 8 + £ sin 8 
and 

I/t = cos 8 - £ sin 8 

So that 2 cos 8=t+ I/t, 2£ sin 8=t -I/t. 
Also 

tn =cos n8 + £ sin n8 

2 cos n8=tn +I/tn , 2£sinn8=tn -I/tn 

Again 

and also 
= (cos 81 + £ sin 81)(cos 82 + £ sin 82) 

= cos 81 cos 82 - sin 81 sin 82 + £(sin 81 cos 82 + cos 81 sin 82) 

Hence we have the addition theorems 

cos (81 + 82) = cos 81 cos 82 - sin 81 sin 82 

and 
sin (81 + 82) = sin 81 cos 82 + cos 81 sin 82 

Exercise 2 - Prove that 

sin (fJ - y) sin (a - 15) +sin (y - a) sin (fJ - 15) +sin (a - fJ) sin (y - 15) =0. 

Consider three points a;. We have three edges which 
have the lengths or distances Pi' PI being 1 a2 - aa I. Let 
them have, as we go positively round the interior, the 
directions ti' tl being that from a 2 to aa. Then because we can 
add 

Pltl + P2t2 + Pata = 0 

and this carries with it the conjugate equation 

PI/tl + P2/t2 + Pa/ta = 0 
Hence 

PI2 =P22 +Pa2 + P2Pa(t2/ta + ta/t2) 
Here t2/t3 + ta/t2 is twice the cosine of the exterior angle, 

7T - ai' where al is the interior angle. 
Thus 

PI2=P22+Pa2-2P2Pacos al 

the law of cosines. 
Also PI = K(t2/ta - ta/t2) 

where K is symmetrical. 
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Thus 

the law of sines. 

Exercise 3 - Determine I( in terms of Pi. 

§ 10. Functions - With algebra comes the forming of ex-
pressions containing constants and a variable. Thus we have 

(1) the linear function, Y = UoX + Ul 
(2) the quadratic function, y=uox 2+2ulx+U2 
(3) the polynomial, y=uOx"+nulx,,-l+ •.. +u" 

and rational fractions such as 

(4) y=(U OX+Ul)/({30X+{3l) 
(5) y = (UOX2 + 2ulx + U2)/({30X2 + 2{3lX + (32) 

and so on. 
We may represent the number y on the same plane or on 

another plane. The plane is the same-that is, the base-point, 
base-ray, and base-circle are usually the same-unless the 
contrary is stated. In this case (1) is a hmnology, and (2) 
is a hmnography. These are fundamental because they 
have the group property. Namely, if y = UoX + Ul and 
Z={3oY+{3l, then z=YOX+Yl· 

And so for (4) if y and x are one-to-one, and z and yare 
one-to-one, then z and x are one-to-one. 

§ 11. The Derivative - In the calculus of reals, the limit of 
the ratio of the change of y, the function, to the change of x is 
studied. The process is the same for the theory of functions, 
or calculus of numbers. Thus if y=x", and, for a given value 
Xl> y is Yl> then (y - Yl)/ (x - Xl) has the limit nxl,,-l where x 
tends to Xl. But this now means much more: X can tend to 
Xl with any direction. The direction of (y - Yl)/ (x - Xl) at the 
limit is that of nxl,,·-l. If then two directions at Xl make an 
angle 0, the two at Yl make the same angle. This is the 
principle of isogonality. It breaks down when the derivative 
is 0 or 00 • 

Thus, if the plane of X is divided into squares, the plane of 
Y is divided into regions with right angles, by two systems of 
curves called orthogonal, or collectively a grid. Or, if the 
plane of X is divided by rays and concentric circles, we have 

2 
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two systems of curves in the plane of y which cut at right 
angles. These are a grid, provided the rays are taken at 
equal angles and the circles are properly spaced (fig. 7). 

In fig. 7 we have two standard grids. The left-hand or 
chess-board one we call Euclidean. The other we call polar. 
The transition from the polar grid to the Euclidean is given in 
§ 12; the reciprocal transition in § 13. 

g-plane 

7]= 
-lH-t-t-- 'IT 

o 
-I-t-t-t-- -'IT'/. 
--II--t--+-+- -'IT'/2 
--iH-t-+-- -3'"1. 

x- plane 

0",% 

1£4--+----1--+ (}=u 

0=-,% 
FIG. 7 

The derivative being the same for numbers and for reals, 
we need not linger over the elementary processes for obtaining 
it for the above functions. 

The technique of integration is the same for numbers and 
for reals. The consideration of the path of integration is 
here important; but in the cases here considered the paths 
are usually the base-line or the base-circle. 

The above functions are all rationa1. In general the best 
way of extending the notion of a function is the power-series. 
Namely, in the neighbourhood of the point 0, y is given as 

y = au + a1x + a2x2/2 ! + aaxa/ 3 ! + 
the series being usually infinite. 
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Here au is the value at x =0; al is the first derivative at 0, 
au + a1x is the first approximation; a2 is the second deriva­
tive at x =0, au + a1x + a~2/2 ! is the second approximation. 

The series must converge when each term is replaced by 
its distance or absolute value. 

Similarly, near a point a function may be 

aU+ al(x-a)+a2(x-a)2/2!+ . 

where ai is the ith derivative at a. 

We note that the first approximation is a homology. 
Instead of the tangent line of a curve at a given point, for 
reals, the question is of the tangent homology of a function 
at a given point. Also when x and yare cogredient (that is, 
represented on the same plane) the direction at x and that at 
y meet, say at p, on a definite circle on both x and y. This 
circle is called the indicatrix. There are two special directions 
at x and two at y, for which the triangle x, z, y is isosceles. 

§ 12. The Logarithm - When we speak of the plane of 
numbers x, or simply the plane x, we suppose each individual 
x given either as t + LTj or as pt, according as we wish to add 
or to multiply. 

If we name x by distance p and angle 8, we have for each 
point x many names; we avoided this by restricting 8 to the 
principal angle. In fact we draw the ray ° to - I-the 
negative ray-and refuse to cross it. 

Consider now the square roots of x, ± Vx. The distance 
is pl, the positive root of p. The angles are 8/2 and 8/2 + TT, 
where 8 is the principal angle. We take as the principal 
square root that with angle 8/2, and denote it by nl or 
pitl. The region for xl is then half the plane-the right half. 
Strictly the ray 0, L belongs to this half-plane, and the ray 0, -t 
does not. 

So we understand xi, the principal fourth root of x. It 
lies in the sector - TT/4 < 8 <;; TT/4. And so on. 

But the limit of this process is simply the point 1. 
We consider the limit of n(xl/n - 1), in connection with the 

curve known as an equiangular spiral. This is the curve 
which arises from the point x, by marking all the points 
... x-2, x-I, 1, x, x 2 ... , these giving a fan of similar 
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triangles; then the points ... x-~, x-i, xi, x~ . .. The 
curve is then the limit of the fan; it represents all the points 
x p where p is real. But we restrict ourselves to principal 
roots-that is, we consider the principal spire of the spiral 
as in fig. 8. When x is positive the curve is the positive 

FIG. 8 

ray; when x is a turn the 
curve is the base-circle. 
The curve in general is that 
continuous curve which cuts 
all rays from 0 at the same 
angle, say a, except when 
a is 0, in which case it is 
the base-ray itself. It is 
mechanically drawn by a 
rod on a ring at 0, carrying 

A+Le a toothed wheel whose axle 
is set at the angle TT/2 - a to 
the rod. 

Let now y be the limit (if 
there is one) of n(xl'n - 1). 
We know the direction of 
this limit, for it is that of 
the tangent to the curve 
at 1. 

We regard y as in a super­
posed plane, with base-point 0 at n = 1. 

Let now x be pt. Then 

n(xl'n -1) =n(pl'''tl'n -1) 
= n(pl'n - I )tlln + nW'n - 1) 

The limit of nW'n - 1) has the direction t, and the distance e, 
where e is the principal angle of t. It is then teo 

Let the limit of n(pl'n - 1) be A. 
We have then y =A + teo 
This point is known, for it is on the tangent line and has 

the ordinate e. Its abscissa A is then known. As x varies 
along the curve, y varies along the tangent. To the com­
plete spire corresponds that part of the tangent for which 
-TT < e <;; TT. 



ALGEBRA 21 

Thus the whole plane of x becomes a strip of the plane 
ofy. 

We have A= 0 cot a. It is manifestly proper to take the 
particular spiral with the angle 'TT/4. This we call the 
logarithmic spiral. Then 

That is, the circle with centre 0 and radius p cuts this spiral 
at one point x, and the angle 
actually turned through in 
passing from 1 to x along the 
spiral is A. 

If the angle is 1, then p is 
the number e. 

There is then associated with 
a number ·x=pt the number 
y=A+ to. We call y the loga­
rithm of x, y =log x; when 0 
is a principal angle, y is the 
principal logarithm. 

In particular, when 0=0, 
t = 1, the number A is log p, 
the real logarithm. 

Its value is shown by the 
logarithmic spiral, for it is 
then o. 

§ 13. The Expanential- We 
write also x=exp y. 

When 0=0, t=l, this ex­
FIG. 9 

ponential function p of A is usually written eA, the stretch e 
done A times. 

When A = 0, P = 1, it is also usual to write t = et(). This is 
et done 0 times. The number et is rotation through unit 
angle. We may call this the standard rotation. So the 
number e is the standard stretch-that is, stretch with unit 
logarithm. What characterises this number e is the fact 
that lim n( ell,. - 1) is 1. We may then write instead of 
exp y, eY or eA+ t(); where p =eA, t=et(), x=eA+ t() =et.et() =et()eA• 

We may then write a number x in the form pe t (); that is, 
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in terms of its polar co-ordinates, distance and angle. This 
is a hybrid notation. 

The function elf], the rotation, in terms of angle, has the 
period 2m. The function eA has 
then the same period. And so 
has eAHO• 

In particular we have the re­
markable relations of Euler: 

e2m: = 1, et 11:= -1, em /2 = t 

From the periodicity we see 
that any strip of the y-plane, 
between e= eo and e= eo + 2'IT, 
will give the whole x-plane. 

If then the y-plane be rolled 
into a cylinder of. radius 1, the 
strip becoming the surface of the 
cylinder, this cylinder maps into 
the plane of x. 

If (anticipating § 23) we invert a 
sphere of radius 1 from its north 
pole on to its equatorial plane, 
then we have transferred the 
points x of the latter to points 
x of the sphere. The cylinder 

FIG. 10 maps into this sphere. 
We regard the sphere as in­

scribed in the cylinder touching it along the equator. If a 
point x of the sphere has longitude e and south polar dis­
tance cp, then p = tan cp/2. The corresponding point y of 
the cylinder has the same longitude e, and ordinate A. Thus 
the relation is A=log tan cp/2. 

This isogonal mapping of the sphere on to a cylinder or 
strip is Mercator mapping. The loxodromes or rhumb lines 
of the sphere become helices on the cylinder and lines on the 
plane. 

The above relation between A and cp is clearly shown in the 
instrument called a tractrix (fig. 10). We suppose a rod to 
move with one end on a line, the other end x moving in the 
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direction of the rod. Analytically 

X=A+t 
dx=dA+dt 
ax = dA - dt/t2 

and we are to have 

Hence 
dA + dt = t2(dA - dt/t2) 

dA=2dt/(t2 -I) 
=dt/(t -I) -dt/(t + I) 

A=log (t-I)-log (t+ I) + constant 

Assigning t = L to A = 0, 

A=log (L~ ::) 
Or, if t=etq" 

A = log tan cp/2 

23 



CHAPTER III 

THE EUCLIDEAN GROUP 

§ 14. Homologies - Algebraically a homology H is the 
equation 

y=ax+b 

We consider here not the operations but the records-that 
is, x and yare thought of as points of the base-plane, in a 
correspondence H, and not as overlying points of overlying 
planes. 

The homology H has a fixed pointj given by 

j=aj+b 

When a = 1 we say that the fixed point is at infinity, j = 00 • 

Taking the fixed point as 0, we have a canonical form for H, 
y=ax, except when a is 1. For this we may take y=x+p, 
where p is positive. 

All homologies form a group. For if z =cy + d and 
y=ax+b, then z=cax+cb+d=ex+j. 

A homology is a stretch S when a is a real, a rotation R 
when a is a turn, a translation T when a = 1. 

All translations form a group, since if a = 1 and c = 1, 
ac = 1. All stretches do not form a group, since if a is real 
and c is real, ac is real but may be 1. All stretches and all 
translations form a group. 

So all rotations and all translations form a group-the 
group of planar displacements or of rigid motions. 

§ 15. Antilogies - An antilogy A is the equation 

(1) ii=ax+fj 

It is the composition or product of H and a reflexion ii =X in 
the base-line. 

It has in general a fixed point j, given by 

J=aj+fj 
24 
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(2) 
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J=iil+b 

J=auJ +ab + b 

With this as base-point, b is o. Thus A has the form 

fI=ax 

25 

Changing the unit of direction-that is, writing 'TX for x 
and 'T-1fl for fI-we have 

fI =a'T2x 

We can choose 'T2 so that a'T2 is p. We thus get the 
canonical form of A, 

(3) fI=px 

This fails if au = 1; that is, if A has the equation 

fI=tx+5 

Changing the unit of direction this is 

fI =x± (A + LfL) 

and by a translation, x=x' ± LfL/2, we get 

(4) fI=x+p 

This is the canonical form for the general operation of an 
odd number of reflexions. 

But if in (2) u = - b/5, then au = 1 and J becomes arbitrary. 
Thus, for the antilogy 

fI= -5x/b+5 
or 

(5) 

the conjugate equation is 

53/5 +y/b= 1 

In writing the conjugate we merely interchange x and y. 
The points of the plane are then paired off by (5). It is 

the equation of a reflexion. When we make x=y, we get 
the equation of the line of fixed points, 

(6) x/b +53/5 = 1 

This is a self-conjugate equation. The point b is, from (5) 
when y=O, the image of the base-point in the line. 
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Antilogies are not a group, since the product of two is a 
homography. But they form a group-the Euclidean group. 

Of this all the groups so far mentioned are subgroups. 
But there is also the important subgroup formed by all 
reflexions L, or antilogies of period 2. Two or any even 
number of reflexions give the positive or planar displace­
ments, R or T. Three or any odd number give the negative 
displacements, for which the canonical form is 

y=x+p 

We defer these to § 19, and consider next the composition 
or product of stretches, of rotations, and of general 
homologies. 

§ 16. The Product of Stretches - The product or result of two 
stretches or of two rotations is naturally of importance. It 
is best viewed geometrically-that is, by a figure and not an 
equation. 

A stretch 8 is (j, p), where I is the fixed point and P a real 
ratio. Let 8 i be (Ii' Pi). We ask what are the relations on 
the fixed points Ii and the ratios Pi when 818 28s = I. 

The line 11 -12 being fixed under 81 and 8 2 is fixed under 8s. 
The three fixed points are then on a line. 

The stretch 81 sends a circle C with centre y into a circle 
C81 with centre z. The stretch 8 2 sends this latter into a 
circle with centre x. Thus this circle is C818 2• The stretch 
8 s sends this into the original circle, since 818 28s is to be I. 
The product of ratios PIP2PS is then 1, 

(1) 

But there is a further relation. We obtain it by placing y 
and therefore z at A. Then x8s is 11 and 1182 is x. We have 
then 

and 

whence, eliminating x, 

(2) 

11 - Is= Ps(x -Is) 

x - 12=P2(X - 12) 

This is one of three equivalent forms. 
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Exercise 1 - Deduce (2) algebraically from the equations: 

8.: z -f. = p.(y - J.) 
8s: x - fs = ps(z - fs) 
8.: y-f.=p.(x-f.) 

27 

The proper thing is to introduce the auxiliary point f 0 on 
the fixed line, such that 

f2 - fO=Pl(fa - fo) 
fa - fO=P2(fl - fo) 
fl - fO=PS(f2 - fo) 

These equations satisfy both (1) and (2). 

yS l=Z 

This auxiliary point appears more naturally in the product 
of homologies (§ 18). 

The figure for the product of two stretches is then a 
triangle and a fixed line, or, if preferred, the figure of three 
directed circles (fig. 11). In the former view the points of 
the plane are arranged in triangles with edges on the points 
fi. One or three of the edges must be produced. 

Exercise 2 - If we take two such triangles x, y. z and x.. Y.. z. then 
x - x.. y - Y •• z - z. are parallel. The corresponding edges y - z and Y. - z. 
meet at f •. 

Consider the next case, 81828s84 =1. Here 8182 and 
8a84 are reciprocal stretches with the same fixed point f, 
the intersection of fl - f2 and fa - f4. Taking any point x, the 
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points x, xSl> XSlS2, XSlS2SS form a closed cycle. The 
diagonal x - XSlS2 is on f. So also the other diagonal 
XSI - XSlS2Sa is on a fixed point f', the intersection of f2 -fa 

and f4 -fl· We have then four lines, fl - f2' f2 - fs, fa - f4' 

eb 

L_-+~o;;;--:k------=//"ce 

ab 
FIG. 12 

f4 - fl' and four points, x, xSl, XSlS2, XSlS2Sa, such that the 
join of any two of the points is on the join of two of the lines. 
The four-line is in this sense inscribed in the four-point. 
The complete figure is the Desargues configuration of ten 
points and ten lines, three points on each line and three 
lines on each point (fig. 12). 

§ 17. The Product of Rotations - To compound rotations is 
simpler, for a rotation R is the product of two reflexions in 
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lines Ll, L2 which meet at, say, f, and one of these lines may 
be taken as any line on f. 

If we denote R by (f, t) then t is the relative clinant of L2 
and Ll . 

To compound Rl and R2 we take the line fl - f2 or La as the 
second line of Rl and the first line of R 2. We have thus 

Rl = L2La and R2 = LaLl 
Then 

RlR2=L2LS2Ll =L;Ll 

Or symmetrically if 

Rl =L2Ls, R 2=LsLl, Rs=LlL2 
then 

RlR2RS=I 

Thus successive rotations about the vertices fl, f2, fs of a 
triangle, through twice the angles of the triangle, amount to 

identity. This is referred to as the triangle of rotations. 
Representing the rotations by arcs, we have a closed figure of 
three successive arcs which meet at a point (fig. 13). 

We call this figure a trefoil. We may of course select arcs 
which intersect only when extended. 

Exercise 3 - Draw a figure for the important special Cl18e when one rotation 
becomes a translation. The arcs are then similar. 
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If four rotations Ri amount to identity, then when re­
presented by arcs 00, be, cd, da, which intersect again 
successively at S, a, f3, y (fig. 14), we have R 1R 2=arc 

FIG. 14 

aSe, RaR4=arc ef3a, and 
therefore arc aSe x arc 
ef3a=1. HenceaSef3are 
on a circle. And con­
versely, if aSe f3 are on a 
circle (in this order) then 
RIR2RSR4=1. Butthen 
also R 2R sR 4=R1-l and 
R2RSR4Rl =1. There­
fore also bady are on a 
circle. 

If, then, we take four 
points aSef3 on a circle 
and draw any circles 
through as, Se, ef3, f3a 
the remaining intersec­

tions of the successive circles are on a circle. 
We have here a 4 x 2 scheme of eight points: 

abc d 
a f3 y S 

such that any two of a row and the non-corresponding two of 
the other row are on a circle; this being not six, but only 
five conditions on the eight points. 

Exercise 4 - A closed polygon of arcs represents a rotation R. 
Let the arcs be ~, as; as, as; . . . an' ~. 
Show that the angle of R is - 1:0, when Ot is the exterior angle at the point ai. 
In particular, for a translation 1:0i =0 (mod 2n). 
Exerci8e 5 - When all exterior angles are 0, the arc-polygon has continuity 

of direction. This is possible only for an even number of circles in successive 
contact. Show that for 4 circles having successive contact at ai the four 
points ai are on a circle. 

Exercise 6 - If ai' as, aa are on a line, and as, a., a6 are on a line, and a., a., 
al are on a line, the circles as, as, a.; a., a6, a.; a.,~, as are on a point. 

For extensions to higher spaces, see Study, Math. Ann., vol. 36, and M. W. 
Haskell, Grunerl'8 Archiv, 1903. 

EXerci8e 7 - In general for 2n points ai the successive arcs have continuity 
of direction when 

(al - as)(as - a.) ••• (as .. -l - as .. )/(as - aa)(a. - a.) ••. (as .. -~) 
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is real. The first arc is then any arc joining al to as. That is, the problem 
of drawing 2n arcs with continuity of direction is poristic; when it is possible, 
it is possible in an infinity of ways. (H. BATEMAN.) 

§ 18. The Product of Homologies - Geometrically, a homo­
logy with centre C sends a circle into a circle, and a circle C on 
f into another circle CH on f. C and CH will meet again at d. 
Any point x of C is sent into a point xH of CH. The join of 

FIG. 15 

these points will be on d, since the angles f, x, d and f, xH, d 
are given. 

Thus the two circles, ordered, give a convenient picture of 
a homology. 

Consider the three circles Ci meeting at d, and meeting 
again at f1' f2' fa (fig. 15). There are a homology HI sending 
C2 into Ca, a homology H2 sending Ca into C1, a homology Hs 
sending C1 into C2. Thus the product of the three is identity, 
or 

H1H2H a=I 

The point x of C2, when joined to d, gives the point XH1 of Ca 
and the point XH1H2 of C1. 
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We show that three homologies whose product is I lead 
uniquely to the above figure. Consider three positively similar 
maps on a plane. There are three fixed points fi' one for 
each two maps. And there is an auxiliary point a, such that 
for corresponding points of the maps 

(X2 - fl)/(Xa - fl) = (fa - a)/(f2 - a) 
(xa - f2)/(Xl -f2) = (fl - a)/(fa - a) 
(Xl - fa)/(x2 - fa) = (f2 - a)/(fl - a) 

Take a as base-point. Then 

so that 

(I) 

Xdl +fda=XJ2+fa!1 =xa!a+fd2 

Xl =f2 +fs - fJa/U 
X2 = fs + fl - fa!l/U 
Xa=fl +f2 - fd2/U 

When the variable U isfl' then x2=xa=fl' and 

xl =f2+fa-fds/fl=Yl' say, 
that is 

From (I), 
Xl -X2=(f2-A)(I-fa/u ) 

(Xl - X2)/(Xl - Xa) = (f2 - fl)(U - fa)/(fa - fl)(U - f2) 

When Xl, X 2, Xs are on a line, these are real. 
Thence the angle f2' U, fa is the angle f2' fl' fa (mod 'IT), so 

that U is on the circle on fl> f2' fa. 
And 

(Xl - f2)/(Xl - fa) =fs(u - f2)/f2(U -fa) 

so that when a is on the circlefi' the anglef2' Xl' fa is a constant 
(mod 'IT); that is, Xl is on the circle f2' YI> fa. 

Thus, when in the three similar maps three corresponding 
points Xi are on a line, each point Xi is on a definite circle on 
two fixed points. The three circles meet at a point d (the 
director point) and all the lines are on d. For a purely 
geometrical account of this " theory of three similar figures " 
see Casey, Sequel to Euclid, 6th edition. 

When the auxiliary point is the circumcentre of fi' each 
homology becomes a rotation. Replacing fi by a turn ti, the 
equations (I) become 
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and replacing u by its inverse y as to the base circle, we get 
the equations (1) in the secant-form 

Xl =t2 + ta - tJaii 
Exercise 8 - In this case the director point d is 

d=t1+tS+t. 

The relation of the points a and d to the fixed points fi is of 
interest. 

The line f1' Y1 has the equation 

Since 

X -f1 x - 11 
-- = --_- = a real 
fl -Y1 A -Y1 

(f1 - Y1)f1 = (.f1 - 12)(f1 -fa) 
(X - f1)f1(/2 - fa) = its conjugate =a real 

Hence for the point d on all the lines we have three equations 
such as 

whence 

and also 

(d - f1)f1(/2 - fa) =A1 

'l:.A1/(d - f1) =0 

'l:.A1/fl =0 

The latter equation with its conjugate determines the real 
ratios Al : A2 : Aa. It follows that when fi are the fixed 
points, a the auxiliary point, and d the director point, the 
latter two are connected mutually as roots of an equation 

(2) 

where the Ai are real. 
We meet this equation again in § 143. 
§ 19. Negative Displacements - An odd number of re­

flexions reduces to a rotation and one reflexion; hence to a 
reflexion L1 and a translation; and finally, by resolving the 
translation across and along the line L1, to a reflexion L and a 
translation T parallel to the line L. This is the canonical 
reduction for a negative displacement (§ 15). It may be 
thought of as a twist in a space along a screw whose axis is 
the line L, through two right angles. With this in mind we 
call the displacement LT a twist, and the absolute distance 
of T the pitch. 

3 
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If we denote a twist (through 'IT) by W, then W =LT=TL. 
We note that the mid-point of x and xW is on the axis L, 
and that Wand W-I have the same axis. 

FIG. 16 

The transform of an operation by a reflexion Lo being the 
reflected operation, the transform of W, 

LoWLo=W' 

is a twist whose axis is the image in L 0 of the axis of W. 
Consider the product of reflexions in three lines forming a 

triangle aI, a2, as (fig. 16). We have here 

W2=LIL2L S 

W2-I=LsL2LI 
Call the vector from a vertex perpendicular to, and ending at, 
the opposite side an altitude. Let the end-points or feet of 
these altitudes be PI, P2, Ps. Since as is on LI and L2, as W 2 
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is aaLa, so that the mid-point of aa and aa W 2 is Pa. This is a 
point on the axis of W 2. Since al is on L2 and La, a1W 2-1 is 
aILI, so that the mid-point of a l and a1W 2-1 is Pl. This is a 
point on the axis of W 2 -1, that is of W 2. The axis of LIL2La 
is then on Pa and Pl. If we transform LIL2La by LI we get 
LILIL2LaLI> that is L2LaLI = Wa. Its axis is on PI and P2. 
Hence this line is the image of the line Pa - PI in LI. Similarly 
the transform of L2LaLI by L2 is LaLIL2= WI> with the axis 
P2- Pa· 

To obtain the pitch of LIL2La=W2 we take PI and obtain 
P ILIL2La, which is P lL 2La (fig. 16); P lL2 is on the line P2' Pa, 
and PIL2La is therefore on the line PI, Pa. Hence for an 
acute-angled triangle the pitch, namely, 

I plW -PI I 
is the perimeter of the triangle PI> P2, Pa. 

Exercise 9 - For a triangle with an obtuse angle at ~ the pitch is 

I~-AI-IA-AI+IA-~I 

If now we regard an acute-angled triangle as an instrument, 
and overturn it first with the side 1 fixed, then with the side 
2 fixed, and then with the side 3 fixed, we get fig. 17. The 
points Pa, PI of the first position (marked I) are in line with 
the points PI, P2 of the second position (marked L I), and so on. 
The condition that the triangle be acute-angled is the con­
dition that the axis of the twist shall cut the successive 
positions of the triangle. When this is fulfilled, the axis 
cuts the position I in PI, Pa; reflecting the axis in sides 1 and 
3 gives the triangle PI, P2' Pa. 

This is a convenient planar picture of a twist, the reflexions 
being in the lines marked 11, 22, 33. The pitch is the 
perimeter of the triangle PI' P2, Pa. It is clear from this 
figure that the perimeter of PI' P2, Pa is the minimum peri­
meter for inscribed triangles, for no other inscribed triangle 
would give a straight line. * 

The two operations, of overturning the triangle on suc­
cessive sides 1, 2, 3, and of reflecting the plane successively 
in lines 1, 2, 3, are reciprocal, and have the same axis. 

* H. A. Schwarz, Mathemati8che Abhandlungen, vol. 2. 
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Let us construct fig. 18 for a pentagon analogous to fig. 17 
for a triangle. 

Regarding the pentagon as a card, we overturn it on sides 
1, 2 ... 5 successively, naming the positions I, LI, ... 
LIL2LSL4L6' We write W for LIL2LSL4L6' The mid-point 

FIG. 17 

of x and xW is on the axis of W. This axis is thus determined 
by the mid-points of say 23 and 23W, 45 and 45W. 

The condition for an inscribed pentagon of minimum 
perimeter is that the axis of W shall cut all the successive 
positions of the given pentagon. Taking this case, the axis 
determines in position I the points PI> P6' Reflecting the 
axis in 1 and 5 of position I gives P2 and P4; and reflecting 
the line PI - P2 in 2 or the line P5 - P4 in 4, gives Ps. We have 
then the pentagon PI, P2 •.• P5 of minimum perimeter. 

As before, the product of successive overturnings of the 
pentagon instrument. and the successive reflexions of the 
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plane in the lines 1, 2, ... 5, are reciprocal operations, with 
the same axis. 

And so in general, for a polygon with an odd number of 
sides, say 2n + 1, the problem of constructing the minimum 
closed path which connects the successive side!::! is solved by 

23W 
FIG. 18 

constructing a figure analogous to fig. 18. The polygon P 
is displaced to PW, where W = LIL2 ... L 2"+1; the axis of 
W is determined by the mid-points of any convenient points 
x, xW and y, yW; and the points PI, P2n+1 are cut by the axis 
on the sides 1, 2n + 1 of P; subject to the condition on P, 
that the axis of W shall cut all the successive positions of P. 

Exercise 10 - The successive overturning or "rolling" of a concyclic 
quadrangle amounts to a translation. 



CHAPTER IV 

INVERSIONS 

§ 20. Cross-ratios - There are two types of one-to-one 
correspondence of numbers, x and y, the homography 

H=axy+ {3x+yy+8=0 

and the antigraphy 

A-= axti + {3x + Yii + 8=0 

Each is determined by three values of x and the corresponding 
values of y. Thus two co-ordered sets of four points Xi and Y; 
are in a homography when 

Xl!JI, Xl, YI' 1 =0 
X'l!h, X2, Y2' 1 

xaYa, Xa, Ya, 1 

X4Y4, x4, Y4, 1 

We write this determinant, 

I XiYi, Xi' Y;, I I 
And the two sets of four points are in an antigraphy when 

I xJj;, Xi' iii' 1 1=0 

There should then be a number connected with four points 
which is constant under H. All the homographies which 
send Xl into YI and X2 into Y2 are evidently given by 

X-Xl Y -YI 
--=K--
X -X2 Y -Y2 

The homography which also sends Xa into Ys must have 

Xs -Xl Ya -YI 
--=K---
Xa -X2 Ys -Y2 

Thus the homography which sends Xl, X2, Xs into YI' Y2' Ya is 

(x - XI)(X2 - xa) (y - YI)(Y2 - Ya) 
(x - x2)(xa - Xl) (y - Y2)(Ya - YI) 

38 
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If we write then for the four points Xi 

'lT1 = (X2 - Xa)(XI - X4) 
'lT2=(Xa -XI)(X2 -X4) 
'ITs = (Xl - X2)(Xa - X4) 

where 
'lT1 + 'lT2 + 'ITa = 0 
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the six ratios of the 'lTi are constant under H. These ratios 
with sign changed are the cross-ratios. The determinant 
1 XiYi, Xi' Yi, I 1 is then, to a numerical factor, 

(X2 - XS)(XI - x 4)(Ya - YI)(Y2 - Y4) - (xa - XI)(X2 - X4)(Y2 - Ya)(YI - Yt) 

Exercise 1 - By considering the leading term x..Y1XaYs, show that the 
factor is - 1. 

Exercise 2 -The homography which sends x=O, 00,1 into y=l, -I" is 

y=(l + tx)/(I- tx) 

It sends the base line into the base circle. 

Similarly for the determinant 1 Xliii' Xi' iii' I I. Under an 
antigraphy a cross-ratio becomes its conjugate. 

If r is a cross-ratio, then I - rand Ilr are cross-ratios. 
Hence the six cross-ratios, in terms of anyone of them, r, 
are 

r 
I-r 

1/(1 -r) 
rl(r -I) 

Two of these are equal when 

(r -I)r 
Ilr 

(I) r=O, I, or 00, the scheme being ~ 
I 

(2) r=l, 2, or - 2, the scheme being ~ 
1" 

-w 
(3) r2 - r + I =0, the scheme being 2 

-w 

I 

o 
00 

00 

2 -I 
-I 2 

-w -w 
_w2 _wll 

In (I) one of the products 'lTi vanishes, and two of the four 
points coincide. 

In (2) two of the products 'lTi are equal. 
In (3) either 

or 

where w = e2t:n/3. 
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If we divide the four points into two pairs, say Xl' x 2 and 
X a, X 4, then there are two cross-ratios, 

r = (Xl - XS)(X2 - X4)/(Xl - X4)(X2 - xa) = - 7(2/7(1 

which we denote by (XlX2 I XsX4), and l/r 

Exercise3- x=(xlIOoo)=(lx 1000)=(0001 xl)=(ooO 1 Ix). 

§ 21. Inversions - We consider in this chapter the anti­
graphies of period 2-that is, such that A2=1. These are 
called inversions. Writing A as 

(x - a)(y -I)) = K 

we are to have also, always, 

(y - a)(i -I) = K 

and therefore 
(y -a)(x -b) =K 

Hence 
a=b and K=K 

Thus an inversion is 
(X - c)(y - c) = real 

or, written with homogeneous coefficients, 

pxy -ax - ay +a=O 

where p and a are real. 

A circle is given by an equation 

(x - c)(i - c) =r2 

With this is given an inversion 

(x - c)(Y - c) =r2 

stating that the points x, yare on a ray from c, and that the 
product of their distances from c is the constant r2. 

Thus a circle sets up in the plane a mutual one-to-one 
correspondence of points, except perhaps when X =c, in which 
case y = 00. We make the correspondence universal by 
choosing to regard 00 as a point. We are thus making one 
exception to the axioms of algebra, for, in ab =c, c is no longer 
definite when a = 0 and b = 00. Strictly 0 and 00 are limits, 
not numbers; but we agree to regard them as numbers. 

A line is n0W a circle on the point 00 , and inversion in the 
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line is what we called reflexion. To include lines it is proper 
to replace the above equations by 

pxx - ax - ax + a = 0 
and 

pxfj - ax - ay + a = 0 

where p and a are reals. We have then a line when p is o. 
The coefficients are homogeneous; only their ratios concern 
us. The expression or form has then the same generality as 
the equation; and we can denote an inversion simply by the 
form 

C =pxfj -ax - ay + a 

But when in this we make y = x, to find the fixed points, we 
do not always get a circle. For 

pC = (px - a)(py - a) + pa - aa 

and we have a circle only when the discriminant pa - aa is 
negative. 

We have then three types of inversions-hyperbolic, 
elliptic, parabolic, according as the discriminant is 
+, or O. 

Exercise 4 - Refiexions are of the hyperbolic type. 

For the elliptic type we have 

(x -c)(y -6) +r2 =0 

There being no fixed points in the plane, we erect at c a 
normal to the plane and take on it the two points at distance 
r from c. These are the fixed points. We call them an 
elliptic pair or an extra pair. 

For the parabolic or singular type we have 

(x - c)(y - 6) =0 

Here to x=c corresponds an arbitrary y. Between the 
circle and the extra pair we have this intervening case; the 
circle has become a point taken twice or the extra pair have 
come together. 

Thus with the general inversion is associated the self­
conjugate form 

pxx -ax -ai+a 
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This defines a curve-a bilinear curve-which is a general 
word for the three types~ircle, extra pair, double point. 

In general we associate with any self-conjugate form in x 
and x the word curve. H we replace x by fi (or x by y) we 
get the transformation associated with the curve-a general­
isation of inversion. 

§ 22. Inversors - An appropriate instrument for inversion 
is a linkwork or assemblage of jointed rods. The simplest 
forms are the Peaucellier cell (fig. 19 (a)), and Hart's axial 

(a) FIG. 19 (b) 

quadrangle or contra-parallelogram (fig. 19 (b)). In the former 
we have a rhombus x, p, y, q and a point c on the diagonal 
line x-yo 

Then 
Ie -p 12 -I x -P 12=(c -x)(c -fi) 

Thus the rhombus of jointed rods, with the two bars c-p 
and c - q to the fixed point c, is an inversor, x and y being 
inverse points. 

Hart's apparatus contains four bars only. It is a quad­
rangle a, b, a, 6, where the axis of a and a is the axis of band 6. 
This common axis is taken here as the base-line. 

Let a, {3, y, S be the mid-points of the bars. Then 

a - {3=S - y=(a -0,)/2 
and 

a - S= {3 - y=(b - 6)/2 

By Ptolemy's theorem for four points on a circle, 

I a-a II b-6 1+1 a-b 110,-61=1 a-6 II a-b I 
Hence, for all shapes of the given four-bar, 

I a - (3 I I a - S I =i(fL2 - ).2) 
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and 
I {3 - a I I (3 - y I = 1(>t2 - fL2) 

W here the lengths ofthe bars are >t, fL, >t, fL. 
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Thus, if we fix one of the points a, {3, y, S, the two adjacent 
points will be in an inversion. 

Exercise 5 - In Hart's inversor, if four points marked one on each bar be 
once in a line they will always be in a line. 

For an account of inversors see A. B. Kempe, How to Draw 
a Straight Line (London, Macmillan, 1877). 

§ 23. Properties of an Inversion -If we denote the distance 
from c to x by SOl and from c to y by S02' then, for an inversion, 

SOlS02 = K 

For a second inversion with the same centre, 

S02S03=K1 
Hence 

SOl/S03 = K/ K1 

This is a stretch. Thus a stretch is the product of two 
concentric inversions. 

Conversely a stretch and a concentric inversion are com­
mutative operations whose product is an inversion with the 
same centre. 

Euclid's theorem that the product of segments on a secant 
from c to a circle C is a constant shows that a circle can be 
inverted into itself with any point not on it as centre. If c 
be outside, the inversion is hyperbolic and the circle of fixed 
points is orthogonal to the circle C. 

If c be inside, the inversion is elliptic. The two fixed 
points are extra points on the sphere of which C is a great 
circle. 

Since an inversion with centre c sends the circle C into 
itself, and a stretch with centre c sends C into another circle, 
any inversion whose centre is in the plane of a circle sends 
that circle into a circle. Lines here are included as circles 
on the point 00 • 

Exercise 6 - Under xii = 1, pxx - ax - aii + rJ becomes p - iiy - aii + rJyfj. 

But the same is true for any point c. For inversions and 
stretches apply equally to a Euclidean space. Thus an 
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inversion sends a sphere into a sphere (planes being included 
as spheres on the point 00). Hence an inversion in a space 
sends a circle into a circle, for it sends the intersection of 
two spheres into the intersection of two spheres. 

An inversion with centre C sends two points x and Xl into 
two points Y and Yl' the four points being on a circle. If Xl 

tends to X along this circle, then Yl tends to y. At the limit 
the angle CXXI is the supplement of the angle CYYl. Hence to 
two directions at Xl at an angle 0 correspond two directions 
at Y at an angle - o. Thus angles are negatively equal, or 
reversed under an inversion. 

In a space, angles are unaltered in size. For on the base 
x, Y we have two isosceles triangles, say x, y, z and x, y, z'. 
The angles z, x, z' and z, y, z' are then equal. 

Since 

and 
(Xl-p)(iiI -C)=K 

(X2-C)(Y2- C)=K 
Yl-Y2=K(X2-Xl )/(Xl -C)(X2-c) 

Thus the distance 812 from Xl to X 2 becomes 812' where 

(1) 

For instance, the relation 

812' + 823' = 813' 

which connects three points of a line, becomes under (1) 

812834 + 820814 = 813824 

which is Ptolemy's theorem for four points on a circle. 

Exerci8e 7 - Three points are sent into the vertices of an equilateral 
triangle by an inversion whose centre is given by 

15011599 = 15021591 = 15031519 

The effect of an inversion is to change a cross-ratio into its 
conjugate. 

Thus to say that four points are on a circle is to say that 
they can be inverted each into itself. In this case, then, all 
cross-ratios are real. The four points are now ordered. By 
an inversion they are on a line. For four points Xi on a line 
in the order Xl X2X3X4' 'lT1 is positive, 'lT2 is negative, 'lT3 is 
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positive. Thus of the cross-ratios four are negative and two 
positive. These latter are the cross-ratios of the alternate 
pairs Xl' xa and X 2, X 4• 

For four points in general an even number of inversions 
leaves a cross-ratio absolutely unaltered. 

§ 24. Normal Circles - Two inversions Cl and C2 are in 
general not commutative. The product ClC2, where 

Cl == PIXY - alx - aJi + Ul 
C2 == P2ZY - O,2Z - aJi + U2 

IS 

(1) ~lX-Ul 1=0 
a2z - U 2 

and this is symmetrical in X and z only when the coefficients 
of X and z are the same-that is, 

This expression is the bilinear invariant or power of Cl and 

C2• 
Consider two circles Cl and Ca, for which the power vanishes. 

For a point X on Cl, xCI =X. Hence XClC2 =xC2. This is to 
be xC2Cl. Hence xC2 is also on the circle Cl. The circle Cl 
is then sent into itself by inversion in C2; that is, the two 
circles are orthogonal or normal. 

The equation (1) gives for two circles two points for which 

x=z=fsay 
For these, 

When Cl and C2 intersect, these two points f are the inter­
sections. For thenfCl =f andfC2=f, so that fClC2=f. 

When Cl and C2 do not intersect, the two points fare 
images in each circle. That is, flCl = f2 and f2C2 = fl' so that 
f lClC2=fl' 

Thus the points common to two circles are the intersection 
when they intersect, and the common image-pair when they 
do not. 

Taking one of the two points as 00, we have the canonical 
form of two circles-two lines or two concentric circles. 
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Exerci8e 8-The power of two lines a.x+a.i=(/; is -(a1uS+a.al). This 
vanishes when the lines are normal or perpendicular. 

Exercise 9 - H two circles intersect at 0, then (/1 = (/S = O. The power is 
-(~as +aSa1 ). The tangents at 0 are aSx+a1x=0. Hence the tangents are 

at right angles. 
ExerciBe 10 - Solve the equations Xii = 1, x + fi = 2ft. 

§ 25. The Lune and the Ring - Two circles, or generally 
two inversions, are then said to be orthogonal or normal when 
the power vanishes. 

If the two become the same, the power is twice the dis­
criminant, 

PH = 2(P I UI - aliil ) 

If we divide P12 by both square roots, V PH V P22, we get the 
fundamental constant K12 (under inversions) for two circles. 
In terms of the radii r l , r 2, and the distance 812 of the centres, 
we have for CI with centre 0 

and for C2 with centre 812 

whence 

whence 

(x - 812)(x - 812) =r22 

Pl2 = 812
2 - r I

2 
- r2

2 

PH = - 2r12 
P22= - 2r22 

Exerci8e 11- Two concentric circles with positive radii rl> rs can be inverted 
into two equal circles with radius r. Prove that the distance of the centres 
is given by 

d/r=v rl/rS +V r.jrl 

A radius is positive or negative according as we give an 
arrow-head to a circle in the sense of t or of - t. 

Consider two circles which intersect. Let both be de­
scribed positively. If C2 makes with CI an angle 8 (mod 217') 
at one intersection, it makes the angle - 8 at the other. 
Under an inversion the angles become - 8 and 8. The 
function cos 8 is indicated, for cos 8 = cos ( - 8). We have 
from the law of cosines 

cos 8=(812
2 -r12 -r22)/2rlr2 
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Under an inversion r} or r 2, or both, may become negative, 
but the formula shows that when rl r2 changes sign, then also 
8l22-r}2-r22 does. We may take then for intersecting 
directed circles, 

K 12 =COS e 
The circles divide the plane into regions called lunes, or 
rather into two pairs of complementary lunes. 

When two circles do not intersect, they include a ring. If 
the circles are external, the ring includes the point 00. We 
consider all the arcs orthogonal to both. These terminate 
at the image pair II' 12' Any arc meets Cl say at Xl and C2 

say at X 2• Consider the cross-ratio 

(Xl - Il)(x2 - 12) 
(Xl - I2)(x2 -II) 

First, it is real because the points are on a circle. Second, it 
is the same for all arcs. For inversion in any of the arcs will 
not alter it, but will send an arc I l x l x2I2 into another, say, 
II Yl yd2' Third, it is positive, for it is manifestly positive 
for the segment II -12' 

Of this positive number, which is the same for all arcs, we 
take the logarithm, A. This is the hyperbolic distance from 
Cl to C2, the same along all arcs. 

Let us take the canonical case where the circles are con­
centric. Here it is proper to take the circles as oppositely 
described, so that if r 2 be positive, r l is negative. 

We haveI2=00 and take 11=0. Then 

e-A =xJxl = - r2/rl 

eJ. = X l /X2 = - rl /r2 

r2+r2 !( eJ. + e-A) = _ 1 2 
2rl r 2 

and this is the value of K12 with 812 = O. 
Hence, in general, the relation between the logarithm of 

the ring, A, and the constant K12 is 

• K12 =!(eJ. + e-A) 

This is the hyperbolic cosine of A, cosh A. 
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Thus for the ring we have cosh A, whereas for a lune we 
had cos O. 

For the angle one makes instinctively a numerical estimate. 
It is useful, though not so easy, to do so for the logarithm. 

One way is to take a semicircle on fl' f2' To the tangents to 
Cl at Xl and to C2 at X 2 we apply a standard tractrix with 
base parallel to f2 - fl' We thus get a distance along the 
base of the tractrix, which is A. 

The ring may also be measured inversively by an angle (or 
the lune by a logarithm). 

Taking the canonical ring formed by concentric circles, of 
radii 1 and p, we inscribe a circle in the ring. It subtends at 
the centre an angle O. 

The tangent to it from the common centre is p1!2. 
Hence 

sec 0/2 = !(p1!2 + p-l/2) 
or since p = el" 

(I) sec 0/2 = cosh AJ2 

This, then, is the condition that a luhe of angle 0 and a ring 

FIG. 20 

of logarithm A, the two being orthogonal, have an inscribed 
circle (fig. 20). 

They form a polar square. By successive inversions in the 
two elliptic sides (which belong to the ring) we get fig. 21 (a). 
By successive inversions in the hyperbolic sides (which belong 
to the lune) we get fig. 21 (c). There is here closure when 0 is 
commensurable with TT. The intervening case (fig. 21 (b)) is 
that of a strip where the given circles touch. The figures 
illustrate the three fundamental measurements-the hyper­
bolic, the elliptic, and the parabolic. 
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Exercise 12 - If p, ='J./s and t=e,8/2, then (I) is 

(p, + Ijp,)(t+ Ijt) =4 
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Show that the join of the real, p" and the turn, t, is on one or other of the 
points ±t. 

Exercise 13 - Writing p,t=x, the equation is 

x+x+ Ijx+ Ijx=4 

Draw the curve. It is the inverse of a rectangular hyperbola as to an apse. 

2 

a 

(a) lune (b) strip (c) ring 

FIG. 21 

§ 26. The Canonical Form - When four points Xi are a 
circle CI there are three inversions which interchange them. 
For we can take as centre the intersection of, say, the secants 
Xl - X 2 and Xa - x4• Two of these inversions are hyperbolic, 
and thus have circles of fixed points normal to CI . 

Let then CI be the circle, in which X 2, Xa and Xl> X 4 are 
images; and Ca be the circle in which Xl' x2 and Xa, X 4 are 
images. 

Then CICa sends Xl into Xa, Xa into Xl' x 2 into X 4, and X 4 into X 2• 

And CaCI does the same. 
Hence the circles CI , Ca are normal. Thev meet at two 

~ 4 
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points, which we now take to be 0 and 00 (by an auxiliary 
inversion). The circles are now normal lines, and the points 
are obtained by reflexion of one of them in these lines. The 
four-point has become a rectangle. This is a canonical form 
for four points on a circle. 

In this canonical form we take the inversion forms as 

C1 : L(X-Y) 
C2 : xfj-l 

Ca : x+Y 
Co: £(xfj + l) 

where 
C02 +C12 +C22 +C32=0 

Here Co is the elliptic form, and its fixed points are an extra 
pair. We may call them the north and south poles on the 
base-sphere, of which the base-circle is the equator. 

With the four forms Ci we can express any inversion form 
as 

AoCo + A1C1 + A2C2 + AaCa 

where the Ai are real. 
The relations between the Cartesian co-ordinates of a point 

in a plane and those of a point on a sphere may be written 

["1 = ["2 + 7]2 - 1 

["2=2[" 
["3=27] 
["0=["2+7]2+ 1 

So that 
["12 + ["22 + ["32 = ["02 

Here ["i/["O are Cartesian co-ordinates in a flat or Euclidean 
space. 

A curve in the plane becomes a section of the sphere by a 
surface 

1 .. (["0["1["2["a) =0 

But we are concerned only with the section, so that 1 may be 
modified by 

(["12 + ["22 + ["a2 - ["02)/ .. -2(["0["1["2["a) 

Thus the number of terms in/ .. is 

(n + l)(n + 2)(n + 3)/6 - (n - l)n(n + l)/6 
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that is, 
(n + 1)2 

In the same way, if we invert a flat space from a point 
outside it, we may write 

so that 

'1 =,2+7]2 + '2-1 
'2=2, 
'a =27] 
'4=2' 
'0 = ,2 + 7]2 + ,2 + I 

'12 + '22 + 'a2 + '42 = '02 

Here ,d,o are Cartesian co-ordinates in a flat four-way. 
A surface in the space becomes a section of the hyper-sphere 
bY!n('0'1'2'a'4). But the number of terms of the section is 

(n + I)(n + 2)(n + 3)(n + 4)/24 - (n - I)n(n + I)(n + 2)/24 

that is, 
(n + I)(n + 2)(3n + 2)/6 

This, then, is the number of terms in an algebraic surface in 
a flat space, when inversively considered, in terms of its 
inversive degree n. For the sphere n = I, and the number is 
5. That is, a sphere can be expressed in terms of 5 spheres, 
for instance, in terms of ,2 +7]2 + ,2 ± I, " 7], ,. For a cyclide 
n=2, and the number is 14. 

Between six spheres, or between 15 cyclides, there must be 
a linear identity. 



CHAPTER V 

QUADRATICS 

§ 27. The Bilinear Invariant - Given two points ai of a 
plane, we have all the circles on the points and all the circles 
about the points (that is, as to which ai are inverse points). 
Inversions in the former circles leave a l and a2 individually 
fixed; inversions in the latter interchange a l and a2• 

Through a point x passes a circle of each set, and the two 
meet again at y. Thus the points of the plane are paired off. 

The cross-ratio (xy I a1a2 ) is a real because the two pairs 
are concyclic, and it is a turn because the pairs are anti cyclic. 
It is then - 1; if it were 1, two points would coincide. 
We have then, as the equation of the pairing, 

or 

or, say, 
aoXY + aleX + y) + a2 =0 

The pairing is a homography of period 2. This is called 
a quadratic involution or polarity. The fixed points are 
a l and a2• They are given by the quadratic form 

The relation of the pair x, y and the pair ai is a mutual one. 
The two pairs are said to be normal, or apolar, or harmonic. 
So the two quadratic forms which give them are said to be 
normal, or apolar, or harmonic. If x and y are zeros of 
f3ox2 + 2f3lx + f32' the condition is 

aof32 - 2alf31 + a2f3o = 0 

This expression is the bilinear invariant or, as a typical 
invariant, the power of the two quadratics or of the two pairs 
of points Xl, Xl' and X 2, x 2'. When it vanishes the two 

52 
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quadratics or the two pairs are said to be harmonic or apolar 
or normal. We call them normal. 

All pairs normal to a given pair are in an involution. For 
x and yare given by 

Z2 -z(x +y) +xy 

and this quadratic is normal to aX2 + 2f3x + y if 

axy+ f3(x +y) + y=O 

Let the pairs of points be Xl' Xl' and X 2, x2'. 

Since 

the power is to an immaterial factor, 

Pl2 =- (Xl + XI')(X2 + x2') - 2XI XI ' - 2X2X2' 

When this vanishes the pairs are normal. 

Suppose that x2' = 00. Then Xl + Xl' = 2x2; that is, X2, the 
polar of 00 as to Xl, Xl" is the mid-point of Xl and Xl'. 

Again let X2 = 1, X2' = - 1, Xl = t. Then Xl' = - t. The 
two normal pairs are the diagonal points of a square. This 
is a convenient canonical form for normal pairs. 

Exerci8e I - For normal pairs with Xl =0, 

2/xt' = l/x. + l/x.' 
and therefore, in general, 

2 I I 
--=--+-­
XI-Xt' xl-a:s xl-a:s' 

Exercise 2 - Geometrically, a circle C pairs off the points of a space in 
which it lies. There is on any point X a sphere S containing C, and a pencil of 
spheres orthogonal to C, giving a circle. This circle meets the sphere S again 
at y. But analytically x and yare not numbers but quaternions. 

Geometrically (that is, inversively) normal pairs are first 
on a circle Q; and, second, the arc Xl, Xl' normal to nand 
the arc X 2, x 2' normal to Q are themselves normal. There is 
then an inversion with Xl' Xl' fixed which interchanges X 2 and 
x2', and an inversion with X2, x 2' fixed which interchanges Xl 

and Xl'. The two pairs are both concyclic and anticyclic. 
In the case of the square this is intuitive, the two arcs 

being the two diagonals. 



54 QUADRATICS 

If we write 

then 

and 

'TT = (Xl - X2)(XI' - X2') 
'TT' = (Xl - X2')(XI' - X2) 

'TT + 'TT' = - Pl2 

The two ratios of 'TT and 'TT' are the cross-ratios of the two 
pairs. These are constants under all homographies. 

We take as the fundamental constant of two pairs (each 
being ordered), 

(Xl + XI')(X2 + x 2') - 2XI XI ' - 2X#2' 
(Xl - X I ')(X2 - x 2') 

'TT + 'TT' 
=-,­

'TT - 'TT 

This is, in terms of the power P12' 

P12/ V Pu V P22 

for when X 2 , x 2' coincide with Xl' Xl" we have 

Pu = (Xl + XI ')2 - 4XI XI ' = (Xl - XI ')2 

§ 28. The 
normal pair. 
then 

Jacobian - Two quadratics have one common 
For ifax2 + 2f3x + y is normal to aix2 + 2f3iX + Yi, 

aYi - 2f3f3i+yai=O, 

and, eliminating a, f3, y, we have 

X2 -x 1 

YI f31 al 

Y2 f32 a2 

This is the Jacobian of the two forms. 
For the two pairs Xi' x/ the common normal is 

X2 2x 1 
1 
1 

For a canonical form of two pairs we take the Jacobian or 
common normal pair to be 0 and 00. We have then 

Thus the pairs are opposite vertices of a parallelogram. 



QUADRATICS 55 

To construct the Jacobian pair of Xl> Xl' and X 2, x 2' we take 
this case of the parallelogram. Here the arcs Xl X 2 X l ' and 
X l X 2' x/ are equal, and the diagonal bisects the angle between 
these arcs. Hence in general we draw the circle which bisects 
the angle of the lune made by X l X 2 X l ' and XIX2'XI" and the 
circle which bisects the angles 
of the lune made by X 2 XIX2' 

and x 2 Xl' X2" These two circles 
meet in the J aco bian pair 
(fig. 22). 

Or since in the parallelo­
gram case the circle on Xl and 
Xl' as diameter is the exterior 
bisector of the angles made by 
Xl X 2 X l ' and Xl x 2' Xl" in general 
the circles which bisect the 
exterior angles of the two 
lunes have the Jacobian pair 
as common inverse points. 

The first construction fails 
FIG. 22 

when the given pair are on a circle and are not interlaced, 
for the two circles of construction coincide. 

The second fails when the given pair are on a circle and 
are interlaced, for the same reason. One or other always 
holds. 

Exercise 3 - The Jacobian pair for the pairs :111, Xs and Xl> 00 are where the 
bisector of the angle xs~:11I (the internal bisector) meets the circle bisecting 
the angles which the line xs,:11I, 00 makes with the circle :111, xs, ~. 

§ 29. The Vector - The fundamental constant for the par­
allelogram ± 1, ±a is 

Kl2 = (2a 2 + 2)/40, 
or 

or, if a =pt=eJ..+t(), 

or 

2Kl2 =eJ..(cos 8 + £ sin 8) + e-J..(cos 8 -, sin 8) 

=2 cos 8 cosh ~ + 2£ sin 8 sinh ~ 
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We have thus attached to the two pairs Xl> Xl' and X 2, x 2' a 
vector v = e - L>'. If we change the order of one pair, v 
becomes v + 'IT. 

The involution set up by two points applies to any space 
on the points. When we select a plane n on the points, 
what is common to the plane and the involution is, in 
addition to the pairs in the plane, the pairs inverse as to the 
plane. These lie on the circle which is normal to the plane 
at the points. The proper way to realise a quadratic is 
then to think of a circle normal to the plane considered. It 
is enough to think of the space on one side of n, or if n is a 
sphere, of the inside of this sphere. 

And this sphere may be regarded as a large sphere around 
one-bounding one's universe. This we develop in Chapter 
IX. 

At the moment it is an apology for replacing a pair of 
points Xi' x/ by a semicircle normal to the plane (or an arc 
normal to a sphere and lying inside it). This we call the 
arc Xi' x/ when directed, or the arc qi when not directed. 

In the canonical case, when the arcs are from -I to 1 
and from - a to a, we have 

cos (e - L>') =!(a + I/a) 

For the square, a = ± L, and therefore 

e - L>' = 'IT/2 
that is, e='IT/2 and >'=0 

The two arcs here cut at right angles. The complete 
circles to which the arcs belong cut twice at right angles. 
We call such circles or their arcs normal. 

For a rectangle, a is a turn and cos (e - L>') is the cosine of 
an angle. Therefore >. = o. Here the two arcs intersect. 

Thus >.=0 characterises intersecting arcs or interlaced 
pairs of points. 

For a rhombus, a = LeA and 

cos (e - L>') = L sinh >. 

that is, e = 'IT/2. The two arcs are perpendicular, but do not 
intersect. 

Thus e = 'IT/2 characterises the rhombus. 
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For two pairs which, while concyclic, are not interlaced we 
have a=eA, and 

cos (0 - LA) = cosh A 
Here then 0=0. 
Since normal pairs of points give normal arcs, the common 

normal or Jacobian gives the arc normal to two arcs. In the 
canonical case this Jacobian arc is the line normal to Q at o. 
And we see from a = eA + to that 0 is the angle made by the 
vertical plane on x, - x, 0, 00 with that on 1, - 1, 0, 00 • 

Hence in general, when the Jacobian pair isj,j', the angle 
o is the angle made by the sphere on the arcs X 2 , x 2' ; j, j' with 
the sphere on the arcs Xl' Xl'; j, j'. 

Also in the parallelogram case eA is the ratio of the radii of 
the two arcs, in other words the hyperbolic distance of the 
arcs measured from Q. And therefore in general A is the 
hyperbolic distance of the arcs measured from Q along the 
Jacobian. Thus, in passing from the arc Xl' Xl' to the arc 
X 2, x 2' along the common normalj, j', one turns through an 
angle 0, and goes a hyperbolic distance A. 

This vector 0 - LA is fundamental for any two circles in a 
Euclidean space which are not interlaced. For consider any 
two circles not on a sphere. For simplicity of expression 
take one of them as a line. There is an inversion which 
sends both the line and the circle into itself, the centre being 
where the line meets the plane of the circle. If the line does 
not pass through the circle, the inversion is hyperbolic and 
the sphere of fixed points is normal (twice orthogonal) to 
both the line and the circle. 

If the line does pass through the circle the inversion is 
elliptic; there is an extra pair. There is still a Jacobian 
circle twice orthogonal to both line and circle, but the whole 
treatment is different, and will not be given. 

§ 30. Theory of the Four-point - The points ± 1, ±a can 
be paired also as 

1, a and - 1, - a 

In this case the J aco bian is 

X2 2x 1 

a 1 +a 1 
a -1-a 1 
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or to a factor 

The Jacobian points are the square roots of a. 
Or the points can be paired as 

1, - a and - 1, a 

In this case the Jacobian is 

x2+a 

Thus the four-points as a whole have three Jacobian pairs, 

2x, x2+a, 

These are mutually normal. 
The three Jacobian arcs are then mutually normal. They 

meet at an extra point on the normal to the plane at n, at a 

distance 1 Va I. If we invert with respect to this point, the 
plane becomes a sphere, and the three arcs become three 
diameters of it, mutually at right angles. The three Jacobian 
pairs have taken the canonical form of a regular octahedron. 

Given the octahedron, the four-point is any point of the 
sphere, and its images in the three diagonals. It is thus 
four alternate corners of a rectangular box. 

We notice here a distinction between the homographic 
theory of the four-point and the inversive theory. In the 
former there are three Jacobians. In the latter there are 
three J aco bians and an extra pair which we call the canonizant. 
In the latter there is also a counter four-point-the other 
four corners of the rectangular box. 

So in the theory of the cubic, or three-point, it is primarily 
a question of points on a circle. On this circle is a counter­
triad. But to complete the theory there are two extra points 
not on the circle. 

We notice also that, just as the square with its centre and 
00 forms a configuration Ta of three mutually normal pairs, all 
on the same footing, so the octahedron with its centre and 
00 forms a configuration T4 of four mutually normal pairs. 
There is an elliptic inversion or extra pair which interchanges 
opposite vertices of the octahedron, and this, with the four 
pairs, gives a symmetrical configuration Ts of five mutually 
normal pairs in four dimensions. And so on. 
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The configuration T 4, for example, is four normal pairs, 
1, 2, 3, 4. These lie by twos on six circles such as 12. The 
circles 12 and 13 are normal-that is, cut twice at right angles. 
The six circles are by threes on four spheres such as 1 2 3 and 
these spheres are orthogonal or normal. 

That is, we have 1 space, 
on it 4 normal pairs, 

6 circles, 
4 spheres, 

with 1 extra pair. 

For the four-points Xi as a whole we have the six cross-
ratios (§ 20): 

- 'TT2/ 'TTa, - 'TTa/'TTI' - 'TTJ'TT2 

- 'TTa/'TT2' - 'TT1/'TTa, - 'TT2/ 'TTl 

and the three powers: 

'TTa - 'TT2, 'TTl - 'TTa, 'TT2 - 'TTl 

The symmetric functions of these are the fundamental in­
variants of the four-point or of the quartic which gives them. 

or 

We have the three vectors Vi defined by 

cos VI = ('TT2 - 'TTa)/'TT1 

cos2 vJ2 = - 'TTa/'TT1 

cos2 
v 2/2 = - 'TTI/'TT2 

cos2 va/2 = - 'TT2/'TTa 

sin2 vl/2 = - 'TT2/'TTI 

sin2 
v 2/2 = - 'TTS/'TT2 

sin2 va/2 = - 'TT1/'TTa 

The relations of the vectors are then 

sin2 v2/2 cos2 va/2 = 1 
sin2 va/2 cos2 vl /2 = I 
sin2 vl /2 cos2 vJ2 = 1 

With four ordered points-say, Xl> X 2, Xa, X 4, Xl ••• -we asso­
ciate a figure formed by four circles in a space, each touching 
the two next it. The points of contact are Xl> X 2, Xa, X 4• It 
is here convenient to take the arcs only. 

The vector VI for the arcs X 4, Xl and X 2, Xa is given by 

cos VI = ('TT2 - 'TTa)/'TT1 
whence 
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The vector for the arcs Xl> X 2 and xa, X 4 is not Va, but Va + 'TT. 

Calling this va', 

whence 

Hence 
cos2 v1/2 cos2 va' /2 = 1 

Exercise 4 - Show by a special case that for four arcs with continuity of 
direction 

cos v1/2 cos v' ./2 = I 
Exercise 5 - If 

cos a sin fJ=1 
and 

cos fJ sin 1'=1 
then 

cos l' sin a= ±l 

§ 31. The Ordered Six-point - With four ordered points abed 
are associated the pairs a, e and b, d. 

The Jacobian of these pairs is given by 

bed] 
- (x - a )( x - b) -'-.( x_--;-b-,-!)(_x _--,-c) 

[a = b +- b a- -c 
(x -c)(x -d) (x -d)(x -a) + + ~---:::-'-'--~ 

c-d d-a 
For this cyclical expression is 

(x - b)2(a - c) (x - d)2(C - a) 

(a-b)(b-c) + (c-d)(d-a) 

and is therefore normal to 

(x - b)(x -d) 

And similarly it is normal to 

(x-a)(x-c) 

Thus [abcd] is a covariant of the ordered four-point. 
For any number of ordered points we have a similar 

quadratic covariant. Let us take the case of six points, 
abcdeJ, which we may call a hexagon. The quadratic is the 
Kirkman quadratic of the hexagon. * 

* If we restrict numbers to be real, the theory of this section becomes the theory 
of six points on a conic. The quadratics here are named in conformity with that 
theory (Salmon, Conic Sections, Appendix D; Baker, Principles of Geometry, 
vol. 2). For extensions of this section see a note on the Celestial Sphere, Amer. 
Journal, vol. 54, 1932. 
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Let us write the six points as 

abc 
fed 

61 

\Ve have then set up a homography, in which c, d; b, e; a, f 
shall correspond. This is 

xy x Y 1 
af a f 1 
be bel 
cd c d 1 

It has a fixed pair, or Pascal quadratic, which we denote by 

; : ~ . With these as 0 and 00 it has the canonical form 

y = KX. We may then take the six points as a, b, c, KC, Kb, Ka. 
The Kirkman quadratic is 

(x -a)(x - b) (x - b)(x - c) (x - c)(x - KC) 
a - b + b - c + c(1 - K) + 

(x - KC)(X - Kb) (x - Kb)(x - Ka) (x - Ka)(x -a) 
+ K(c-b) + K(b-a) + a(K-I) 

The coefficient of x is o. 
Therefore the Kirkman quadratic [abcdef] is normal to 

the pair ; ~ ~. This latter is a Pascal quadratic. It is 

associated with the ordering aecfbd. 
Thus the Kirkman [abcdef] is normal to the Pascals 

and the Pascal 

abc bcd cde 
fed afe baf 

abc bca cab 
fed=edf=dfe 

is normal to the Kirkmans [abcdef], Lbcafde] , [cabefd]. 
The above quadratic for a polygon, [abc • .. ], is obtained 

by taking the Jacobian of (x-a)2 and (X-b)2 and dividing 
by the bilinear invariant (a - b)2. 

It equally applies to a cycle of quadratics qlq2 •• • q,. in 
the form 

j12jq12 + j23/q23 + . . . + j,.Jqnl 
where j12 is the Jacobian and q12 the bilinear invariant. 
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§ 32. The Complete System - For n quadratics ql . . . qm 
where q i = aix + 2 fJiX + Yi the complete system of invariants 
(Gordan, Invarianten-theorie; Grace and Young, Algebra of 
Invariants) is the n discriminants 

qll' q22 • 0 0 

the (~) forms 

and the (;) invariants which express that any three are in 

involution, such as 
al fJI YI 
a2 fJ2 Y2 
as fJs Ys 

and the complete system of covariantB is the n quadratics 

and the (~) Jacobianso 

For n homographic forms HI . 0 • Hn we may replace Hi 
by the quadratic qi of fixed points and the invariant fJi - Yi. 

The complete system (remarks Professor Coble) will be the 
complete system for the qi and the invariants fJi - Yio 



CHAPTER VI 

THE INVERSIVE GROUP OF THE 
PLANE 

§ 33. Fixed Points - A homography has two fixed points 
given by aj2+(fJ+y)/+8=0. In terms of these, when 
distinct, it is 

x-II Y -II --=K--
x-I2 y-.f2 

If the fixed points be 0 and 00, so that a = 8 = 0, the homo­
graphy takes the canonical form 

X=KY 

When the fixed points coincide, the canonical form is found 
by making a = 0, fJ + y = 0, so that both values of I are 00 • 

It is then x=y +h. 
An antigraphy mayor may not have fixed points. We 

ask here for the points such that 

axjj + fJx + r1i + 8 = 0 
and 

ayi + fJy + yX + 8=0 

Writing the conjugate of the second, 

iixjj + Pii + yx + g =0 

we have two equations in x and y, and a quadratic for x. 
Let the rootB be II and 12' Then the antigraphy may be 
either 

or 
x - II ii - J2 
x-I2 =Ky_JI 

There will be either two fixed points or an interchanging 
pair. 

63 
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or 

With these two points as 0 and 00, we have either 

X=KY 

XY=K 

In the former case, by writing x = TX', we can make K a 
positive, p. 

In the latter, by writing x=px', we can make K a turn, t. 
Thus we take for the canonical forms of an antigraphy 

x=pfj 
xy=t 

When the two points coincide, the canonical form is (§ 15) 

x=Y+P 

From these canonical forms we see that any antigraphy 
can be the product of three inversions. Thus x=PY is the 
product of x=y and x=py, and x=py is the product of 
concentric inversions. And xy = t is the product of xy = 1 
and x = ty, which again is three inversions. 

The group formed by all antigraphies is then the inversive 
group, formed by all inversions of a sphere into itself. An 
odd number of inversions gives an antigraphy, an even 
number a homography. For the general homography we 
see from x =pty that four inversions are necessary, two 
which send x into py, and two which send x into ty. 

§ 34. Invariants of a Homography - As generators of the 
inversive group we may take 

(I) x=x' +b 
(2) x = ax' 
(3) X= I/x' 
(4) x=x' 

If we omit (4) we have the generators of the homographic 
group, the subgroup formed by all homographies. 

A function of points Xi which becomes to a factor the same 
function of x/ under all these generators is an invariant. 
And a function of points Xi and a variable x which becomes 
to a factor the same function of x/ and x' is a covariant. For 
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the discovery or the formal proof of invariance or covariance 
one may apply the generators. Thus one may say: 

under (1) Xl - X 2 is constant; 
under (2) Xl - X 2 is an invariant, and (Xl - x2)/(xl - xs) is 

a constant; 
under (3) this is an invariant, but 

is a constant. 

(Xl - x2)(Xs - X4) 
(Xl - XS)(XI - X 4) 

This cross-ratio is then constant under (1), (2), (3), that is 
under H. 

But in the simple cases considered in this book we shall not 
as a rule supply the formal proofs of invariance. 

The points of a sphere S are named by assigning to three 
points the numbers 1, 00, o. The points of a second over­
lying sphere S' are similarly named. Let X and x' be over­
lying points. Then there is a definite homography, say 

x' = (ax + b)/(cx + d) 

the points 0 and 00 of S coinciding with the points bId and ale 
of S'; and the points 0 and 00 of S' coinciding with the points 
- bla and - dIe of S. 

Let us take on S a set of points given by f(x, a) =0, or a 
curve given by a self-conjugate equation f(x, x, a, a) = 0, or 
in fact any object algebraically given. We have overlying it 
on S' the same object differently expressed, the new ex­
pression being obtained by writing, for x, 

b -dx' 
ex' -a 

A property of the object itself will of course be invariant 
however expressed. It will be independent of the reference 
scheme adopted. 

Consider the invariants of a homography H. The form 
here is 

axy+{Jx+yy+S 

It is of period 2 (a polarity) if {J=y. 
5 
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Hence Yl == f3 - y is an invariant. 
If we write 

x=x' +b, y=y' +b 
we get 

a'x'y' + f3'x' + y'y' + S' 
where , 

a =a, f3' = ab + f3, y'=ab+y 

Thus, under (1), f3 - Y is a constant. 

Exercise 1- Verify that under (2) and (3) it is an invariant. 

Again the form has factors when as = f3y. 
Hence Y2 == as - f3y is an invariant. 

For the canonical form x = KY, 

Yl = 1 + K, 

Hence 
Yl2/Y2 = K + 1/ K + 2 

Of the two reciprocal values of K, one belongs to H, the other 
to H-l. 

Exercise 2 -The fixed points coincide when gl"/g.=4. 
Exercise 3 - A homography is of period 3 when gl"/g. = 3; of period 4 

when gl·/g.=2; of period n when 

gl"/g.=4 cos· (mn/n) 
where m is prime to n. 

Homographies are classified by the value of K or of Yl2/Y2. 
When K is a real, the homography is hyperbolic; when K is a 
turn, the homography is elliptic; when K is a general number 
the homography is loxodromic. 

Exercise 4 - The homography given by inversions in two circles is elliptic 
when the two circles are intersecting, hyperbolic when the two circles are non­
intersecting, aud parabolic when the circles are touching. 

§ 35. Composition of Homographies - Two polarities Ql' Q2 
have in general a common pair of points, namely, the Jacobian 
of their fixed points. Taking the common pair as 0 and 00, 

Ql and Q2 become 

The product QIQ2 is then 
y=K2X / K l 

the homography H with fixed points 0, 00 • 
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Conversely, 
y=KX 

can be broken up into 
xy=KI 

Xy=KKI 

Thus a homography H is resolved into two polarities, whose 
fixed points are harmonic to those of H, and one pair of fixed 
points can be taken as any pair harmonic to the fixed points 
ofH. 

Given then three homographies HI' H 2, H a, whose product 
is I (identity), their fixed points have three Jacobians J I, J 2, 
J a' These are the fixed points of three polarities Qi such that 

H I =Q2Qa, H2=QaQI' Ha=QIQs 

§ 36. Invariants of an Antigraphy - The product of two 
antigra phies, 

AI: alxfi + f3l x + YIY + Sl 
A2 : a2YZ + f32Y + yli + S2 

is, writing for the second its conjugate and eliminating ii, 
the homography 

AlAs: I alx + YI f3IX + Sl I 
ii2z + P2 Y2Z + 82 

In particular the square of an antigraphy A is 

A2: (ay - f3ii)xz + (a8 - f3p}x + (yy - Sii)z + y8 - Sp 

The simplest invariant of A is the YI of A2-that is, 

YI == a8 + Sii - f3P - yy 

Its vanishing implies that A 4 == I. The points of the plane 
are arranged cyclically in sets of four. 

If, for instance, 
Aisxy-t 

then 
A2 is x+y 

For any point x the cycle x, xA, XA2, xAa is 

x, -t/x, -x, 

the successive vertices of a rhombus. 
A second invariant of A is found from as - f3y. For this is 
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the condition that A has factors. Under (I), (2), and (3) of 
§ 34 it is an invariant-that is, it reappears to a factor. But 
under (4) it becomes its conjugate. The invariant is 

Y2 == (as - fJy)(aS - py) 

The fixed points of the homography A2 are given by 

(ay - fJa)r + (as - fJP + yy - Sa)/+ yS - Sp 

These may be fixed individually under A, or interchanged, or 
coincident. The discriminant of the quadratic is 

4(ay - fJa)(yS - Sp> - (as - fJP + yy - Sa)2 
This is 

4( as - fJy)(aS - py) - (as + So. - fJP - yy)2 
or 

4g2 -Y12 

The quadratic, being inversively attached to the anti­
graphy, is called a covariant. 

Exerci8e 5 - Its identical vanishing is the condition that A be an inversion. 

For the canonical form x=pfj, we have 

a=S=O, fJ=l, y= -p, Yl= -1-p2, 

Whereas for the form xfj=t we have 

Yl = - (t + tIt), Y2 = 1 

Thus in the former Y12/Y2 > 4, and 
in the latter Y12/Y2 < 4. 

It will be noticed that, whereas 
in a homography the constant Y12/Y2 
is any number, in an antigraphy it 
is real. 

An antigraphy of the form xfJ=t 
will be periodic when x = t2z is 

FIG. 23 periodic-that is, when t is a root 
of unity. Fig. 23 illustrates this, the period being here 14. 

§ 37. The Canonical Form - All antigraphies are included in 

(I) (AC)==AoCo+A1C1 +~C2+A3C3 

(§ 26) when the .\ are no longer real. For this is 

axy + fJx + yfi + S 
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where 
£'>"0 + '>"2 = a, '>"s + £'>"1 = f3 
£'>"0 -'>"2=S, '>"s - £'>"1 =y 

Expressed in terms of the .\ the invariants take the sym­
metrical forms 

Yl = 2('>"oXo + '>"IXl + '>"2X2 + .>..aXs) 
Y2 = ('>"02 + '>"12 +'>"22 +'>"S2)(X02 + X12 + X22 + XS2) 

Similarly, if we write 

where 

ho=y-x 
hI =£(x +y) 
h2=£(XY -1) 
hs=xy+ 1 

h 0
2 + h12 +h22 + hS

2 =O 

any homography is 

(2) 

where 

so that 

a=aS+£a2 
S=as -£a2 
f3=£al - ao 
y=£al +ao 

as - f3y = a02 + a12 + a22 + as2 

For two homographies in the form (ah), (f3h) we have 

as' + a'S=(as +£a2)(f3s -£(32) + (as - £a2)(f3s +£(32) 
= 2( asf3s + a2(32) 

and 
f3y' + f3' y = - 2( aof3o + al(31) 

so that the orthogonal invariant is 

(3) (a (3) == a of3o + alf31 + a2f32 + asf3s 
For the fundamental four hi the six such invariants hij are 
all o. 

We define as the product of the homographic forms 

axy+f3x+yy+S 
and 

a'yz + f3'y + y'z + S' 
in this order, the form 



70 THE INVERSIVE GROUP OF THE PLANE 

I 
ax+y 
a'z + fJ' 

fJx+S I 
y'Z+S' 

or 
(ay' - fJa')xz + (as' - fJfJ')x + (yy' - Sa')z + yS' - SfJ' 

This product is so chosen that its discriminant is the product 
of the discriminants. 

We have then * 

whence 

h02=(~ = ~ 
hI2=(~ 

h22=C 
0 
0 

ha2=(! 
0 
0 

I 
I 

o 
o 
o 
o 

-t) = -ho 
-t 

hohl =hlho=ho 
hoh2 =h2h O =ho 
hoha=haho=ho 

o 
h2ha = hI = - hah2 
hahl = h2 = - hI ha 

o O)=ha= -h2hl 
-t 

hlh~a = h2hahl = hahlh2 = - ho 
hah2hl = h2hl ha = hlhah2 = ho 

Hence the product 

(aoho + alhl + a2h2 + asha)(fJoho + fJlhl + fJ~2 + fJaha) 
= ao(fJoho + fJlhl + fJ2h2 + fJaha) 
+ al(fJohl - fJlho + fJ2ha - fJah2) 
+ a2(fJoh2 - fJlha - fJ2h O + fJahl) 
+ aa(fJoha + fJlh2 - fJ2hl - fJaho) 

= (aofJo - alfJl - a2fJ2 - aafJa)ho 
+ (aofJl + alfJo + a2fJa - aafJ2)hl 
+ (aofJ2 + a2fJo - alfJa + aafJI)h2 
+ (aofJa + aafJo + alfJ2 - a2fJI)ha 

* It must be observed that notations such as hoI are used here in two senses. 
The square of the expression y - x is of course (y - X)I, but the square of the 
operation given by y - x is given by y - x. 
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We have here an introduction to quaternions. We are 
dealing with four unitary operations ho, hI' h2' h3' and we 
have a rule for the product of two quaternions (ah) and (f3h) 
as a third quaternion. 

§ 3S. The Determinant of Powers - Between five linear 
forms, either 

or 
fi = aiXY + f3iX + YiY + S. 

there is the linear relation 

I fi' ai' f3i' Yi' Si 1=0 
say 

fLdl +fLJ2+fLJ3+fLJ4+fLJs=0 

Hence, if we denote the power offi andh by fii' 

fLJil + fLJi2 + . . . = 0 

Thus between the powers and discriminants there is the 
relation 

(l) 

When fs is degenerate, that is when fss = 0, fiS is merely fi 
itBelf with the singular points of fs as new variables. Thus 
there is the quadratic relation on four forms, 

fn f12 f13 f14 fl =0 
f21 f22 f23 f24 f2 

(2) f3l f32 f33 f34 f3 
f41 f42 f43 f44 f4 
fl f2 f3 f4 0 

Suppose, as a case of (l), that we have five circles in a 
plane. Then between their powers there is the relation (l), 
always. 

If we have the relation for four circles, 

I fil fi2 fi3 fi4 1=0 
then there is a circle f s (or a bilinear curve) normal to the 
four. For, if we takefsl =0, fS2=0,fs3=0, thenf54 =0. 

If we have for three circles the relation 
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then there are more than one circle normal to the three. The 
three then meet at a point. 

If we have for two circles the relation 

the circles touch. 
There is similarly for two sets of five forms, Ii and 1/ the 

general relation of powers 

I IiI' Ii21 fis1 Iw liS' I = 0 

This kind of fact is fundamental. It applies to any things 
two of which have a bilinear invariant, for example to curves 
of a plane of the same degree (in x or in x severally), to spheres, 
or to surfaces of the same inversive degree. 

Let us indicate a way of writing the bilinear invariant of 
two curves or two surfaces. 

We take in a Euclidean plane or space fixed points Xi and 
a variable point x. We denote the power or squared distance 
between x and Xi by Pi' and that between Xi and Xj by Pt;. 

A spread is given by a form 

(3) 

where the reals Ai are the homogeneous co-ordinates of the 
spread with reference to the fixed points Xi. The number m 
is the number of co-ordinates; for enough points Xi it becomes 
the number of co-ordinates for the spread considered, in­
dependent of the Xt. This number was assigned (§ 26). 
Lastly, we call n the inversive degree of the spread. Thus, 
when the space is one-way (a line or circle), the spread is an 
even number of points; when the space is two-way (a plane 
or sphere) the spread is an algebraic curve; when the space 
is three-way the spread is an algebraic surface. Taking the 
planar case, 

and so on. 

4. 

~ AiPt is any bilinear curve 
9 

L. AiPi2 is any biquadratic curve 
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The essential fact is that, under an inversion (xo, K), a 
power P12 becomes P12' where (§ 23) 

P12' = K2p12/POlP02 

Applied to (3) this shows that the spread is inversively 
related to the points Xi. 

For 

the expression 

(4) 

is an invariant. For under an inversion (xo, K) the term 
AlPl n becomes AI'PI'n where 

PI' = K2PI/POlPO 
whence 

while 
, 2 I P12 = K 'P12 POlP02 

Hence 
A1'fL2'P12'n=A1 f.L2P12n xpo2n/K4n-2 

Thus two spreads of the same degree and of like dimension 
have a bilinear invariant. 

To apply this to obtain covariants we polarise the spreads; 
that is we write, for Pin, Pin-Tq/, where qi is the power from a 
second point y to Xi. We then form the invariant for, say, 
the forms in Pi' 

giving 

(5) 

a series of quadratic covariants of the two forms, called 
transvectanls. With one of these and the given forms we 
form cubic transvectants; and so on. In particular, when 
the two forms coincide, we have from (4) the quadratic 
invariant 

(6) 

and from (5) a series of transvectants, quadratic in the 
coefficients. 
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Consider the case of six spheres. Since there is an identity 
~AiSi = 0, the determinant of powers I Pi1 I is o. If five 
spheres be orthogonal to the sixth, then Pi6 = 0 (i = 1 . . . 5). 
Hence the five-rowed determinant I Pii I = o. If in particular 
the five spheres are double points, then we have Cayley's 
condition that five points Xi be on a sphere. Let X6 move to 
00. We have Cayley's condition that four points be on a 
plane, 

0 Pl2 P13 PH 1 =0 

P2l 0 P23 P24 1 

P3l P32 0 P34 1 

P41 P42 P43 0 1 
1 1 1 1 0 

If we write Pi4=(t;+p)2, where i=l, 2, or 3, we have an 
equation for the radius p of the circle which touches externally 
the three circles (Xi' ti). This equation is 

0 Pl2 P13 t12 + 2ptl 1 =0 

P2l 0 P23 t22 +2pt2 1 

P3l PS2 0 t32 +2pt3 1 

g12 + 2ptl t22 +2pt2 t32 +2pt3 _2p2 1 
1 1 1 1 0 

The three circles will touch a line when the coefficient of 
p2 is 0, that is when 

2 0 Pl2 P13 tl 1 0 Pl2 PIS 1 =0 

P2l 0 P23 t2 1 P2l 0 P2S 1 

P3l P32 0 t3 1 P3l PS2 0 1 

tl t2 ts 0 1 I 1 1 0 
1 1 1 1 0 

The ti are the distances from Xi to any line. Thus we have 
the fundamental quadratic relation between the mutual 
distances of three points, and their distances from a line. 
An elementary proof is easy; but the argument as stated is 
general. 

The argument of this section is readily extended to elliptic 
or hyperbolic spaces, replacing each power P by (2 sin fJ/2)2 or 
(2 sinh 8/2)2. 



CHAPTER VII 

FINITE INVERSIVE GROUPS 

§ 39. The Inversive Group of the Three-point - We consider 
the inversions of three points into themselves. There are 
four, namely, the one which leaves each point fixed, and the 
three which leave one point fixed and interchange the other 
two. The first is inversion in the circumcircle; the fixed 
circles of the other three inversions are called the Apollonian 
circles of the thre.e-point. These four operations, with their 
products, are the inversive group of the three-point. It is 
a finite group. 

As a canonical case we take the points to be I, w, w 2• The 
fixed circles are then 

xx=l 
x=x 
x=wx 
x=w2x 

that is, the circumcircle and three lines which meet at angles 
of 2'TT/3. Hence in general the Apollonian circles always 
meet at two points h and hi, at angles 2'TT/3. 

The inversions are 
xy= 1 
fj=x 
fj=wx 
fj=w 2x 

The twelve products of pairs of these give three polarities of 
period two, 

xy=1 
xy=w 
xy=w2 

and two homographies of period three, 

y=wx 
y=w2x 

75 
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From these and the inversions we get two reciprocal anti­
graphies of period six, 

xy=w 
xy=w2 

These, with identity, are the complete group of twelve 
operations, G12• 

This is clear without forming the products, for the plane is 
divided by the four circles into twelve lunda,mental regions. 

FIG. 24 

A selected region I 
passes by the four 
inversions into four 
other regions 0, 1, 2, 
3. By repeated in­
versions the region 
I can pass only into 
one of the twelve 
regions (fig. 24). Thus 
there are twelve 
operations. 

The positive opera­
tions, those with 
an even number of 
inversions, are the 
homographic group 

of the three-point. This is a G6• This group is the group of 
all permutations of three letters; for we are sending 1, 2, 3 
into a new order. We can send 1, 2, 3 into 1, 3, 2. This is 
the polarity with fixed point Xl' interchanging X 2 and Xa. We 
can send 1, 2, 3 into 2, 3, 1. This is an operation H, whose 
square sends 1, 2, 3 into 3, 1, 2, and whose cube sends 1, 2, 3 
into 1, 2, 3. It is a homography of period three. 

The permutation group is denoted by 

I, (23), (31), (12), (123), (321), 

that is, by the cyclic interchanges or cycles, here of period two 
and three respectively. Identity is of period one. So it is 
convenient to denote the antigraphies in G12 by their cycles, 
j 2 3, 23, 31, 12, 123, 321. 

In fig. 24, if we distinguish the positive and negative 
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regions, by the signs + and -, or by shading one of the sets, 
then a positive and a negative region with a common edge 
will form a fundamental region for the group G6 • Anyone 
region is a fundamental region for G12• 

Either the figure or the equations show that there are 
inversively attached to the three-point a two-point (in the 
canonical form the points 0, 00 ) and 
another three-point (the points - 1, 
- w, - w 2 ). These are respectively 

the Hessian and the counter-triad. 

Exerci8B 1 - The three-point and its counter­
triad form an inverse of a regular hexagon. 
The group of transformations of the hexagon 
into itself is found by adjoining to Gu the 
transformation 

y+x=O 
or the transformation 

xy+l=O 
It is then a Gsa. 

§ 40. The Cycle of Six Points - Con­
sider the antigraphy A which sends 
Xl into X 2, x 2 into Xa, Xa into Xl' It 
is of period six, so that the points of 
the plane fall into cycles of six. Let 
us consider what the cycle is which 
begins with 00 • 

o 

If the given points are 0, 1, 00, 

then A is to send 0 into 1, 1 into 00 , 00 

y(l- x) = 1 

1 

FIG. 25 

into o. It is then 

Hence y is parallel to x-I; that is, the circle 00. y, 0 
touches the circle 1, x, 00 • 

In fig. 25 the zigzag is continued to show the set of six 
points: x, xA, XA2, xAs, XA4, XA5. 

In general then 

Xa, y, Xl touches X 2, x, Xs 
Xl> y, X 2 touches Xa, x, Xl 
X 2, y, Xa touches Xl, X, X 2 

Taking now the general triangle X4 , or 1, 2, 3 for short, 
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and the point x at 00 , we have a cycle of six points: 00, bI> b2, 

•.. bs• To construct bi we are to have the circle 1, bI , 3 
touching the edge 2, 3, and so on (fig. 26 (a». This point bi 

and the point bs into which 00 passes by the reciprocal anti­
graphy AS or 321, are the Brocard points of the triangle 
(fig. 26 (b)). 

Since 1233 is i 2 3, that is inversion in the circumcircle, 
b3 is the circum centre, b4 is the inverse of bI , and b2 the inverse 

1 1 

20-...:::;;'---------.;;::-03 2~--------------O3 

(a) FIG. 26 (b) 

of bs. These points b2 and b4 are simpler than the Brocard 
points, being the points into which 00 is sent by the homo­
graphies 1232 or (321), and 32J2 or (123). They might be 
called the Beltrami points and their join the Beltrami line, 
since they occur in Beltrami's memoir, Mem. della Accad. di 
Bologna, ser. 2, v. 9 (1870), where the theory of the triangle 
was first adequately discussed. 

Exercise 2 - A is 
(x-b5)(y-liI )=K 

Hence (fig. 26 (b» deduce that 

L b123=L b131=L bl 12 
L 23b5 = L 31b5 = L 12b5 

Exercise 3 - The triangles b.b41, b42bs, 3bsb4, 123 are positively similar. 
Exercise 4 - The points b., b4 are such that their tangents to the circum· 

circle are equal to their distance. 

The set of 12 points, under GI2, which contains 00 is 
(1) the centres of the Apollonian circles-that is, the points 
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where the tangents to the circumcircle at Xi meet the opposite 
edges; 

(2) the inverses of these as to the circumcircle---that is, the 
mid-points of the chords Xdi of the circumcircle, where j. is 
the counter-triad; 

(3) the cycle 00 , bI> b2, bs, b4, bs. 

Any operation of G12 sends the set into itself. Thus 
i 2 3 sends the circle on 
which lie (23), (31), (12), bI> 

bs, bs into the line on which 
lie 23, 31, 12, b2 , b4 , 00. 

This circle is called the 
Brocard circle. 

§ 41. Intrinsic Co-ordin­
ates - To name a point X 

with reference to three 
points Xi we may take the 
angles 81, 82, 8s which the 
arcs X 2 , X, xs; Xs, X, Xl; 

XI> X, X 2 make with the circle 
XI> X 2, Xs. These angles are 
to the modulus 'TT (fig. 27). 

FIG. 27 

Exercise 5 - The e. are the angles of the cross-ratios 

x-x, Xl -x. 
--.--, 
x-x. Xl -x, 

x-x. X3 -Xl 

X-Xl X3 -X. 

When X is 00, the three circles become three lines, and 
from this or from the exercise we have 

81 + 82 + 8s = 0 mod 'TT 

This is then the condition that the three circles meet on a 
point. 

If ai be the interior angles of the triangle 

81 = L X 2, x, Xs - al 

82 = L x s , x, Xl - a2 

8s = L Xl, X, X 2 - as 

In Euclidean geometry it is convenient to regard the 
angles 8. as the angles of the pedal triangle of x, formed by 
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the feet of the perpendiculars from x on the edges of the 
triangle. We take then 

81 + 82 + 8s = w 

Exercise 6 - The barycentric co.ordinates of x, in terms of (J" are 

sin2 a,(cot a.+cot (J,) 

Exercise 7 - The three points x" joined to x, give on the circnmcircle an 
inverse three-point. Prove that it is positively similar to the pedal triangle 
of x. 

We call the point named by 8i the point 8. The points 
on the circumcircle other than Xi are exceptional, for here 
each 8i is 0 (mod w). Also the base-points are exceptional. 
For Xl' 81 = 0 and 82 and 8s are arbitrary subject to 82 + 8s = o. 

The Apollonian circles are 

82 =8s 
83 =81 

81 =82 

They meet at the points 81 = 82 = 8s. 

Since 81 + 82 + 8s = 0, mod w, there are two such points 

81 = 82 = 8s = ± w/3 

These are the Hessian points. 
For an ordered three-point, it is convenient to call them 

the positive and negative Hessian points. 
Since an inversion changes the sign of an angle, the inverse 

of 8 as to the circle 1 2 3 is - 81 , - 82, - 8s. 

Exercise 8 - The point 00 is - a.. Its inverse, the circnmcentre, is then a,. 
Verify this. 

An Apollonian inversion, say 23, sends 
81, 8s, 82• 

Thus we have for the group G12 the table 
Identity: 81 O2 

123 - 81 - 82 

23 81 8s 
Si 8s 82 

~ 82 81 

(23) - 81 - 8s 



FINITE INVERSIVE GROUPS 

(31) 
(12) 
(123) 
(321) 
123 
32I 

- 8s 
- 82 

82 

8s 
- 82 

- 8s 

- 82 

- 81 

8s 
81 

- 8s 
- 81 

- 81 

- Os 
81 

82 

- 81 

- 82 

81 

§ 42. Geometric Solution of the Cubic Equation - Let the 
given cubic equation be 

aoxs + 3a1x 2 + 3a2x + as = 0 

The problem is, given the numbers ai' to construct the 
points. 

There are two Hessian points hi' and the cubic in terms of 
these is 

Thus we take 

whence 

I-A=ao 

hI -Ah2= - al 
h12 - Ah22 = a2 

hIS -Ah2
s = - as 

aOa2 - a12= -A(hl -h2)2 
aoas - a 1 a2 =A(hl - h2)2(hl + h2) 

al as - a22 = - A(hl - h2)2(hl + h2) 

Thus the Hessian points are given by 

(aOa2 - a12)h2 + (aoas - ala2)h + ~as - ~2=O 
This might be written directly if we assumed the homographic 
theory of the cubic. 

We suppose this quadratic to be solved. We have also 

3(hl - Ah2) = (I - A)(XI + X2 + x s) 

Thus if g be the mean point or centroid 

g(I-A)=hl -Ah2 
or 

A = (g - h1)/(g - h2) 

The solutions are then 

(x - h1)/(x - h2 ) =a cube root of A 
Thus 

6 
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This gives the circumcircle of the three points Xi; and the 
angle hlXh2 is a third of the angle h1yh2. This gives three 

FIG. 28 

arcs from ~ to h2' which cut the circumcircle at the points 
Xi (fig. 28). 

§ 43. The Groups of the Rectangle and Rhombus - In § 26 
we had the four inversions: 

x=y 
X= -Y 

xy=1 
xy= -I 

These form a finite group of eight operations Gs. For if we 
combine them we get only 

X=Y 
X= -Y 

xy=1 
XY= -I 

Fig. 29 shows the eight fundamental regions sent into 
one another by the operations, one region being marked I. 
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These eight operations are the inversive group which sends 
the rectangle into itself. 

Exercise 9 - For any four concyclic points, the centres of the four inversions 
are an orthocentric set. 

In the anticyclic case, when the Jacobian of the two pairs 
is 0 and 00, the parallelogram is a rhombus. The two 
inversions may be taken as 

y=x 
y= -x 

These and their product 
y= -x 

form with identity the inversive group of the anti cyclic pairs, G 4. 

The inversive group of the rhombic four-point ±p, ± tIp as 
a whole requires the inclusion of 

xy=t 
xy= -t 

and 
xy=t 
xy= -t 

Thus it is a GS" 

As permutations, the operations are 

I, (34), (12), (12)(34), (1324), (1423), (13)(24), (14)(23) 

The group is then the permutation group Gs. 
For the group of the rhombus, the fundamental regions 

are as in fig. 30. 

FIG. 29 FIG. 30 
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§ 44. Doubly-special Four-points - A four-point may be 
both concyclic and anticyclic. In that case the canonical 
form is both a rectangle and a rhombus-that is, a square. 
Taking the vertices as I, t, -I, - t the operations which 
send it into itself are: 

~=tX 
y= -x 

y=X 
y=tX 
y= -x 

fj=x 1 
fj = - tX y = - tX 

and -
xfj=I' xy=1 
Xfj=t 
xfj= -I 

xy=t 
xy= -I 

Xfj=-tJ xy=-t 

These sixteen are the inversive group of the square, a G16• 

If a denotes any fourth root of I, the group is 

y=aX, xy=a, fj=ax, xfj=a 

A four-point can be anticyclic in more than one way. 
The rhombus is then such that there is a circle on two adjacent 
pointB Xl, x 2 about the remaining two, xa, x 4 • 

Exercise 10 - The points x., XI' x" are then consecutive points of a regular 
dodecagon. 

But we shall in this case suppose one of the points them­
selves to be 00. Thus we have a three-point and 00. In 
the anti cyclic case the three-point forms an isosceles triangle. 
If a triangle be doubly isosceles it is equilateral or regular. 
Thus our case is that of a regular three-point and 00 (one of 
the Hessian points). By a suitable inversion this becomes 
the vertices of a regular tetrahedron, and the symmetry is 
manifest. 

We take then the points I, w, w 2, 00. In § 39 we had the 
Gs which sends the regular three-point into itself, leaving 
00 fixed. We combine with this the group G4 of involutions 
which sends f3, y, 00 into itself, leaving a fixed; where a, f3, 
yare I, w, w 2 in any order. Writing first the homographies 

y=ax 
(x - a)(y - a) =3a2 

(x - (3)(y - y) = 3a2 
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we thus obtain 3 + 3 + 6 or 12 homographies. Combining 
with y = X, we have 

y=ax 
(x - a)(y - a)=3a2 

(x - (3)(y - y) = 3a2 

that is, 12 antigraphies. The group is thus a G24• It is the 
symmetric group of all permutations of four things. We 
see this as follows. Regarding it as all reflexions and 
rotations of a regular tetrahedron Pi into itself, let Si be the 
distance of any other point from Pi. Under the operations 
the new distances S/ will be the old distances in a new order. 

The 12 homographies are the group G12 of even permuta­
tions of four things, called the alternating group. 

The proper canonical form for the three quadratics is the 
vertices of a regular octahedron. The involutions are now 
respectively 

Ql: x + y = 0, with fixed points 0, 00 

Q2 : xy = I, "" ± I 
Qa: xy= -I, "" ±t 

They assign to any point x the points 

Thus 

or 

or 

XQl= -x 
xQ2=I/x 
xQa= -I/x 

XQIQ2=XQa 

QIQ2=Qa 

QIQ2Qa=I 

and similarly any product of the three is identity. 
Any point Xo is then one of a set of four, given by 

(x - xo)(x + xo)(x - I/xo)(x + I/xo) = 0 
or 

X4 - (X02 + I/X02)X2 + I =0 

This, involving only the one number (X02 + I/X02), is a pencil 
of quartics. 

§ 45. The Regular Polyhedra - In general for a finite in­
versive group of a plane or sphere into itself, first, all the 
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operations must be cyclic. Second, all the extra points must 
be the same. For two elliptic inversions being given by 
chords on points a, b within the sphere, set up on the sphere 
a homography of the hyperbolic type, which cannot be cyclic. 

The only extra points are then a single pair. Taking these 
as the centre and infinity, we shall have on the sphere either 
vertices of a regular polyhedron, or those of a regular polygon, 
as the fixed points of the finite inversive group. We touch 
here the fundamental work of Klein on the Icosahedron, 
where the finite groups of homographies are discussed. 

To indicate how the science develops, let us mention the 
modular group. We take the two homographies y=x+ 1, 
yx = - 1. These send the upper half-plane into itself. Their 
products are of the form y=(ax+ {J)/(yx+S) where a, {J, y, S 
are integers such that as - {Jy = 1. For a fundamental 
region we may take that within the verticals x + x = ± 1 and 
above the base-circle. This is a quadrangle with vertices 
tOO, W, t, - w 2 and interior angles 0, w/s, w, wIs. This group, 
with its subgroups, is discussed in full in Klein-Fricke, 
Elliptische Modulfunktionen. An introduction is in L. R. 
Ford's Automorphic Functions (McGraw-Hill, New York). 



CHAPTER VIII 

PARABOLIC, HYPERBOLIC, AND ELLIPTIC 
GEOMETRIES 

§ 46. Analytic Expressions for the Three Subgroups - We 
select now from all inversions of a plane or sphere into 
itself those which leave unaltered as a whole (1) a point, 
(2) a circle, (3) an extra point. We thus get three sub­
groups of the inversive group. 

Let us obtain the expressions for the antigraphies in each 
subgroup. We write the general antigraphy 

(1) 
ax+b 

fj=cx+d 

If we are not to disturb the point 00 -that is, if we discard 
all inversions other than reflexions-then to x = 00 corre­
sponds Y= 00, fj= 00. Hence c =0. 

The subgroup which governs the Euclidean geometry is 
then formed by 

(2) fj=ax+b 

For the hyperbolic subgroup with a fixed circle, consider 
first the base-line. This is fixed as a whole when to a real x 
corresponds a real y-that is, when (1) is 

ap+b ap+b 
r------
-cp+d-cp+d 

for more than two values of p. The requirement is that 

a=Ka, b=Kb, C=KC, d=Kd 

so that K is a turn. By dividing throughout by K1I2 we have 

ap+b 
r=--

cp+d 

where a, b, c, d are now real. This is the three-parameter 
group of transformations of the base-line into itself. The 

87 
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group over the plane which leaves the base-line fixed is built 
from 

where a, b, c, d are real. 

ax+b 
Y=cx+d 

Next we fix the base-circle. Then to any turn x=t corre­
sponds a turn Y = T, so that 

whence 

at+b 
T=--

ct+d 

at+b c+dt 
ct+d=a+bt 

If this holds for more than two values of t, then 

whence KK = 1 and K is a turn. Thus T is 

which we write 

at/~+btv; 
V Kbt+ V Ka 

at + f3 
T=pt+ii 

d=Ka 

This is the three-parameter group of transformations of the 
base-circle into itself; and the group over the plane which 
leaves this circle fixed is built from 

(3) 
_ aX+ f3 
Y= pX+ii 

The third case is that of a fixed elliptic inversion; we take 
this to be 

Then 

and 

where both 

ax+b 
Y=cx+d 

YYl + 1 =0 
xi\+l=O 
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That is, 
ax+b CXI +d 
ex + d = - I/YI = - aX

I 
+ 6 

-c+dx 
a -bx 

for all values of x. Hence 

b= - KC, e= - Kb, 
Here K is again a turn, and 

which we write 

(4) 

Y= axjYK+b/YK 
-6YKx+av K 

d=Ka 

This is then the general operation of the elliptic geometry. 
§ 47. Infinity - The three subgroups give three types of 

two-way geometry: (I) the parabolic with a fixed point n, 
(2) the hyperbolic with a circle n fixed as a whole, (3) the 
elliptic with a fixed extra pair n. 

We are in each case restricted to the inversions which 
leave n fixed and their products. An even number of such 
inversions gives a motion. A card lying on the two-way can 
be freely moved, but it cannot by a finite number of motions 
reach n. What is fixed is inaccessible, or infinity. 

Consider the first type. If one is drawing figures on a 
sheet of paper, one can isolate any point n of the paper. The 
lines are now circles on n. But if one is considering his 
relation to a plane on which he is, he regards n as what he 
cannot reach. This is Euclidean geometry. The point 00 is 
attached to the number 00. This is an egocentric view, but 
it is very useful. 

Under an inversion, from an outside point, the plane is a 
sphere with the point 00 marked on it. What seem to a 
man on the sphere to be equal steps in a given direction are 
given by secants which touch an ellipse. The background 
is here a Euclidean space. 

In the elliptic case (3) we invert with regard to one of the 
points n. We have then geometry on a sphere. The fixed 
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inversion is the interchange of antipodal points. If we 
choose to allow this, we have ordinary spherical geometry. 
The lines of this geometry are great circles. The distance of 
two points Xl> X 2 is the angle made by the radii to Xl and X 2• 

It is thus an elliptic distance. 
If we do not allow the interchange of antipodal points, 

we have the strict elliptic geometry. We may take as a 
point a diameter of the sphere (not directed) and as a line a 
diametral plane. In other words, we have lines on a point as 
points and planes on that point as lines, in a Euclidean space. 

We consider especially the hyperbolic type (2). Infinity 
is now a circle n. We consider the plane of this circle. In 
this plane are 00 2 circles l normal or orthogonal to n. These 
are the fixed circles of the hyperbolic inversions which send n 
into itself. 

Two of the circles, II and l2' normal to n may intersect, in 
which case the intersections are inverse as to n; or they 
may touch, in which case the point of contact is on n, or 
they may not intersect, in which case there is one circle l3 
normal to both II and l2 and to n. 

Take now the egocentric view of the man on a plane, for 
whom the accessible region is bounded by the circle n. The 
outside region has only theoretic interest. There are on 
two points Xl and X 2 a circle l which is to him a line. He calls 
it a line. On it are two points at 00 -that is, on n. Let 
these be j and j'. 

He observes that, if two lines do not meet, they will have 
either an infinity of common normals Or just one. He calls 
them in the former case parallel, and sees that through a 
point are two parallels to a given line, one to j and one to j'. 
His geometry is that of Euclid except in the fact of the two 
parallels, or in the fact that there is no rectangle. 

From the notion of reflexion in a line l (Hjelmslev's axiom) 
he can build up rigid motions, but he has no translations. 
Not having parallelograms, he has no parallelogram law. 
His algebra does not readily apply to his geometry. His 
analytic geometry is hyperbolic trigonometry. 

§ 48. Distance - The notion of angle requires no alteration 
when infinity is a circle. For the distance of two points Xl 
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and X 2 we have now on the joining arc two end-points on 
O-the points at 00. Let these be j and j'. This gives to 
Xl and X2 a hyperbolic distance. Let us express it by means 
of Xl> X2 and their inverses xlO and X20. 

An inversion with regard to j or j' sends 0 into a line, 
and Xl and X2 into points on a perpendicular line. Thus 
Xl' X 2, XIO, X 20 may be taken as 1, p, - 1, - p. The cross­
ratio (1, -P Ip, -1) is 

(1 _ p)2 

4p 

The stretch which sends 1 into P being e)', we have 

(1, -P Ip, -1)= -sinh2 >.;2 

And therefore in general the hyperbolic distance from Xl to x 2 

is given by 
sinh2 >';2 = - (Xl' X~ I X2, xlO) 

When 0 is the axis of reals, this is 

sinh2 >';2 = - (Xl' x2 1 X 2, Xl) 
= 8122/4TJITJ2 

where 812 is the parabolic distance of the points and TJi the 
parabolic distance to the axis. For a small displacement 
this gives 

d>..=ds/TJ 

which is taken as fundamental by Poincare. 
The distance of two points Xi with reference to an inversion 

o is in general given by 

sin2 v/2 = (Xl' X~ I X 2, xlO) 

where v is e or - £>.., according as the inversion is elliptic or 
hyperbolic. 

If the inversion is xfi = K the formula is 

sin2 v/2 = (Xl> K/X2 I X 2, K/XI ) 

(Xl - X2)(XI - X 2) 

= - K(XIXI - K)(X2X2 - K) 

or if PH is the power or squared distance of Xi and X" 

sin2 v/2 = - K Pl2 
(POI - K)(P02 - K) 
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Exercise 1 - At 0 erect a normal Oc to the plane. Let the arcs ca, Cb be 
normal to the plane at a and b. Show that the angle between the arcs is 
given by 

sin ()/2= I c(a-b)/ab I 
§ 49. Curvature - Another way of combining the two cases 

very valuable for general geometry is to write K = - Ko2, 

V=U/KO' thus introducing a unit of distance. The above 
formula becomes 

sin
2 u/2Ko = K02p12/(POl + K02)(p02 + K02) 

Thus for geometry on a sphere of radius KO the fixed 
inversion is pp' = - K02 (sending each point of the sphere into 
its antipodal point). The arc u is K o8, POi is K02, and the 
formula gives, as it should, 

sin2 8/2 =PIJ4Ko
2 

This applies equally to a circle, or to any elliptic spread, 
the radius being K o. In the case of the circle, the curvature 
is 1/ KO; in the case of the sphere the (Gaussian) curvature is 
I/Ko2. In general for an n-way it would be I/K o". Thus an 
elliptic spread is of constant positive curvature, the curvature 
being estimated parabolically from the extra points, and 
depending solely on the constant K2 or - K. In the case of 
a positive K, for which KO is a pure imaginary, we have 
constant negative curvature, only for 2n-way spreads. 

The constant real K of an inversion pp' = K is then the 
constant of curvature. 

The hyperbolic and elliptic geometries differ only in the 
sign of K. Thus theorems proved for the one are true for the 
other, unless the sign of K enters the proof. AR an instance 
where theorems are not coextensive, but are contradictory, 
we have for negative K the theorem of spherical geometry 
that the sum of the angles of a triangle is> 'TT. For hyperbolic 
geometry, the sum < 'TT. 

§ 50. Motions - It is a fundamental idea that a spread with 
infinity n can be discussed directly from n; that the proper 
reference-scheme is n itself. This we regard as the essence 
of the non-Euclidean geometries. 

It is obscured when n is a mere point, so that Euclidean 
geometry is here an inconvenient special case. Let us illus­
trate what is meant by the theory of circles on a plane. 
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We take in the plane a circle O. Let it be the axis of reals. 
Let H be a homography which sends 0 into itself. This is 
called a motion in the hyperbolic half-plane. The motion 
may be hyperbolic with fixed points on 0, elliptic with fixed 
points inverse as to 0, or parabolic with a fixed double point 
on O. It assigns to any point P of 0 a point pH. We 
represent the ordered pair P, pH by the arc in the half-plane 
(here a directed semicircle) with these ends, orthogonal to O. 

It is clear in the case y = KX, where K is a real, that all the 

X 
=xH,H2 

=XH~H: 

FIG. 31 

arcs for a given H touch a circle. And generally, if the arc 
PI> P2 touches a circle (x, r) positively, then 

[x - (PI + P2)/2][ x - (PI + P2)/2] - [r I - (PI - P2)/2]2 

or if ~, TJ be the rectangular co-ordinates of the centre x, 

(1) PIP2-(~-r)pI-(~+r)p2+~2+TJ2-r2=O 

This is the general motion or homography with fixed O. The 
arcs of H then all touch a circle, and the circle is directed 
since the arcs are. 

Exercise 2 - A change in the sign of r gives the reciprocal motion. 

A directed circle then represents the motion H, and we call 
the circle also H. The motion is hyperbolic, parabolic, or 
elliptic as the circle cuts, touches, or does not meet O. 

For two motions HI, H2 we have two directed circles. 
When negative common tangent arcs exist (fig. 31 (a» they 
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have as their end-points the fixed points of HIH2 and those 
of H 2H 1 . When positive common tangent arcs exist (fig. 
31 (b», they give the common pairs of HI' H 2-that is, the 

fixed points of H 1H 2-1 (or of 
? H 2H 1-I) and of H 2H 1-I (or of 

H 1H 2-1). 

A motion, elliptic or hyper­
bolic, carries any point through 
a certain distance, elliptic or 
hyperbolic. For the motion 

H==:axy+,8x+yy+S 

~--;;::::t---""*----t:;;-:,-- where a, ,8, y, S are real, the 
7Th distance is given by 

FIG. 32 

cos v =YI/2 Vg2 

where YI =,8 - y, Y2=aS -,8y 
(§ 34). 

When Yl2 < 4g2' V is an angle 
e, the elliptic distance or angle 
of the motion. When Yl2 > 4g2, 
V is - L>', where >. is the hyper-
bolic distance. Let us com-
pare this v with the vector v' of 

the two circles nand H. The invariants of (1) are 

YI =2r, 

and v' is given (§ 25) by 

Hence, as in § 25, 

(2) 

cos v' =TJ/r 
=2Vg2/YI 

cos v cos v' = 1 

That is, the cosines are reciprocal. When v is a real, say ~, 
v' is a pure imaginary, LTJ, the relation of ~ and TJ being indi­
cated in fig. 32. 

§ 51. The Vector of Two Homographies - Two homographies 
have in addition to their individual invariants the invariant 

2yu =as' + a'S - ,8y' - f3'y 
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From two equations such as § 50 (1) we have then 

2yu = (["1 - ["2)2 + '712 + TJl- (rl - r2)2 
(1) =2TJITJ2 + P12 - (rl - r 2 )2 

where P12 is the squared Euclidean distance of the Euclidean 
centres. 

If now the circles touch positively 

P12=(rl -r2)2 
so that 

(2) 

This is the condition for positive contact. 

Exerci8e 3 - The condition for negative contact is 

(g11 - glogoJ2)2 =g20g02 

When there is an arc which touches both circles positively, 
let co be a point where the arc meets Q. Then 

~1 - ~2=rl -r2 
whence (1) becomes 

2(Yll - TJl TJ2) = (TJl - TJ2)2 
By § 48 this is 

4TJITJ2 sinh2 A12/2 

where A12 is the length of the common tangent. Thus the 
hyperbolic length of the common tangent is given by 

(3) cosh A12=Yll/VY20VY02 

These are two such tangents; the lengths are equal. 
In any case the vector v attached to H 1H 2-1 is given by 

cos V=Yll/vg;;; VY02 

For let HI be axy + {3x + yY + S, and H2 be KX - y. Then 

H 2-1 is X-KY or y-KZ 
HIH2 -1 is KaXZ + (3x + KyZ + S 

with invariants 

Yl' = {3 - KY, 

And for HI and H2 

Y20 = as - (3y, Y02=K, 
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so that 
2/ 12/4 1 Yll Y2of/02 = YI Y2 

=COS2 V 

We have attached to the homography H which sends n 
into itself a directed circle. For the pencil HI +AH2 we 
have a pencil of directed circles. These are all the circles 
which touch positively two given circles, namely, the two 
circles common to HI and H 2. The equations HI =0, H 2=0 
give two values of x, say Xl> X 2 ; and the corresponding values 
of y, say YI, Y2. The common circles are Xl> YI and X 2, Y2. 

For three circles which have an orthogonal circle n there 
is a convenient canonical form. We have on n three ordered 
pairs. Thel'fe lie in a homography H. Write this Y = K2X. 

The ordered pairs are now 

The circle H is one of the two which touch the three directed 
circles positively. The standard case is when K is a turn. 

It is an easy matter, by considering the Jacobians of these 
pairs, to develop what corresponds to spherical trigonometry. 
But this will appear as a special case in the next chapter 
(§ 56). 



CHAPTER IX 

THE CELESTIAL SPHERE 

§ 52. Geometry within a Sphere - Let us regard the space 
around us as bounded by a sphere Q. The points of Q are 
named by numbers x. To two points x and x' we attach 
that arc of the circle normal to Q at x and x' which lies in 
our space. This arc we call * a line of our space; its end 
points are x and x'. We regard it as directed from x to x'. 
But if x and x' are only given collectively by a quadratic q, 

q = aX2 + 2 f3x + y 

then the line is not directed. 
Two directed lines give a vector v == 8 - LA, by the formula 

(§ 29) 

For intersecting lines). =0. Two intersecting lines lie in a 
plane of the space (in the Euclidean space a sphere 
normal to Q). But in a plane two lines may not intersect. 
In that case 8=0 or 7T. And in a plane two lines may be 
parallel-that is, may meet on Q (touching there). In that 
case ).=0 and 8=0 or 7T. 

Thus in the formula let X 2 =X1• Then cos(8-t).)=1 and 
A=O, 8=0 or 7T. 

For perpendicular lines 8 = 7T/2. 
normal-that is, both intersecting 
).=0 and 8=7T/2. 

For lines which are 
and perpendicular-

* There are here two languages, one for the Euclidean space and one for the 
region within the sphere. In this latter we have geodesiC lines, geodesic planes, 
geodesic cylinders, which are called in the former arcs orthogonal to the sphere, 
spheres orthogonal to the sphere, Dupin cyclides. Until the end of § 63 we use 
the intrinsic or geodesic naming; the word geodesic is to be understood. 

The proof that the shortest path is along the arc of a circle, when distance is 
defined by Poincare's formula a\9+ x99+a\9=xI9 belongs to the Calculus of 
Variations. The essential fact is that X.=K9:1:19 and X9=K3:1:19, for a geodesic. 

~ 7 



98 THE CELESTIAL SPHERE 

Thus two quadratics 

qi = UtX2 + 2f3iX + Yi 

give normal lines when the bilinear invariant or power 

ql2 = UI Y2 - 2 f31f32 + YI U2 
vanishes. 

Two lines have one common normal, given by the Jacobian 
of the two quadratics, 

j12= 1 -x X2 

UI f31 YI 

U2 f32 Y2 

In passing from the line Xl> Xl' to the line X2' x2' along the 
common normal j, j', 0 is the angle made by the plane 
j, j', X 2, x 2' with the plane j, j', Xl> Xl'. And >. is the distance 
gone-the hyperbolic distance reckoned from j and j'. 

An airplane with regard to the celestial sphere is defined 
by two normal lines, say j, j' from stern to bow, and Xl' Xl' 

from port wing to starboard wing. For these lines cos v = 0-
that is, >. = 0 and 0 = 'TT/2. The two harmonic pairs of numbers, 
when ordered, define the position. They give six parameters, 
but these are not wanted. As the airplane travels along the 
line j, j' the angle 0 turned through sidewise and the hyper­
bolic distance>. gone are given by (1). 

§ 53. The Directed Cylinder - Taking now n as a plane, 
we consider on it the general homography H. We attach 
to the points X and xH an arc (of a circle) normal to the plane. 

Let H be in the form 
K2X=Y 

When K is a real, evidently all the arcs touch a certain right 
cone with vertex o. When K is a turn, the arcs still touch 
this cone. Hence for any K the arcs will touch a right cone, 
the common tangent making a fixed angle e with the 
generator. 

If we adopt the language of § 52, then when n is a sphere 
what represents a homography H on the sphere is a cylinder 
whose axis is the line joining the fixed points; and the 
cylinder is marked with an arrowhead to denote the angle O. 
Since H is determined by three ordered pairs Xi' x/, the 
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directed cylinder is determined by three directed lines, which 
it touches at the same angle O. We may call it the inscribed 
cylinder, since it is the natural generalisation of the inscribed 
circle. 

This hyperbolic cylinder is a Dupin cyclide, the inverse 
of a right cone, or the inverse of the spindle obtained by 
rotating an arc about its chord. In the elliptic three-way 
it would be the inverse of an anchor ring obtained by rotating 
a circle about any line in its plane. 

The axis of the cylinder makes the same vector 0 - £). 

(=r, say) with each of the given lines. The pairs 0, 00 and 
x, K 2X give 

or 
cotr/2=±£K 
2 cot r = ± £( K + 1/ K) 

In terms of the invariants Yl = K2 + 1, Y2 = K2 we have then 

(1) 

Exercise 1 - The cylinder where it meets n has a conical point. If the 
angle at this point be 2a, then 

l = log tan (:nj4 + aj2) 
so that 

cosh A cos a= 1 

Exercise 2 - A right cone has the angle 2a, vertex O. It has bitangent 
circles parallel to the axis. Let such a circle make at a point of contact an 
angle () with the generator. And let the ratio of the greatest and least vectors 

from 0 to the circle be eelt/>. Then 

e =(1 + cos a cos ()j(l- cos a cos () 
and 

tan cpj2 = sin () cot a 

§ 54. The Determinant of Powers - The theory of the lines 
of a hyperbolic space is the theory of quadratics. If a 
line ql is to be directed we must select a square root of its 
discriminant qn. 

Conversely a system of quadratics is properly represented 
by the line-geometry of a hyperbolic space-a geometry in 
which a line, instead of a point, is the foundation. 

For four points of n we have three pairs of points, and thus 
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three pairs of lines; and three common normals. The 
theory of the four-point shows that the three common 
normals meet at a point, at right angles. 

We take as fundamental the fact that four quadratics qi 

must be linearly related-that is, that Ki can be so determined 
that 
(1) Klql + K2q2 + Ksqs + K4q4 == 0 

Explicitly the identity is 

ql q2 qs q4 =0 
al a2 as a 4 

f31 f32 f3s f34 
Yl Y2 Ys Y4 

Denoting the bilinear invariant of qi and qf by qu, then we 
have 

Klqil + K~i2 + Ksqi3 + K4qi4 = 0 

so that the determinant 

I qil I == I qil qi2 qiS qi4 I = 0 

Now let Vif be the vector of the two quadratics qi' qi. Then 

cos ViI=qU/VqiiVqU 

Hence, dividing the ith row of the determinant by a selected 
root of qii and the jth column by a selected root of qu, we 
have 
(2) I cos viii =0 

where Vu is the vector from the directed line qi to the directed 
line qi. 

There is a useful extension of (2). For if we take four 
other quadratics qil, the bilinear invariants with (1) give 

Klqlil + K2q2il + KsqSil + K4q4il = 0 

whence for two sets of four quadratics 

I qiil I = I qil' qi21 qi31 qw 1=0 
and 

(3) I cos Viii 1=0 
We denote this determinant by D 4, the context showing 

whether the general or the symmetric case is meant. The 
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determinant of three rows, whose elements are cos Vi;', 

where now i = 1, 2, 3, i' = 1, 2, 3 will be similarly denoted 
byDa· 

§ 55. The Radius of the Cylinder - The developed form of 
this determinant D4 in (2) above is, writing Ctf for cos Vii' 

6 4 3 3 

(1) 1- LC122+2~e2aCaIC12+ LC122ca<12-2LCIlP2aCa<1C41 

Let us apply this to determine the radius of the inscribed 
cylinder of three lines ql' q2' qa. 

We have 
C14 =C2<1 =Ca4 = cos r 

where r is the vector radius. Hence 

cos2 r[3 - ~C122 + 2~CIlPla - 2~C2a] = 1 - ~C122 + 2c2acalC12 
=Da 

whence 

Da tan2 r = 2( 1 - cos V2a)( 1 - cos Val)( 1 - cos V12) 

We have, expressed in factors, if 28 =v2a + val +V12, 

Da =4 sin 8. sin (8 - V2a) sin (8 - Val) sin (8 - V12) 
and 
3 - ~C122 + 2~CIlPla - 2~C2a = 8~sin2 val/2 sin2 V12/2 - 4~ sin4 v2a/2 

4 

= - 4II(sin v2a/2 ± sin val/2 ± sin vd2) 
so that 
cos2 r/sin 8 . sin (8 - v2a) sin (8 - Val) sin (8 - vu) 

=sin2 r/4 sin2 v2a/2 sin2 val/2 sin2 V12/2 
(2) = - I/II(sin V2a/2 ± sin val/2 ± sin v12/2) 

Comparing with § 53 (1), 

cos2 r/Y12 = - sin2 r/4Y2 = I/(YI2 - 4Y2) 

we have the invariants of a homography in terms of the 
vectors of any three pairs in it. We shall take 

(3) Yl2 =!Da = sin 8 . sin (8 - v2a) sin (8 - Val) sin (8 - v12) 

These formulre should be associated with the meaning of the 
vanishing of an invariant. When YI = 0, the pairs are in a 
polarity (or the lines have a common normal). We may take 
then 
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Then from 

and 

cos V2a = (X22 + xa2)/2x2Xa 
xJxa=e±tv'8 

V2a ± Val ± v12 =O 

When Y2=0, the homography is singular, and 

(X2 -xa)(xa -X1)(X1 -X2)(X2' -xa')(Xlj' -XI')(XI' -x2') =0 

But 
sin2 v2a/2 = (X2 - xa)(x2' - xa')/(x2 - x 2')(xa - xa') 

so that 
sin2 v2a/2 sin2 val/2 sin2 v12/2=0 

When the pairs are in a translation we may take 

x/ =Xi +/L 
We have then 

so that 
sin v2a/2 ± sin val/2 ± sin v12/2 = 0 

Exercise 3 - In terms of r, the three cases are where 

r=:n/2, 0, 00. 

Exercise 4 - Using the identity 

sin (a+ P) sin (a - P)=sin2 a - sin2 P 
prove directly the identity 

sin (a+ p +y) sin (a- P -y) sin (P -y - a) sin (y - a- P) 
-(sin a + sin p+siny)(sina-sin p-siny)(sin p-sinl'-sin a) 

(siny-sina-sin P) 
=4sin"asin2 psin2y 

l!'IG.33 

1 

cos aa 
cos a2 

cos c1 

§ 56. The Rectangular Hexagon -
Three lines AI, A2, Aa have, taken in 
pairs, three common normals B1, B 2, 
B a. Thus we have a rectangular hexa­
gon (fig. 33). Let the vector edges be 
successively aI' ba, a 2, bl , aa, b2• Apply 
to B I , B 2, Ba, Al the formula § 54 (2). 

Then 

cos aa cos a 2 cos C1 =0 
1 cos a l 0 

cos a l 1 0 
0 0 1 
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where C1 is the vector between Al and B1. Therefore 

cos2 C1 sin2 a l = 1 cos a3 cos a 2 

cos a3 1 cos a l 
cos a2 cos a l 1 

= cos2 c2 sin2 a2 = cos2 C3 sin2 a3 

and equally 

cos2 c1 sin2 bl = cos2 c2 sin2 b2 = cos2 c3 sin2 b3 

= 1 cos b3 cos b2 

cos b3 1 cos bl 

cos b2 cos bl 1 

To take the square roots we must notice the formula § 55 (3), 

1 cos b3 cos b2 =4Y12 

cos b3 1 cos bl 

cos b2 cos bl 1 

For a selected ordering we have 

Hence 

cos c1 sin bl = cos C 2 sin b2 = cos C3 sin b3 = 2YI 
cos C] sin a l = cos C2 sin a2 = cos C3 sin a3 = 2YI' 

sin aI/sin bl = sin aJsin b2 = sin a3/sin b3 = YI' /YI 

This is the law of sines. 
Let us now apply the extended formula § 54 (3) to the two 

sets BIB2B3A2 and BIB2B3A3. It becomes 

or 

1 cos aa cos a2 0 
cos a3 1 cos a l 0 

1 

o 
cos c3 

cos bl 

=0 

cos c2 cos c3( cos a l - cos a2 cos a3 ) = cos bl 1 cos a3 cos a2 

Hence 

cos a3 1 cos a l 
cosa2 cos ~ 1 

= cosbl cosc2sina2cosc3sin a3 

cos a l - cos a2 cos a3 = sin a2 sin a3 cos bl 

This is the law of cosines. 
These two laws are the fundamental formulre of spherical 

trigonometry. This special case arises when the three lines 
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AI> A2, A3 meet at a point o. Then B I , B 2, B3 are the respec­
tive normals at 0 to A2, A3, etc. The angles made by these 
normals are the angles made by the planes on A2, A3 ; A3 , Al ; 
AI' A2• The vectors are here all real-that is, they are angles. 

(1) (2) 

(3) 
FIG. 34 

The vectors at are the angles and the vectors bt the sides of a 
spherical triangle; or conversely. 

The consequences of the two laws are then so far as analysis 
is concerned precisely those given in works on spherical 
trigonometry, and we may refer to such works. * 

In the case when the three quadratics At give points on 
a circle, referred to in § 51, we take for n that sphere of which 
the circle is a great circle. In fig. 34 (1) we have 

* A Treatise on Spherical Trigonometry, by J. Casey (Longmans Green, London), 
is convenient. 
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so that the formulre are 

sinh lJsinh ml = sinh l-dsinh m 2 = sinh 13/sinh m3 

cosh 11 - cosh 12 cosh 13 = - sinh 12 sinh 13 cosh ml 

In fig. 34 (2) we have 

bi = CPt, 
In fig. 34 (3) we have 

In fig. 34 (4) we have 
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§ 57 ° The Configuration of Ten Lines - Let us find the 
condition that the common normals J 12 and J 3<1 of two pairs 
of lines ql' q2 and q3' q<1 are themselves normals-that is, 
intersect at right angles. Let the common normal of ql and 
q2 be qo' and that of q3' q<1 be q60 Apply the formula § 55 (3) 
to the sets 

Then 
q13 

q23 

qo3 

0 
that is 

or 

ql q2 qo q6 

q3 q<1 qo q6 

qu 0 q16 

q2<1 0 q26 

qM qoo 0 
0 0 q66 

=0 

cos V13 cos V 24 = cos V23 cos V14 

SO if the lines J 13 and J 24 are normal 

cos v12 cos V34 = cos V23 cos v 14 

If both happen, then 

cos v12 cos v 3<1 = cos V13 cos V 24 

and hence the lines J 23' J 14 are also normal. The four lines 
ql' q2' q3' q<1 are then said to be orthic, the conditions being 

cos V 23 cos Vu = cos V13 cos V2<1 = cos V12 cos V3<l 

The four orthic lines and the six common normals form a 
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regular configuration of ten lines, each normal to three others. 
The ten are conveniently named by the symbols 0, 1, 2, 3, 4 
taken two at a time (fig. 35 (a)). Then the lines qap, qylj are 
normal, and the lines qap, qay, qalj, qae are an orthic set. 
There are five orthic sets in the configuration. 

The figure is that of a rectangular hexagon, the three 
common normals of opposite sides, and the common normal 

(a) (b) 
FIG. 35 

of these three. There are in it ten rectangular hexagons. 
Fig. 35 (b) is a sketch of the model for the parabolic case. * 

The orthic line of three given lines At answers to the 
orthocentric point of the Euclidean triangle. The triangle 
a, b, c with its altitudes meeting at d and the normals to 
the plane at a, b, c, d is in fact a special case. 

Exerci8B 5 - The configuration of ten quadratics may be taken as 

2x, 

where 

Xl - 2KX/(b +c)+a, 
Xl - 2KX/(c+a) +b, 
Xl - 2KX/(a +b) +c, 

Xl - 2K'X/(b +c)+a, 
xl - 2K'X/(C +a) +b, 
Xl - 2K'x/(a+b) +c, 

2KK' =(b +c)(c+a)(a+b) 

xl-a 
xl-b 
Xl-C 

The orthic four-line qt may be defined by the fact that 
constants >'t may be found such that 

>'lq12 + >'022 + >'3q32 + >'4q42 =0 

* In the restricted case of real numbem, the configuration becomes the Desargues 
configuration. 
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Taking any three quadratics there is the relation 

q1I q12 ql3 ql == 0 
q2J. q22 q23 q2 
q31 q32 q33 q3 
ql q2 q3 0 
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For in the relation D<1' I qilqi2qi3qt<11 =0, let q<1 be a square, 
(X_y)2. Then qu is 0 and q14 is aIY2+2f3IY+YI' 

or 

Thus D<1 becomes the above relation, with Y in place of x. 
Developed, the relation is, say 

(aIJa23a3Ia12 - l/a232)qI2 + . + (ql/a23 + q2/a31 + q3ia12)2 =0 

The three quadratics ql, q2' q3 then determine a unique 
fourth such that 

>"lql2 + >"~22 + >"3q32 + >"<1q<12 == 0 

for any value of the variable x. 
Now >"lql2 + >,,3q22 = 0 is four points giving a pair of lines 

normal to the common normal of ql and q2, j12' But then 
also >"3q32 + >"<1q42 = 0, the same four points giving a different 
pair of lines normal to j3<1' By the theory of four points the 
lines j12 and j34 are then normal. 

§ 58. Geometry of the Three-line - We have had the 
generalisation, to any three lines of a hyperbolic space, of 
the inscribed circle and the orthocentre of the Euclidean 
triangle. It is easy to carry the generalisation further. In 
terms of three given quadratics At any other is 

(I) >"IAI + >"2A2 + >"3A3 

It is a square if 

(2) (O>,,)2==>"12All+2>"~3A23+ ... =0 

If we call (I) the line >.., and.\ its homogeneous co-ordinates, 
then (2) is an equation of the sphere O. Two lines >.., IL have 
a vector v where 

cos v = (O>")(OIL)/ Y (0)'')2y (OIL) 2 

where by (O>")(OIL) we mean 

>"IILIAll + (>"2/L3 + >"31L2)A23 + 
the polarised form of (2). 
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But it would be better to consider the rectangular hexagon 
as the base. If a line X makes with the three Ai the vectors 
Ui and a line Y makes with three B t the vectors f3i' then 
applying the formula D<1 to AI, A2, A3, Y and B 1 , B 2, B 3, 
X we have 

C1 0 0 cos UI 
0 C2 0 cos U2 
0 0 C3 cos U3 

cos f31 cos f32 cos f33 cos V 

so that the vector v of X, Y is given by 

CIC~3 cos V=~C~3 cos UI cos f31 

=0 

Thus if X is Y, and UI=u2=u3=r, f31=f32=f33=r', then 

CIC~3 =rr'~c~3 

the formula which connects the radii of the cylinders inscribed 
to Ai and to Bi. The cylinder inscribed to Bi may be taken 
as the generalisation of the circumcircle of the Euclidean 
triangle A1A2A3. 

§ 59. Rectangular Axes - We may take as fundamental 
quadratics the three 

so written that 

ql =2LX 
q2=L(x2-1) 
q3=x2+1 

ql 2 +q22 +q32=0 

qll =q22=q33= 1 
q23 =q31 =q12=O 

The lines intersect at right angles. They are rectangular 
axes. 

Any quadratic is now 

q<1='A1ql +'A~2+'A3q3 
and 

so that 

cos vu=qu/VqUVqll 

We take then 'Ai as the cosines of the vectors made with the 
axes. 
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The fundamental relation, § 54 (2) becomes 

1 0 0 Al =0 
0 1 0 A2 
0 0 1 A3 
>'1 >'2 >'3 1 

or 
>'12 + >'22 + >'32 = 1 

Applied to two lines>. and IL the relation § 54 (3) gives 

1 0 0 >'1 =0 
o 1 0 >'2 
o 0 1 A3 
ILl 1L2 1L3 cos (A, IL) 

or 
cos (A, IL) = A1IL1 + >'2IL2 + >'3/L3 

Exercise 6 - The Jacobian of the quadratics A and p is 

I qi A, P, I 
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§ 60. The Euclidean Case - To apply what has been said 
in this chapter to the lines of Euclidean space, we replace 
each vector (8 - LA) by (8 - LAJR), where R is the radius of n, 
and take the constant term and the coefficient of I/R of the 
equation considered as R tends to 00. Then 8 becomes the 
angle of the lines, and >. becomes their Euclidean distance. 
Each equation gives in this way two equations in reals. 
The first is that obtained. by omitting the logarithmic dis­
tances A, so that only angles enter. The second may be 
derived from this by the operator '1:.>,p,8 i • 

Thus for the rectangular hexagon, where we write 

at = 8t - Lli 

bi = CPt - Lmt 
Ct = o/i - Lnt 

the equation 

cos C1 sin a1 = V (I - '1:. cos2 a1 + 2 cos a1 cos a2 cos a3 ) 

gives first, 

cos 0/1 sin 81 = V (I - '1:. cos2 81 + 2 cos 81 cos 82 cos 83) 

(I) = VA 
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and secondly, 

11 cos 0/1 cos 81 - n 1 sin 0/1 sin 81 
=[~11(cos 81 sin 81 -sin 81 cos 82 cos 83)]/vA 
= [sin 81 sin 82 sin 83 ~11 cos CP1]/VA 

so that 

(2) 11 cot 81 - n 1 tan 0/1 = [sin 81 sin 82 sin 83 ~11 cos CP11/A 

These, with the equations obtained by interchanging 8, 1 
with cP, m, are what the law of sines becomes for the rec­
tangular hexagon in a Euclidean space. 

Again, the equations for four orthic lines 

cos V23 cos Vu = cos V31 cos V2<l = cos V12 cos V34 

give for the Euclidean case, first, 

cos 823 cos 814 = cos 831 cos 824 = cos 812 cos 834 

and, operating on the logarithms of these, 

A23 tan 823 +A14 tan 8u =A31 tan 831 +A2<l tan 824 
= A12 tan 812 + A3<l tan 834 

In some cases we may equate the coefficients of I/R2. 
Thus, in this case, where 

cos (823 - LA23/R) cos (8u - LA1JR) = 
we have for Euclidean parallel lines 

cosh A23/R cosh A14/R = . 
whence 

A232 + Au2=A312 + A2<l2= A122 + A3<l2 

the elementary relations on orthic points. 

., 

Exercise 7 - In Euclidean space a cylinder touches three lines, making the 
same angle in each case. Find its radius. 

§ 61. Six Perpendicular Lines - Anticyclic pairs are typified 
by 0, 00 and ai, alt. For these pairs the vector 8 - LA is 
given by 

cos (8 - LA) =(t + l/t)(l/t - t) 

a pure imaginary. Hence 8 = TT/2. The lines of the hyper­
bolic space are then perpendicular. 

All lines qi perpendicular to 0, 00, or qo are thus given by 
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PiTiti, PiTilti. If two of these, ql and q2' are themselves 
perpendicular, then 

PlTl(tl + l/tl)P2T2(t2 + l/t2) - 2P12T12 - 2P22T22 
PlTl(tl - l/tl)P2T2(t2 - l/t2) 

is an imaginary LT}, whence 

PlTl(tl + l/tl)P2T2(t2 + l/t2) = (P12 + P22)( T12 + T22) 

Writing for shortness Pi2=Ai, Tl=/Li' if we take four lines 
qi perpendicular to qo and to each other we have 

(A2 + A3)(Al + A4)(/L2 + /L3)(/Ll + /L4) 

Hence 

= (A3 + Al )(A2 + A4)(/L3 + /Ll)(/L2 + /L4) 
= (AI + A2)(A3 + A4)(/Ll + /L2)(/L3 + /L4) 
=K, say. 

(A2 - A3)(Al - A<1) = K/(/L3 + /Ll)(/L2 + /L4) - K/(/Ll + /L2)(/L3 + /L<1) 
= - K(/L22 -/L32)(/L12 -/L<12)/TT 

where TT is the product of the six factors (/Ll + /L2)' • • • 
The Ai are homographic with the /Li 2, and similarly the /Li 

are homographic with the Ai2• Hence we are concerned with 
five values of Ai and of /Li' and starting with three pairs of 
points qi we obtain symmetrically five pairs of points-six 
pairs in all. Thus we have a set of six lines any two of which 
are perpendicular. Taking four perpendicular lines qo, ql' 
q2' q3' then there are two lines q4' qo perpendicular to the 
four; and these two lines are themselves perpendicular. 

This theorem is the inversive equivalent of the existence of 
the double-six of lines in a projective space, and the algebra 
is adapted from the paper of G. T. Bennett on the Double­
six. * Strictly the theorem should be here proved also for an 
elliptic space, but we can rely on the argument of § 49. 

§ 62. The Vector of Two Directed Cylinders - We have 
associated with each homography H on the sphere n a 
directed cylinder. We may call 

H == axy + f3x + yY + S = 0 
the equation of the cylinder. Its axis is 

ax2 +(f3+y)x+S=O 

4< Proc. London Math. Soc., series 2, vol. 9, p. 336. 
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and its vector radius is given by 

cos2 r/({3 - y)2 = - sin2 r/4( as - (3y) = I/[({3 + y)2 - 4( as - (3y)] 

Two cylinders HI and H2 have the invariant 

2H12 = al S2 + a2S1 - {31 Y2 - {32YI 

When it vanishes they are said to be apolar, or to have 
positive contact. 

The cylinder HI has the invariant 

Hll =alSI - {3IYI 

When this invariant vanishes the cylinder is self-apolar, or 
singular. It is then n itself with two points marked on it. 

We have then for two cylinders an absolute invariant 

cos V12 =H12/vHll VH22 
and we call V12 the vector of the two cylinders. 

To see the meaning of V12 we consider again the rectangular 
hexagon (fig. 33). Let Al be the axis, and b2 the radius, of 
the first cylinder; and let A2 be the axis, and bl the radius, 
of the second. It is clear that a3 is a common tangent of 
the two cylinders which agrees with each in direction. We call 
this a positive common tangent. Are not these two vectors, 
a3 geometrically given and V12 analytically given, the same 1 

We have 

cos b2/({31 - YI)2 = £ sin bJ2 vHll = 1/ V (f31 + YI)2 - 4Hll 

cos bJ({32 - Y2)2 = £ sin bJ2 VH22 = 1/ V (f32 + Y2)2 - 4H22 

I alS2 + a2S1 - {3IY2 - f32YI 
cos V12 = - . / . / 

2 v alSI - (3IYIV a 2S2 - f32Y2 
so that 

or 

b b 
2(a1S2 + a2SI) - ({31 +YIH{32 +Y2) 

cos V12 + cot I cot 2 = . / . / 
4v Hllv H22 

But the vector b3 of the axes is given by 

cos b
3 

= ,2( a lS2 + a2SI) - ({31 + YIH{32 + Y2) 
V ({31 + YI)2 - 4Hll V ({32 + Y2)2 - 4H22 

Hence 
cos V12 + cot bl cot b2 = cos b3/sin bl sin b2 
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Thus it is true that 
a 3 =v12 (mod 217') 
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Thus the vector V12 of two directed cylinders is shown by a 
positive common tangent. There are two such tangents, 
but they have the same vector. It is to be noticed that 
H 1H 2-I, where, as here, we are speaking of general homo­
graphies, must have fixed points, so that the common tangents 
exist. 

§ 63. The Relation D6 - We have between any five homo­
graphies Hi a linear relation, obtained by eliminating xy, x, 
y, 1. Hence, as in § 54, there is the relation 

(1) D6= I cos Vii 1=0 

and more generally between two sets of five homographies 
Hi and Hi' there is the relation 

(2) D6=lcosvwl=0 

If, then, four cylinders touch a fifth positively we have, 
since cos V i6 = 1, 

1 cos v12 cos V 13 cos V14 1 =0 
cos V 21 1 cos V23 cos V 24 1 

cos V31 cos V 32 1 cos V 34 1 

cos V41 cos V 42 cos V 43 1 1 
1 1 1 1 1 

or, writing 8 ii for sin vij/2, 

0 812 2 813 2 814 2 =0 
821 2 0 823 2 824 2 

831 2 832 2 0 834 2 

841 2 842 2 843 2 0 
or 

(3) 

If, then, four cylinders touch positively a fifth, we have, say, 

(4) 82#14+831824+812834=0 

If we reverse the directions of two of the cylinders, say H2 
and H 3, then we must replace the direct vector of HI and H2 
by the transverse vector, and 812 by, say, 812'. Let then 

823814=831'824' -812'834' 
8 
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and when we reverse the directions of H3 and HI let 

Then we have by addition 

If, then, four cylinders touch a fifth in the sense + + + +, 
and touch a sixth in the sense + - - +, and touch a seventh 
in the sense - + - +, they can touch an eighth in the 
sense - - + +. 

That is, Hart's extension of Feuerbach's theorem is true 
for cylinders. For the accurate handling of Hart's theorem 
we refer to Study. * 

§ 64. The Caustic of a Correspondence - We suppose now a 
correspondence on n between the points x and y, and that 
this is differentiable, so that for x + dx we have in general 
y+dy. 

We have a double infinity or congruence of arcs x, y. And 
the problem is to determine their envelope. This is, in a 
Euclidean space (when n is a point), a part of Hamilton's 
theory of systems of rays. 

It is convenient to regard the sphere n as a plane. An 
arc x, y is then a semicircle, say above the plane. The arc 
x, y intersects a consecutive arc x +dx, y +dy when the pairs 
of points are on a circle and are interlaced. The cross-ratio 
- dxdy/(x - y)2 is then negative. We have then, when de is real, 

(1) dxdyJ(x-y)2=(de)2 

Thus the condition of intersection is that this differential 
invariant under homographies is to be invariant also under 
antigraphies (that is, not altered by writing x for x) and is 
further to be positive. Geometrically stated, the elements 
dx and dy make opposite angles with x - y. 

To find the point of intersection, we first find the point z 
where the join of x and y meets the join of x +dx and y +dy. 
Taking the circle on which they lie as the base-circle, and 
replacing x and y by turns t and T we are to have 

z +ztT=t+T 

* "Das Apollonische Problem," Math. Annalen, v. 49 (1897). 
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and 
z(Tdt +tdT) =dt +dT 

Let dt/dT=lLe ta , where IL is positive (the magnification). 
Then T2dt/t2dT = lLeta 

dt/dT= ±lLt/T 

For interlaced pairs, dt/t and dT/T have the same sign, so 
that, as we have taken IL positive, 

We have then 
dt/dT=lLt/T 

z(1 + IL) = I/t + IL/T 
z(1 +1L)=t+ILT 

and therefore in general 

(2) 
where 

z = (x + lLy)/(1 + IL) 

IL=I dx/dy I 
The point z is thus the internal centre of similitude for 
corresponding small circles around x and y. 

On the normal to n at this point z, we take a distance { 
given by 

(3) 

to obtain the intersection of the consecutive arcs. The 
envelope of the arcs is then given by (I), (2), and (3). For 
convenience let it be called the caustic of the correspondence. 

This applied to the homography K2x =y will give a right 
cone, as we saw directly in § 53. 

Consider the antigraphy 

axy + fJx + yY + S=o 
When there are fixed points, say 0 and 00 , this is 

x=ILY 

The equations (I), (2), (3) are unaltered. And from (I), 

ILdydy = (d8)2 
(x - y)2 

Hence x - y is a real. 
Hence x, y, and z are reals. Thus in this case the only 
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arcs which can intersect consecutive arcs are those erected 
on the axis of reals. We have 

,2=(1-p.)2z2/4p. 

where z is a real; and the arcs touch two half-lines in the 
vertical plane on the axis of reals, the lines being images as 
to n. For any antigraphy with fixed points, the envelope 
of arcs is accordingly two arcs which meet n at the fixed 
points. 

When the antigraphy has interchanging points 0, 00, it 
may be taken 

where t is a given turn. 
From (I) we have 

de 2 __ ~ dydy 
( ) - y (x _y)2 

so that 
x x 

y(x - y)2 y(x - y)2 

that is, xy/(x - y)2 is a real. 
Hence x and therefore y must be taken on the base-circle. 

The envelope of the arcs is then a circle parallel to n, lying 
on the base-sphere. 

For an antigraphy with interchanging points, the envelope 
of arcs is accordingly a circle, such that the spheres on it, 
which touch n, touch it at the interchanging points. 

In general for an algebraic correspondence f(x, y) = 0, that 
is for a Riemann surface, we shall have a caustic surface. 
The equation (I) giving at the place (x, y), or its correspondent 
(y, x), two directions at right angles, gives a natural dividing 
of the surface into orthogonal curves. 

But for a correspondence f(x, y) = 0, we shall have a caustic 
curve. In particular this is the case when the equation is 
self-conjugate-that is, when it is the image-system of an 
algebraic curve. 

For antigraphies in the Euclidean case, the circles which 
cut n, other than orthogonally, disappear. We are left with 
a circle of the Euclidean space. 



CHAPTER X 

FLOW 

§ 65. Analytic Flow - In moving a card over a table (§ 1) 
we may consider a particle at t + LTJ. If we first fix t we have 
a line in the card, for varying TJ. If we then vary t con­
tinuously, the line moves. This continuous motion is a 
rigid motion. If we first fix TJ, varying t, and then vary TJ we 
have a second rigid motion. It is orthogonal (or conjugate) 
to the first. 

If we call a particle pt, then if we fix t we have a ray in the 
card. If then we vary t continuously we have a continuous 
rotation. This again is a rigid motion. 1£ we first fix p, we 
have a circle in the card; and when we vary p continuously 
we have a continuous motion-a fluid motion, or flow. It 
is orthogonal to the rotation. Let us call it radial flow. 
The points 0 and 00 are here exceptional. They are excluded 
points, or punctures in the plane. They are called point­
charges, or a sink and an equal source. We associate the 
number z, written as pt, with radial flow. 

An analytic function of z will then give another flow. The 
rays and circles give the paths and levels. This kind of 
flow, set up by analytic functions, is called the flow of a perfect 
fluid. The best illustration is electricity. Here, of course, 
what is called geometrical drawing-with rigid instruments­
is secondary. What is primary is electrical drawing. The 
process (originated by Kirchhoff) is described in its simplest 
form in Ames and Bliss, Manual of Experiments in Physics. 
Suppose, for instance, a rectangular tray containing a con­
ducting fluid, and in it a circular disc. A flow is set up 
between the disc and the rectangle, and by means of a 
telephone the levels can be found. The transition from the 
circle to the rectangle is put in evidence. 

In the radial flow it is clearly convenient to consider the 
II7 
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region within a circle, say the base-circle. The flow is then 
from the centre to the circle. If we choose our analytic 
function so that there are no singular points in this circular 
region, then it maps into a new region R of simple character 
and we shall have the flow in the region R from a source to 
the rim. The function sends the interior of the base-circle 
into R, but conversely it has been shown by long and keen 
concentration, principally German, * that the region R defines 
the function, subject to the homographies which send the 
base-circle into itself. This amounts to a definition of the 
shape of a region, when there is one rim. 

Instead of the circular region we may use the half-plane 
as the base-region, say B. We have for the circle or the 
half-plane a hyperbolic geometry and an element of distance, 
or metric. For the half-plane the metric is d.s/TJ when ds is 
the Euclidean element and TJ the ordinate. We have the 
geodesics or paths of least distance. In the region R we 
have then a hyperbolic geometry. It is convenient to carry 
over the element of distance, unchanged. It is then obvious 
that the geodesics of B become geodesics of R. And as in B 
the paths of flow from a point to the rim are along geodesics, 
so in R. 

Exercise I - The function x=log z sends the upper half-plane of z into the 
strip 0 <;; '/} <;; n, where x = ~ -I- t,/}. It sends the geodesic zz - /1(z -I- Z) -I- K =0 
into the geodesic 

that is 
et - 2/1 cos '/} -I- Ke-t =0 

Draw the paths of flow (that is the geodesias) from a point within the strip 
to the rim. 

§ 66. Standard Case of Radial Flow - We regard then the 
process of mapping as giving the flow of a perfect fluid. Let 
us set up first the standard case of flow, and consider a few 
simple cases which are derived from the standard case. 

In a horizontal plane covered with a layer of fluid a sink 
or small circular hole is made. The fluid flows radially 
towards this sink. To balance the loss we suppose that an 
equal amount is continually supplied by a source at infinity. 

* See § 80 for some references. 
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The velocity of the fluid at a distance p from the sink is 
determined by the condition that the amount which crosses 
the circle of radius p is independent of p. That is, d.enoting 
the velocity by p, 

27Tpp = constant 
or 

P=K/p 

The proper co-ordinates here are p and t, and the expression 
of the flow is 

z=pt 

Thus the polar grid is associated with the flow of a 
fluid due to a sink at 0 and an equal source at 00. The 
source at 00 need cause no difficulty; the point we wish to 
make is that the operation of mapping amounts merely to 
changing the conditions of the flow. On the globe, from 
which is derived the polar grid by an inversion, the source 
is conceived at (say) the north pole and the equal sink at the 
south pole, the fluid flowing over (say) the outer surface from 
north to south. 

Exercise 2 - The velocity along the axis of the globe is constant. 

We take this case of radial flow to be the standard case of 
flow. In any isogonal mapping, 

z=f(x) 

the standard flow maps into a flow in the x-plane, with the 
assumption that the sink (z=O) gives sinks in the x-plane, 
and that the source (z = 00) gives sources. Then the lines 
t = constant will map into the curves of flow corresponding 
to the sources and sinks in the x-plane, and the concentric 
circles p = constant will map into the curves of level for the 
flow in the x-plane. 

§ 67. Two Equal Sinks - Suppose the map-equation 

z = quadratic in x 
= (x - x1)(x - x 2) 

=PlPJ1t2 

We have then in the x-plane two sinks, supposedly congruent. 
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To rays on the base-point in the standard case (z-plane) 
correspond the curves 

tl t2 = constant. 

Therefore a particle x moves so that the product of its direc­

FIG. 36 

tions from the two sinks 
is constant; that is, 

el + e2 = constant, 

where ej is the angle 
made by (x - Xi) with 
any fixed line. The 
curves of flow are rect­
angular hyperbolas (fig. 
36). 

The curves of level, 
given by 

PIP2 = constant 

are, when the constant 
is small, little ovals sur­
rounding each sink. It 
is convenient to speak 
of sinks (and sources) as 

points; but if in deference to physical interpretation one 
wishes them to have finite size, we take each sink to be the 
interior of one of these ovals. To balance the loss we suppose 
again a source at 00 of capacity equal to the sum of the two 
sinks. 

Here we have flow from 00 to either Xl or X 2• The separ­
ating curve is always especially to be noted; here it is the 
axis of Xl> X 2 together with the line on Xl' x 2• The hyperbola 
which separates the flow is formed by these two perpendicular 
lines. 

In general when 
z=f(X) 

there will be values of z for which two values of X become 
equal. These are branch-poinfJ3 in the z-plane, and the 
corresponding positions of x-the positions where two x's 
come together-are in Klein's nomenclature the crossing-
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points. Thus to z=bi corresponds X=Ci. To a first approxi­
mation we have 

z-bi =A(x-Ci)2 

The isogonality breaks down; an angle at bi is twice the 
corresponding angle at Ci. Thus to the rayon bi in the 
standard flow corresponds a curve cutting itself at right 
angles at Ci • The crossing-points are characterised by the 
vanishing of D",z, or may also be regarded as the Jacobian 
points of all sinks and all sources. The curves of flow which 
pass through the crossing-points are the separating curves, 
and in complicated cases give essential help in visualising 
the flow. In any figure of flow they should be especially 
noted or sought. 

§ 68. Three Equal Sinks - Let 

z=cubic in x 

The crossing-points are given by D",z=O, a quadratic. For 
simplicity take these points as ± 1, so that (say) 

D",z=3(X2 -1) 

Then the map-equation is of the form 

z=Xs - 3x+c 

The curves t = constant or zjz = constant become the cubics 

xS-3x+c 
=----=---= - t2 

xS-3x+c-

Or directly from the map-equation, written 

z = (x - xI)(x - x 2)(x - xs) 

= Pltl . P2t2 • Psts 

the curves of flow are such that 

or 
81 + 82 + 8s = constant (mod 2'IT) 

The separating curves are as shown in fig. 37, and neigh­
bouring curves of flow are sketched in by their guidance. 

By the same method cases of more numerous sinks may be 
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treated. For any polynomial f(x) the curves of flow are 
given by 

~ei = constant (mod 2'/T) 

where ei is the angle of the vector from a sink to x; and the 
curves of level by 

PIP2 • • • P .. = constant 
where Pi is the distance 
from a sink to x. 

Unequal sinks are 
dealt with by allowing 
sinks to coincide when 
their strengths are com­
mensurable. When they 
are not commensurable 
a limiting process is 

Ir--fl~--- necessary. 
§ 69. The Rational 

Fraction - For mapping 
with the rational frac­
tion, consider 

z = (x - xl)/(x - x 2) 

In the x-plane there is 
FIG. 37 no longer a source at 

00; the source is at X 2 

and is supposed equal to the sink at Xl. The flow is along 
arcs of circles, forming a hyperbolic pencil, from X 2 to Xl. 

The curves of level form the elliptic pencil, orthogonal to the 
curves of flow. 

So generally when z = f(x), a rational fraction, we have 
sources at all poles, sinks at all zeros, and unless they occur 
in equal numbers, a source or sink at 00 to make the total the 
same. In general the curves of flow may be written 

'1:,ei-~cpi=O 

where ei is the angle of the ray from a sink to X and CPt the 
angle of the ray from a source to x. 

The canonical case of two sinks and two sources is illustrated 
in fig. 38. 
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The simplicity so far is due to the fact that for one x we have 
only one z, so that there are on the plane of x no branch 
points. 

§ 70. The Doublet - The case of coincident source and sink 
is important. For single source and single sink, given by 

z = (x - xl)/(x - x 2) 

it is geometrically obvious that when X 2 and Xl are allowed to 
coincide in a definite 
direction, the curves of 
flow become tangent 
circles. 

Suppose both source 
and sink as of infinite 
strength - that is, as 
indefinitely repeated. 
To take the matter in 
simplest form we return 
to the standard radial 
flow. In this we write 

z=(x-a)" 

so that the sink z = 0 
shall map not into a 
fixed point in the x-
plane, but into a move- FIG. 38 

able point a. To arrange 
a relation between a and n so as to get a limit when n --+00 , 

we should write 
z=(1 +x/n)" 

Thus 
z=exp x 

is the proper mapping for source and sink, both at 
infinity. 

"When source and sink unite in this way we have a doublet. 
Here the doublet is at 00 in a given direction. The flow is 
that of a river between parallel lines. We take this parallel 
flow as the second standard case, mapped from the radial 
flow by the logarithm. As in § 12, in the x-plane the 
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appropriate co-ordinates are the rectangular co-ordinates t, TJ, 

t=log p 
TJ=O 

But now we see that the point z is sent into a vertical row of 
points, since for 0 we may write 0 ± 2n'IT. 

A doublet at a finite point a is analytically represented by 

A/(x -a) 

where A is constant. This is obtained directly from the 
equation 

z=(x-b)/(x-a) 

by letting b coincide with a in a given direction. Then, if 

b -a=da 
z=l-da/(x-a) 

We replace this by 
z=[I-da/(x-a)]" 

and let 
nda= -A 

Then 

z= 1+-.--[ 1 A J" 
n (x - a) 

and when n --->-00 , 

z=exp [A/(x -a)] 
or 

logz=A/(x-a) 

If A =rt, t is the direction of the doublet (or direction of flow 
at a) and the positive number r is the strength. Thus a 
doublet may be denoted as (a, rt). 

The same process applies to any number of coincidences 
of sinks and sources. For n doublets we have the equation 

n r.t. 
~-' -' =log z =log p + ,0 x-ai 

Hence the curves of flow, the maps of o = constant, will be 

~ rit. ~ rilt• 0 
4-.J--- 4-.J~=2, 

x -ai x -ai 

It is noticed that as sources and sinks call for the resolution 
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of f(x) into factors, so doublets call for f(x) in partial fractions. 
We may of course write 

y=log z 

and refer the general problem of the flow due to doublets 
(without additional sources and sinks) to parallel flow in the 
y-plane, this being the second case of standard flow. 

§ 71. Two Opposed Doublets - We consider the simple 
example of two doublets 

x+ l/x=210gz 
or 

x + l/x=2y 

where y is in parallel flow from right to left. The crossing­
points are given by 

1-I/X2=O 

and are x = ± 1. As y describes the real axis from + 00 to 
+ I, x is real and decreases from + 00 to + I. When y 

FIG. 39 

describes the segment of the real axis from 1 to - I, x traces 
the base-circle. The separating curve is here the base­
line and the base-circle. The curves of flow are the cubics 

x + I/x -x -I/X=£K 
(fig. 39). 

This is the problem of a circular island in parallel flow. 
It will be noticed that the doublets are opposed, in fact 
inverse as to the base-circle in the x-plane. Inversion, 
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sending source to source and sink to sink, will send a doublet 
into a doublet, though the strength is in general altered. 
Normally, then, a case of flow due to doublets becomes 
under inversion another case. Here the case goes into itself. 
What is meant by opposed doublets is this interchangeability 
under inversion; they are elements of a circle and have 
opposite directions along that circle. 

Exercise 3 - Let two doublets of the same strength I, be (I, t) and 
( - I, - t). The curves of flow are 

KX9X9 - (K+ 1)(X9 +X9) + K+2=0 

There are the special curves K=O (a rectangular hyperbola), K= -2 (a 
lemniscate), K = - 1 (the base-circle together with xx + 1 =0). This indicates 
the transformation xfj = -I which, as well as xX= I, will send the pencil of 
curves into itself. 

We have said that the doublet corresponds to the simple 
partial fraction. If we have terms like 

A/(x - a)2 
or, near 00 , a term 

Ax2 

we regard this as the coincidence of doublets. The appro­
priate flow in the latter case is deduced from 

X2=y 

where the flow of y is parallel and again (say) from right to 
left. And similarly for Axn near 00 , or A/(x - a)n near a. 

§ 72. Flow with Doublets, Sinks, and Sources - As a 
simple case, let there be a sink at 0 and a doublet at 00. 

The source corresponding to the sink is supposed combined 
with the doublet. The case is that of parallel flow when a 
hole is made. 

The appropriate equation, for flow from left to right, is 

or 

By subtraction 

x. e"'=z 

log x - x =log r + te 
log x - x =log r - te 

tan-1T}/ t - T} = e 
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where x = t + LTJ, so that the curves of flow corresponding to 
8=K are 

TJ = t . tan (TJ + K) 

There is a finite crossing-point, for D",z =0 when x = 1. For 
this K = 0, so that the separating curve is 

TJ = t tan TJ 

of which the axis TJ = 0 is a part. Fig. 40 shows the flow. 

FIG. 40 

Exerci8e 4 - By considering the orthogonal system, determine the shape of 
the hole or waterfall when not small. 

In general the equation for coexisting doublets, sinks, and 
sources has the form 

f(x) exp g(x) =Z 

where the zeros of f(x) are the sinks, the infinities of f(x) the 
sources, and the infinities of g(x) the doublets. Higher 
doublets may of course enter. 

§ 73. Vortices - So far the levels, orthogonal to the curves 
of flow or paths, have only been mentioned incidentally as 
suitable forms for sinks and sources, or in other terminology 
for electrodes. But paths and levels may be interchanged. 
In the Ptolemy flow in the two-plane, the interchange leads 
us to consider motion (rotation) along the concentric circles. 
Here the base-point is a vortex. There is another vortex, 
here at 00 , said to be of opposite strength, or of same strength 
and opposite sign. A source or sink is a level which, usually 
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speaking, reduces to a point; a vortex is a path which 
reduces to a point. Selected paths are often considered as 
boundaries, or as non-conductors; thus a vortex is a boundary 
which, usually speaking, reduces to a point. But without 
confusion the words sink and source are also extended to 
mean any level, and vortex to mean any boundary. 

From the simplest case others are derived by writing 

f(x) =Z 

The argument need not be repeated; for source is substituted 
vortex, for sink is substituted negative vortex. Factors 
(x - a) and (x - a)-l are replaced by (x - a)t and (x - a)-t, for 
the motion defined by 

xt=rt 
for given t is 

or 
log r 1 = constant 

and this is rotation. 
In particular two opposite vortices at a and b cause motion 

in circles, of which a and b are inverse points. Any two 
circles of the system may be regarded as vortices. This is 
the flow of a fluid if two circular (non-intersecting) islands 
are given, so long as there is no other agent present. "When 
the points a, b coincide the circles touch and we have a 
doublet as in § 70. 

It must be understood that for us vortices are fixed; the 
question of vortex filaments inherent in the fluid and capable 
of motion is not here considered. 

The combined effect of sinks at points ai and vortices at 
points bi is given by 

TI(x - ai)A.'TI(x - bi)t/li =rt 

where A and IL are the strengths. If 00 be neither a vortex 
nor a source, then 

~A=O and ~IL=O 

If a vortex coincides with a sink, say at c, we have a factor 

(x_c)A.+t/1 
The equation 
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implies, in addition to the coincidence of vortex and sink at 
c, that the opposite vortex and source coincide at 00. The 
paths are equiangular spirals. 

As an example, let there be a sink at 0, vortex at I, and 
the opposite vortex and source at 00. We wish to draw the 
curve which separates the fluid which 
reaches 0 from that which whirls eternally 
round I. 

The curve is of the type 

r
1 

=eK(</>-a) 

where r 1 is the distance from the vortex 
and cp the angle from the sink. In the 
case 

x(x - 1)-1 =Z 

the crossing-points are given by 

I/x - L/(X - I) =0 
or 

x=I/(I-L)=(1 +L)/2 

The curve is 
r 1 V2 =e</>-n/4 

Thus having drawn 

r=e</> 

a logarithmic spiral, to mark the points distant 

r 1 =r/en/4. V2 

FIG. 41 

from I, we draw rays from 0 to the spiral and mark off on 
these rays points which are distant r1 from the point 1. In 
fig. 41 the spiral has been erased. 

9 



CHAPTER XI 

DIFFERENTIAL GEOMETRY 

§ 74. The Translational Derivative - In the main we have 
so far considered algebraic processes. We here consider 
(though only a sketch is admissible) processes of differentiation 
and integration, and the so-called differential and integral 
invariants. 

Thus for translations 

For a plane curve, 

y=x+b 
dy=dx 

d2y/dx2 =O 

dx=dse t¢ 

where s is the length of arc from a point of the curve, cp the 
angle at the point. Since 

and 

dx=dse- t ¢ 

dxdX=ds2 

dx/dX=e2t¢ 

is the clinant at the point. The curvature 

c = I/r is dcp/ds 

r being the radius of curvature. 
Here the length s is an integral invariant, and the curvature 

a differential invariant, under translations. 
The elementary operations of the calculus are built on the 

group of translations, as applied to a function. In the neigh­
bourhood of a point Xo a function y of x is defined by 

y-YO=Ul(X-XO}+u2(X-XO}2/2!+ ... 

where the series is convergent within some circle with centre 
x o. Here x - x 0 is the change in x, y - Yo is the change in y ; 
if we denote these by t and TJ, the Taylor series is 

(I) TJ=U1t+u2t2/2!+ . +untn/n!+ ... 
130 
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This is also written 

TJ =dy+d2y/2 ! + ... +d"y/n! + ... 
and d"y or ant" is called the nth differential of y (with respect 
to the independent variable x). For the independent 
variable there is only the first differential t =dx; all others 
are 0. When Xo is 0, then dx and x are the same, and x is 
used, not dx. The coefficients a" may be written as dny/dxn ; 
they are the differential coefficients or derivatives of y for the 
value Xo of x. Notations in use for these coefficients are 
D","y, or f"(x); in simple cases superposed dots, ii, fj, etc. 

When we wish to apply this conception of functions of a 
complex variable to curves, we take the equation of the curve 
as a map-equation by restricting x either to the axis of reals 
or to the base-circle; or else we consider the self-conjugate 
equation 

f(x, x)=o 
The curves arising thus from analytic functions are a1UZlytic 
curves. Usually in the second case the equation is taken to 
have only a finite number of terms. The curve is then 
algebraic. 

The most useful method in general is to regard y as a 
function of a real variable or parameter P, which, in the first 
instance, is subject to translations only. We replace here 
y by x, so that the curve is 

x -xo=f (p -Po) 

It is convenient to think of p - Po as the local time; then:i; is 
the velocity, x the acceleration, of the moving point x. 

Considering the neighbourhood of Po =0, we have (replacing 
x -Xo by x) 

(2) x=f(P)=aIP+a2P2/2 !+aaP3/3!+ ... 

If we have a second curve which intersects the first at the 
point x = 0, then for it, with the same parameter p, 

x' = f3IP + f32p2/2 ! + f32p3/3 ! + . . . 
If al = f31' the curves touch or have linear contact. If also 
a2 = f32' the curves have quadratic contact or contact of the 
second order; and so on. In n-ic contact we regard the 
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curves as having n + 1 consecutive points in common. The 
transition from n discrete points to n consecutive points 
requires the notion of an analytic curve connecting the points. 
Naturally the simplest curve defined by an n-ic element is 
wanted. For n = 1 it is the line; for n = 2 we take the circle. 
For n = 0 it is the point. 

When the second curve is a point on the curve (2), say the 
base-point, it touches the curve when al =0. When this 
happens, the point is a stationary point or cusp. In general 
there are for a function y of x, points x for which D",y = o. 
But these need not lie on the selected base-line, so that we 
do not expect a cusp. 

In comparing two curves we took the same parameter p. 
But there is for each curve an appropriate parameter under 
a given group. Thus for the base-line under translations 
the proper parameter is the distance, s. To take as parameter 
a real function of the distance introduces a complication. 
So under homologies the proper parameter is p = as + (3, and 

under homographies it is p = as + ~, where in each case the 
ys+v 

constants are such that p is always real. For instance, if we 
take any real parameter p, we may say that any line is 

X= a o+ alP 

and has the differential equation 

d2xJdp2=0 

But we must notice that also 

d2xJdp2 = KdxJdp 

will be a line when K is real. For then 

dxJdp = K(X - xo) 
x - x 0 = eK(p - Po) 

It is necessary, then, to discuss the proper parameters. 
§ 75. The Homologous Derivative - For the homology 

we have 

(1) 

y=ax+b 

dyJdx=a 
d2yJdx2=0 
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This then characterises the homology itself. If x and y be 
functions of u, then, denoting differentiations as to u by a 
superposed dot, 

y=ai 
y=ax 

so that xjX is a constant under homologies, applied to x. 
Let us denote it by (x, u). Then (x, y)=O when x and yare 
homologous. But then also (y, x) =0. We look then for an 
identity which connects (x, y) and (y, x). 

If we use the ordinary processes of the calculus, we have 

dx dy 
dy· dx=1 

Differentiate the logarithm of this. Then 

that is, 

(y, x)dx+(x, y)dy=O 

Similarly if x and y, y and z, and therefore z and x be analyti­
cally related, from 

dx dy dz 
dy· dz· dx=1 

we obtain by differentiating the logarithm 

(y, x)dx+(z, y)dy+(x, z)dz=O 

This cyclic rule evidently holds in general. 
Let us apply it to the planar curve 

f(x, x) =0 
The formula (2) gives 

(x, x)dx+ (x, x)dx=O 
Therefore 

(x, x)dx = 2£d>.. 

where >.. is real. Apply a homology x =ay + b and use the 
analogous formula (H4) for the cycle x, x, y, y. Then 

(x, x)dx + (x, Y)dy + (y, y)dy + (y, x)dx = 0 
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But here (x, y)=O and (x, y)=O. Hence 

(x, x)dx = - (ii, y)dy 
= (y, ii)dii 

Hence d>" is a constant under homologies, and is the proper 
real parameter to use for a curve. 

The meaning of >.. is in this case evident. For 

dx/dx=e2t¢ 
d2x/dx2 = 2£e2t¢dcfo /dx 

Whence 
(x, x)dx = 2£dcfo 

Thus >.. is cfo, the angle of the curve at the point considered. 
Another form is 

or 

or 

or 

d>..=ds/r 

We now apply the formula (Ha) to x, >.., x: 

(x, >..)d>.. + (>", x)dx + (x, x)dx = o. 

(x, >..)d>.. - (x, >..)d>.. + 2£d>" = 0 

(x, >..) - (x, >..) = 2£ 

(x, >..) =£ +J 

where J is real. We call J the fundamental differential 
invariant (under homologies). Its meaning, again, is simple 
to find; for 

whence 

so that 

dx=dse t¢ 
dx/dcfo =re t¢ 

d2x/dcfo2 = (dr/dcfo + £r)e!¢ 

(x, cfo) = £ + dr/rdcfo = £ + dr/ds 

J =dr/ds =d(log r)/dcfo 

Lastly, by the intrinsic equation of a curve (under homo­
logies) we mean 

that is, 
J =f(>..) 

d(log r)/dcfo = f( cfo) 

A line has the equation 

ax+iix=p 
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and is thus characterised among curves by the fact that 

(x, x) == 0 

If we calculate (x, x) for any curve given by 

f(x, x)=o 

l35 

we obtain an expression which, when it vanishes, means 
that the curve is more than usually like a line. Whereas 
usually at a point x of a curve we can find a line on x for 
which dx/dx is the same for line and curve (the tangent), we 
have here d2x/dx2 the same for both. 

§ 76. The Homographic Derivative - For the homography 

y=a+b/(c-x) 
y=b/(C-X)2 
fj = 2b/(c - X)3 
Y = 6b/(c - X)4 

whence 

y/y = 6/(c - X)2=~(fj/y)2 

Thus y and x are homographically related when 

(l) 

This differential expression is called the Schwarzian deriva­
tive; we denote it by {y, x}. Since the homographic relation 
is transitive and in particular reversible, there must be an 
identity between 

{x, y}, {y, z} ... {l, x} 

This we shall determine, using power series in preference to 
differentiations. 

Let y be an analytic function of x. To a change t in x 
corresponds a change TJ in y where 

and 
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so that 
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"1 = Ul(fJ17J + fJ27J 2 + ... ) 
+ U2(fJ17J + fJ27J 2 +. .)2 
+ U3(fJ17J + fJ27J2 + ... )3 
+ ... 

UlfJl = 1 
UlfJ2 + U2fJ12 = 0 
UlfJ3 + 2U2fJlfJ2 + U3fJ13 = 0 

or expressed as differentials, 

that is, 

dy dx 
dx· dy=1 

dy • d
2
x + d2y(dX)

2 
= 0 

~ "12 t2 "1 

d2x/dx +d2y/dy=O 

the formula (H2 ) of § 75, and 

1 dy d3x d2y dx d2;r 1 d3y (dX)3 
6.Y.7+22~2.~.2y2+6.13. -:;; =0 

that is, 
d3x d2x d2y d3y 
dx + 3 ax . dy + dy =0 

Hence subtracting i x the square of H 2, 

3 3 
d3x/dx -2(d2x/dx)2 +d3y/dy -2(d2x/dx)2=0 

Similarly if x, y, z be analytically related each to each, 
and if t, "1, , be corresponding changes, then 

7J=Ul~+ U2~2+ u3t3+ ... =dy+d2y/2 !+d3y/3!+. 
,= fJ17J + fJ27J 2 + fJ37J 3 + ... =dz + d2z/2 ! + d3z/3 ! + . 
~=Yl'+Y2'2+Y3'3+ ... =dx+d2x/2!+d3x/3!+. 

whence 

~=UlfJlYlt 
+ [Yl(fJlu2 + fJ2 u12) + Y2U12fJ12]t2 

+ [Yl(fJlua + 2fJ2ulu2 + /33u13) + 2ulfJlY2(fJlu2 + fJ2 u12)]t3 

+ ... 
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so that 
alf3lYl = 1 
a2/a l + alf3Jf3l + alf3lY2/Yl =0 

or in terms of the differentials, 

d 2x/dx + d2y/dy + d2z/dz = 0 

the formula (Ha) of § 75, and 

aa/al + al2f3a/f3l + al2f3l2Ya/Yl 
+ 2a2f32/ f3l + 2f32Y2al 2/Yl + 2Y2a2f3l/Yl =0 

or in terms of differentials, 

'£dax/dx+ 3,£d2xd2y/dxdy=0 

or, subtracting { x the square of (Ha) 

'£[ dax/dx - {(d2x/dx)2] = 0 
whence 

l37 

And so in general for any number n of related functions 
x, y, z,. . 1, we have Cayley's cyclic formula Cn , namely, * 
(Cn ) {x, y}dy2 + {y, z}dz2 + . . . + {1, x}dx2 = 0 

§ 77. Homographic Invariants of a Curve - Having this 
fundamental fact for homographies we proceed as we did for 
homologies. Taking the case of a planar curve 

f(x,i)=O 
we have 

{x, i}di2 + {i, X}dX2 = 0 

so that {x, i}dx2 is an imaginary, say, 

{x, i}di2 = 2£d).2 

where d).2 is real. Apply a homography 

X= (ay +b)/(cy +d) 

and use Cayley's rule for the cycle x, i, y, y, observing that 
{x, y}=O and {i, 'fi}=0. Then 

{x, i}di2 = - {Y, y}dy2 
={y, y}dy2 

* Cayley, Cambridge Phil. Tran8., vol. 13, 1880. 
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Hence d'A2 is a constant under homographies, and 'A is the 
proper parameter. 

Using now (Ca) for the cycle X, 'A, x, 

Hence 

{x, 'A}d'A2 + {'A, x}dX2 + {x, X}dX2 = 0 
{x, 'A}d'A2 - {x, 'A}d'A2 + 2£d'A2 = 0 

{x, 'A} - {x, 'A} =2£ 

{x, 'A}=£+J 

where J is real. We call J the fundamental differential 
invariant of the curve. The intrinsic equation of a curve 
under homogra phies is 

Taking the arc-length s as independent variable we have 

x=e t¢ 
x=£et¢c 

where c is the curvature, dcpjds. Then 

x = et¢(£c - c2) 
{x, s} =£c + c2j2 

{x, s} - {x, s} = 2£c 

From the formula (Ca) 

Hence 
{x, x}dx2 = {x, s}ds2 - {x, s}ds2 

2Ld'A2 = 2£OOs2 
d'A2=dcds 

As defined d'A is real when c is positive for increasing s-that 
is, when the curvature and the arc-length increase together. 
We notice that at an apse-that is, where the curvature is 
stationary-d'A = o. In passing an apse, 'A acquires a factor 
± £, so that the curve where it has apses is mapped on a 
succession of segments at right angles. 

If we wish d'A to be always real, we should write 

{x, x}dx2= ±2£d'A2 

§ 78. Special Cases - J is a number attached to a point 
of a curve which is constant for all homographies. If then 
the curve admits homographies into itself, J has the same 
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value at the corresponding points. If the curve admits an 
infinitesimal homography into itself then J will be a constant. 
Hence the important curve here is the equiangular spiral, which 
we saw is built on similar triangles with a fixed vertex (§ 12). 

To verify that J is a constant, take the spiral in polar 
co-ordinates 

so that 

Hence 

Since from Ca 

we have 

or 

Hence 

and 

r=exp (0 cot a) 

x=exp 0(£ + cot a) 

A= V -cot a. dO 

{x, A} = - tan a{x, O} 
1 

=~tan a-cot a)+£ 

J = -cot 2a 

In particular when a is ± 'TT/4, J = O. 

After recent German custom * we may call A the inversive 
length of a curve, and J the inversive curvature. The 
equiangular spiral (or any homograph of it) is then the 
curve of constant inversive curvature, and the spiral with 
angle 'TT/4 (or any homograph) is the curve of zero inversive 
curvature. 

To calculate J in general, we find first {A, 8}. Since 
)..2=C 

2X/>'=c/c 
2[X/X - (X/)..)2] =c,c - (C/C)2 

and 

(1) 

* References will be found in B. C. Patterson's paper, "The Differential In­
variants of Inversive Geometry," American Journal, vol. 50, pp. 553-568. 
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Since 

(2) 
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{x, >.}d>.2 = {X, s}ds2 - {>', S}dS2 
{x, >.}C = LC + c2/2 - {>', S} 

CJ =c2/2 - {>', S} 

Exercise I - Verify that when C8 = K, J is a constant. 

For the equiangular spiral we have cp = K log s. To form 
some idea of other cases, let 

(3) cp = Ksn/n 

where n is not o. Then 

Here 

or 

and 

(4) 

Hence 

(5) 

C=KSn- 1 

c=K(n _l)sn-2 

1 1 
n(n - 1 )cpJ =-n2cp2 +-(n2 - 4) 

2 8 

d>.2 = K(n - 1 )sn-2ds2 

>. = 2 V K(n - 1 )sn/2/n 

=2V(n -l)cp/n 

This, then, is the intrinsic equation of the curve (3), and of all 
its homographs. The curve is given by 

x = J et¢cplln-1dcp 

There are from (3) two cases at first sight, for when s increases, 
if n be positive, cp will increase and the curve will behave 
spirally; whereas if n be negative there is an asymptotic 
line CP=O. 

In the former case we expect a limit for x, say, 

Poto = J~ et¢cplln-1dcp 
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Writing CPl = - cP, we then have 

and 

Poto= - [e- t ¢,( _I)l/n-lcpll/n-ldcpl 

= ( - I )1/npo/to 

to2=( _1)1/n 

Thus for n = 2 we have the Cornu spiral. Here 

)..2/2 = cP 

and the intrinsic equation is 

J =)..2/2 

141 

The singular points have the directions ± v;, measured from 
the tangent at )..=0 (fig. 42). 

FIG. 42 FIG. 43 

For n = 3/2, we have the spiral 

8J =9)..2 _7/)..2 

and the singular points have the directions ± 11/3 (fig. 43). 

EXerci8e 2 - Apply the recurrence formula 

eZx·'/a I = J:ezxadx/al + J:ezxa-1dx/(a-l) I 

to test the above conjecture. 

In the case when n is negative, and the curve no longer lies 
in a finite part of the plane, it is proper to invert it. But 
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this is where the intrinsic equation helps. Suppose n = - 2, 
so that the intrinsic equation is 

J =).2/18 

Here ).= V6cp, J =cp/3. We have then one point for which 
J =0, one change of sign of ).2, and two asymptotic points for 
which J = 00 and ).= 00 • 

§ 79. Schwarz's Integral- Let f be a polynomial in x, say 

f=ao+nalx+(~)a~2+ ... +anxn 

A homography 
ay+b 

x--­
-cy+d 

gives a polynomial in y divided by (cy +d)n. And 

dx = (ad -bc)dy/(cy +d)2 

Hence dx/r,n is homographic-that is, it acquires under 
a homography a factor independent of x. Write 

(1) du=dx/r,n 

To regard this as a mapping we must assign the orthogonal 
sets of paths. Let u describe a line; then du has a given 
direction. Hence, if the angle of dx is cp, and that of x - Xi is 
8i where Xi is a zero of f, 

(2) 
2 cp - - L. 8i = a constant, K 
n 

This assigns to any point x, n angles cp differing by 27T/n, when 
n is odd, and m angles differing by Tr/m when m is even, since 
8i can be increased by 2Tr • But for a region of the x-plane 
which does not contain any point Xi' if the angle cp is selected 
for one point it follows by continuity for all points, and the 
curve for X in this region corresponding to the line for u 
becomes definite. The curves (2) are inversive. 

In the case where the points Xi are all on a line (or a circle), 
say on the base-line, the curve (2) is for K=O and 8i =0, 
cp = 0, a segment of a line. As X traverses the base-line from 
right to left, when it passes Xl by a small semicircle, say in the 
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upper half-plane, cp increases by 27T/n, and is then constant 
until x passes x 2 • Thus the path of u becomes a polygon in 
the plane of u. Since the total angle turned through by u 
is 27T, the polygon is closed. 

This is Schwarz's mapping of the half-plane on the interior 
of a polygon, in the case where the roots are all simple, so 
that the polygon is equiangular. For more general cases 
see § 80. 

We have in (I) a sequence of mappings. Write 

For n=l, 
x = o/nu 

du = Kdx/(x - X1)2 
U-U1=K/(X1 -x) 

so that 0/1 is a homography. 

Exercise 3 - The curves (2) are here circles on Xl. 

For n=2, 
du =dx/( ao + 2alx + a2x2) 

or, applying a homography to x, 

du=dx/x 

Thus 0/2 is (ae" + b)/(ce" + d). 

Exercise 4 - The curves rp - (01 + 0.) = K are circles on or about xl> X •• 

For n = 3, we have 
du =dx/(x3 + 1 )2/3 

and 0/3 is an elliptic function of u (built on an equilateral 
network). For mapping with this function, see Adams.* 

For n=4, 
du =dx/(4x3 - Y2X - Y3)1/ 2 

and 0/4 is an elliptic function, here the p-function of 
Weierstrass. 

* Oscar S. Adams, "Elliptic Functions applied to Conformal W orId Maps," 
U.S. Department of Commerce Special Publicatian No. 112 (Washington, 1925). 
Geographically, a hemisphere (or other spherical cap) is mapped by "'1 into the 
interior of a circle, by",. into a strip (Mercator mapping, § 13), by",. into the 
interior of an equilateral triangle, and by "'& (in the case when Xi are on a circle) 
into the interior of a rectangle. 
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In these cases, and only in these, the function o/n is one­
valued. 

Denoting differentiation as to x by D, the equation (I) 
gives 

f= (Du)-n/2 
so that 

Dn+ l(Du) -n/2 = 0 

This is then the differential equation for u. If, replacing n 
by r we form 

since 
Du=l/r1n 

we have 

(3) 

This particular operation on f will have the homographic 
quality, and should be examined. 

When r = I, the expression is D2f-ln. It vanishes always 
whenf is an nth power. Otherwise it vanishes when 

(4) nfj - (n -1)f2=O 

The meaning is that at these points x, f is more nearly an nth 
power than at others. Thus if 

f= 1 +na1x +(~)a2x2 +. 
this and 

(I + alX)n 

agree to a first approximation, but at the points given by (4) 
they agree to a second approximation. 

If 
f=aO+na1x+ .. 

then at the point 0 

j=n(n -1)a2 
and (4) is 

The points are the Hessian points of the points f. 
Exercise 5 - If u=j-s/ .. prove that 

{u, x}= -'4njj-(n-I>p)/nSj9 
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Again, there will be points x around which the mapping is 
the function if2 to a closer approximation than elsewhere. 
To find them we obtain the differential equation for if2. 
From (I), 

so that 

Thus for ifm for which Du=I-2/n, the points in question are 
given by 

that is by 

(5) pi - 3(n - 2)1 j jJn + 2(n -I)(n - 2)Ja/n 2=O 

If 

so that 
j=n[al +(n-l)a2x + •. . J 
J=n(n -1)[a2 + (n - 2)aax + ... J 
/=n(n -I)(n - 2)[aa + (n - 3)a4x + .. J 

then the constant term in (5) is 

n(n - I)(n - 2)ao
2aa - 3n(n - I)(n - 2)aOal a2 

+n(n -I)(n - 2)(ao
2aa - 3aOala2 + 2a13) 

and this shows that the covariant in (5) is the one denoted by 
J, whose symbolic expression is 

In general, to calculate Dn+1/"ln the method of series with 
the simplification due to writing a o = I, al = 0 is convenient. 

If the Hessian vanishes, then every point is a Hessian point, 
and dx/pln becomes dx/(a o+ alx)2. Thus 1 is the nth power 
of a o + alx. If the covariant J vanishes, then dx/pln becomes 
dx/( ao + 2a1x + a2x2). Thus for n = 2m, 1 is the mth power of 
a quadratic when J = o. And in general if n =rm the 
covariant which vanishes when 1 is the mth power of a form 
of order r is obtained from if ... * 

• Compare Hilbert, Math. Annalen, vol. 27 (1886), pp. 158-161, where the 
general form is given. 

10 
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EurciM 6 - n we develop sin (x - a) in powers of x, we have 

cos a(x - xSj3! + . . .) - cos a(1 - xSj2! + . . . 
80 that <Ia = - cos a, al = cos a, Us = sin a, Us = - cos a. Prove that 

aoas - Uts= -I 
and 

aosUs-3<IaUtUs+2ass= -2cosa 

The latter vanishes when a=(2n -1):n;j2. 

§ 80. Conformal Mapping - A line is given by a special 
homology, say 

y - Yo =Wfi-Yo) 

Thus the homologous derivative (y, y) vanishes for a line. 
Hence for any real parameter P, (y, p) = (y, p); that is, (y, p) 
is real, when y moves on a line. As p describes the base-line, 
say from right to left, y describes a line until it reaches a 
point YI for which y - YI =c(p - PI)al + ... , where a is not l. 
The value of (y, p) is then (al - 1)/ (p - PI) + . . . Let p describe 
a small semicircle around p, and proceed along the base-line. 
Then y turns through the angle Tr - alTr, and continues along 
another line. 

If then we write 

(I) 

we have mapped the base-line into a polygon with interior 
angles aiTr. 

If for p = 00 Y is not a singular point, then y = a/ p + . . 
and (y, p) = - 2/p + . Hence the polygon is closed if 

~(ai -1)=-2 

A circle is given by a special homography, say 

(y - Yo)(y - Yo) = K2 

Thus the homographic derivative {y, y} vanishes for a circle. 
Hence for a real parameter p {y, p}={y, p}; that is, {y, p} is 
real when y moves on a circle. Conversely if {y, p} is real, y 
will move on arcs of circles, and the change from arc to arc 
will occur when y - YI = c(p - PI)al + . . ., where al is not I. 
That is, when {y, p} = (I - aI2 )/2(p - PI)2 + . .. Then y turns 
through the angle 7T - alTr, and continues along another arc. 
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If P = 00 is not a singular point, we may write for large P 

y - yo= I/p +b/p2 + ... 
and calculating {y, p} we find - 6b2/p4 + 

If then we write 

(2) 

where Ri is a real rational fraction of p of degree - 4, such 
that when p =Pi it is (I - ai2)/2(p - Pi)2, we have mapped the 
base-line into a closed arc-polygon, and a half-plane into the 
interior of the polygon. 

Thus for three singular points Pi the equation 

{y, p} =~(I - a12)(pl - P2)(Pl - P3)/2(p - Pl)2(p - P2)(P - P3) 

maps the half-plane into the interior of a triangle of arcs, 
with angles aiTr. * 

We assume (as in § 65) a famous theorem of Riemann, 
that a region with one rim can be mapped isogonally on a 
half-plane or the interior of a circle. Thus, if x be a point 
of the base-circle, and y a point of the region, then y is a one­
valued analytic function of x, say y(x), and equally x is a one­
valued function of y, say x(y). The geodesics of the circle, 
that is the orthogonal arcs, map into the geodesics of the 
region. 

An analytic function, near y =0, may be taken as a con­
vergent series 

y + f3~2 + f3aY3 + 
Let the limit be pt. Then 

fi + p~jj2 + ... =p/t 
and 

(3) Y + f3~2 + ... =t2(fi + P2fi2 + ... ) 
This is the pencil of geodesics on y = 0, corresponding to the 
diameters of the base-circle. 

• Of the very extensive literature on conformal mapping we mention Riemann's 
works; H. A. Schwarz, Math. Abhandlu1/{/en, vol. 2; F. Klein, Math. Abhand­
lU1/{/en, vol. 3; and for the later treatment C. Caratheodory, Cambridge Tracts, 
No. 28, and H. Bateman, Partial Differential Equations, chap. 4_ Full references 
are given in L. R. Ford, Automorphic Functions (McGraw-Hill Co., New York). An 
introduction is Conformal Representation, by L. Lewent, translated by R. Jones 
and D. H. Williams (Methuen, London). 
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In (3) there are no product-terms. That is, DyDiij=O, or 
Laplace's equation is satisfied. 

The osculating circle of (3) at y=O is 

y - t2fj + t'Atyfj = 0 

when f3i!l- tAtyy - t2 ~~2 has the factor y - t2fj; that is, when 

tAt = f3J2 - ~2 

The osculating circle is then 

y - t2fj + (f3J2 - ~2)YY = 0 

Hence all the circles, for varying t, are on the point 

y=l/f32 

I t is useful to know the locus of flexes, and the locus of apses, 
for the pencil (3). For this pencil is the paths of flow from a 
source at y=O to the rim (acting as sink). 

For a flex on a curve, (y, y) is 0 (§ 75). Hence, if we are 
mapping a curve x on the curve y, 

(x, y)dy = (x, y)dy 

If, then, we are mapping the radii x=pto on the region y, so 
that dx/x is real, 

(x, y)xdy/dx is real. 

This gives the flex-locus for the paths of the region. 
For an apse on a curve {y, y}=O (§ 76). 
Hence 

{x, y}dy2 is real. 

In the same mapping, we have then 

{x, y}x2(dy/dx)2 is real. 

This gives the apse-locus for the paths of the region. 

Exerci8e 7 -A haH-plane x is mapped on the interior y of a rhombus by 

dy =dx(x9 _1)(A-l)/2(X9 + 1)-(A-l)/2 

Hence determine the flex-locus for the flow from the centre of the rhombus 
to its edges. 

Exerci8e 8 - Determine the flow from one vertex of a quadrangle to the 
opposite vertex, the edges being levels; and show that the flex-locus is the 
map of a circle in the haH-plane. 
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CHAPTER XII 

THE LINE AND THE CIRCLE 

§ 81. Map-equ.ations of a Line - The translation 

x=y+tpo 

sends the base-line y = p into any parallel line. The rotation 

x - Po =t(y - Po) 

sends the base-line into any line cutting the base-line. Thus 
all lines may be written either as 

x=p+tpo 
or 

x - Po =t(p - Po) 

The first may be derived from the second by letting t approach 
1, and Po approach 00 • 

The general homology 
x=ay+b 

gives, for y =p, the line in the more general form 

x=ap+b 
where a and b are given. 

At first sight the four parameters, two for a and two for b, 
are too many, since two parameters determine a line. But 
in equation (1) of § 80 

p=ap' + f3 
we have two disposable parameters a and f3. The number of 
parameters in 

x=ap+b 

is then 4 - 2, as it should be. We may, for instance, include 
the real factor of a in p, so that any line is 

x=tp+b 

where t and b are given. We can still write p + f3 for p, so 
that we can replace b by b + tf3, and f3 can be chosen so that 
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this is a real, when the line cuts the base-line; or an imaginary, 
when the line cuts the vertical axis; or zero, when it cuts both. 

Let x be the centre of any stretch which sends a into b. 
Then 

x -b=p(x -a) 
so that 

x=(b - pa)/(I- p) 

For variable p this is again the equation of a line, the join of 
a, b. 

Let x be the centre of a rotation which sends a into b. 
Then 

x-b=t(x-a) 
so that 

x=(b-ta)/(I-t) 

For variable t this is the equation of a line, the axis or middle 
line of a, b. In particular, for a=O, 

x=bl(l-t) 

where b is the image of the base-point. 
Such parametric equations are called map-equations. The 

base-line or the base-circle is mapped on to the new line or 
circle. The last equation is noticeable, because it maps a 
circle on to a line. The point t = I gives the point x = 00 • 

Two points divide their join into two segments, a finite 
and an infinite segment. It is easy to express either by a 
map-equation. For 

2x=t+ lIt 
or 

x=cos e 
is the finite segment with end-points ± 1. And 

2x=p+llp 
or 

x=cosh p 

is the infinite segment with the same end-points. Applying 
a homology we have for any finite segment 

x =a + b(t + lIt) 

and for any infinite segment 

x=a+b(p+ IIp) 
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§ 82. Self-conjugate Equations of a Line -If we write the 
conjugate of any of these equations and eliminate the para­
meter we have an equation between x and X, which is the 
self-conjugate equation of the line. 

Thus from 
x=bf(l-t) 
x=6(1- 1ft) 

we have 

(I) 

the standard equation of a line. 
If the line be on the base-point, we may write 

x=t2X 

Here t2 is the clinant of the line, the square of either 
direction. 

All cases are included in the general self-conjugate linear 
equation 

ax+ax+p=O 

The coefficients here enter homogeneously. 
The reflexion in a line given by a self-conjugate equation 

is obtained by writing Y for x, or'fi for x. Thus we regard a 
line and generally a curve as bound up with a transformation, 
the curve being the locus of fixed points. The essential is the 
ease of transition from the curve to the transformation, and 
conversely. 

is 

Exerci8e 1 - The directed distance from a point y to the line 

x/b +:i/b= 1 

b(l - y/b - ii/b)/2 

Other ways of writing a self-conjugate equation of a line 
are: 

(2) In terms of the clinant -r and a point Xl on the line, 

X -Xl =-r(x - Xl) 

If Xl be where the line meets the base-line, so that Xl = p, then 

(2) X -p=-r(x - p) 

Here p is the intercept of the line. When p = 00 , -r becomes I, 
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but lim p(l - T) is finite. The limit of the direction of (1 - T) is 
t, so that lim p(l - T) is an imaginary. 

(3) The join of two points Xl, x 2 is 

X Xl X 2 =0 
(3) 

This expresses that three points on a line form a triangle 
negatively similar to itself. 

For, from the general Euclidean operation, 

x=aii +b 

the triangles Xi and Yi are negatively similar when 

1 Xi iii 1 1=0 
They are positively similar when Xi = aYi + b; that is, when 

IXi Yi 11=0 

(4) The axis of two points Xl, Xz is 

X Xl X 2 =0 
(4) 

This expresses that the isosceles triangle x, Xl' x 2 is negatively 
similar to the triangle x, X 2, Xl. The four determinants of the 
matrix 

a b X Y 
ii [) ii x 
1 1 1 1 

vanish when x, yare images in the join of a, b. The four 
determinants of the matrix 

a b X Y 
[) ii ii x 
1 1 1 1 

vanish when X and Y, a and b, have a common axis. 
(5) For a line which cuts the base-circle at the points t l , tz, 

we have in the standard form 

b=tl +t2 

[) = Ijtl + Ijt2 
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Thus the standard form becomes the equation of a secant, 

(5) 

Any given number of lines may be taken in this form, since 
the radius of the base-circle-that is, our unit of length-is as 
large as we please. 

Exercise 2 - The lines 

are perpendicular. 

x -!?l =T(X - !?t) 
X-!?s= -T(X-!?s) 

Exercise 3 - The joins of b. c and of a. d are perpendicular when 

(b-c)/(a-d)=!?£ 

Exercise 4 - From the identity 

b-c c-a a-b (b-c)(c-a)(a-b) --+ --+ - + '----'-''----'-''--------'--
a-d b-d c-d (a-d)(b-d)(c-d) 

deduce that the perpendiQulars or altitude-lines of a triangle a. b. c meet at a 
point d. 

§ 83. The Base-circle - The simplest map-equation of the 
base-circle is 

x=t 

The equation of the line cutting the circle at tl and t2 is 

x + Xtlt2 =tl + t2 

Writing this in the form 

(x - tl)(x - l/t2) =xx - 1 

it says that the product of the lengths of the segments of the 
secant, measured from x to the circle, is the constant xx - I. 
This constant is the power of the point and circle. It is 
the constant of the inversion with centre x which sends the 
circle into itself. The pairing or involution thus set up on 
the circle is elliptic, hyperbolic, or parabolic according as x 
is inside, outside, or on the circle. In the parabolic case, 
where x is, say t l , t2 is arbitrary, but we assign each point 
t2 to the clinant of its join to t l . 

Exercise 5 - If the secant tll t. be parallel to t •• t6' and ts, ts be parallel to 
t6' t •• then ta. t. is parallel to t •• tl. This is a form of Pascal's theorem. 
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Writing again the equation of the secant in the form 

(x - tl)/(I - Xtl) =t2 
or 

(x - tl)/(I/x - tl) =t2X 

we see that the ratio of the distances of any point tl of the 
circle from the given points x and I/x is the constant x. This 
is a theorem of Apollonius. 

As a limiting case of the secant, the tangent-line or simply 
the line of the circle at t il!l 

(1) x +xt2=2t 

The roots of this quadratic being tl and t2, 

tl +t2=2/x 

Thus the tangents at tl and t2 meet at 

(2) X=2tlt2/(tl +t2) 

For varying t2, this is a map-equation of the tangent at tl • 

For two points ti on the circle we have the equation 

(3) 

expressing that x and yare images in a secant. It must be 
noticed that 

(4) x +iiab=a +b 

is the antilogy which sends x=a into y=I/a and x=b into 
y= 1/'6. This antilogy, an operation defined by a circle and 
two points, becomes a reflexion in two cases, when both 
points are on the circle, and when the points are images in 
the circle. The antilogy is general, for x + ii a = f3 has in 
common with xii = 1 the two points given by x 2 + a = f3x. 

Exercise 6 - Equation (4) expresses that x, a, b is negatively similar to 
y, ljii, ljb. 

In particular when a =b we have the tangent antilogy 

(5) x+iia2 =2a 

with fixed point given by x + xa2 = 2a. 
Thus we see what happens to the tangents from a point 

x to a circle when x is inside. The two values of a are an 
image-pair; instead of the tangents we have an antilogous 
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form (5), giving two reciprocal antilogies, one of which sends 
a into 1/0" and the other sends 1/0, into a. 

And in general for the tangents from a point to an algebraic 
curve we have lines of the curve and tangent antilogous 
forms. 

§ 84. Envelopes - We have said that the lines t1 , t2 of 
the base-circle meet at the point 

x = 2t1t 2/(t1 + t 2 ) 

This is any point outside the circle. 
Generally, when x=f(t, T) we have for given t a curve, 

for then varying t a system of curves; and for given T a 
curve, and for then varying T a second system of curves. 
We regard x as an intersection of two curves, one of each 
system; to obtain the envelope we make the two curves 
touch. When t varies, the direction is given by dx/dt; 
since dt/t = LdO the direction is that of dx/dO, or of ,tdx/dt. 

So when T varies the direction of the other curve is that of 
,,.ax/dT. 

Hence for the envelope we are to have 

(1) tit! T ~ = real. 

Exercise 7 - When X=t+T-tT, the envelope is the curve X=2t_t2, and 
the point x = 1. 

Exercise 8 - Circles have their centreS on a circle and touch a diameter of 
it. Find their envelopes. 

When x is a function of two reals, x=f(r, p), the rule of 
envelopes is simply that 

(2) Of! of. 
Or op IS real. 

And when x = f(p, t), the rule is that 

(3) Of/ of . 
d ot 8p IS real. 

§ 85. Map-equations of a Circle - The simplest map­
equation of any circle is 

(1) x=a+bt 

where a is the centre and I b I the radius. 
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We may regard this as the result of a homology x = a + by 
applied to the base-circle. 

The group of homologies which send the base-circle into 
a given circle is then 

x=a+r-ry 

Their centres are given by x=a/(I-rT). 
This is a circle covariant under homologies called the 

circle of similitude. The group contains two stretches, 
namely, when T= ± l. Their centres are the centres of 
similitude. They divide the centres of the circles in the ratio 
of the radii (positively or negatively). 

Exercise 9 - They are the centres of the two inversions which interchange 
the circles. 

Exercise 10 - If a centre of similitude is on one circle it is on both, and the 
circles touch. 

Exercise II - The six centres of similitude of two out of three circles are 
the points of a four-line, and the centres of the circles form the diagonal 
triangle. 

If we take the two circles as 

x - 2t + fit2 = 0 
x -p. - 2rT+ (x -P.)T2=0 

Then for common lines we have t2=T2-that is, t= ±T. With 
t=T, we have also 

or 
p. - 2(1 - r)t + p.t2 =0 

t+l/t=2(I-r)/p. 

If then I 1 - r I > p. we have not common lines, but a common 
antilogous form. For t = - T we change the sign of r-that 
is, the way of description of one circle. 

The general one-to-one map-equation of a circle is 

where z is a real p or a turn t as is convenient. To find the 
centre, that is the image of 00, we note that x = 00 when 
z = - f3o/ f31· 

The image of this in the base-line (or base-circle) gives 
then the centre. 
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§ 86. Self-conjugate Equation of a Circle - The bilinear 
curve is homogeneously written 

(1) I=pxx - ax - ax+a=O 

In terms of the centre c it is 

(2) (x -c)(x -c) + K=O 

It is a circle when K is negative, a double point when K = 0, 
an extra pair, images as to the plane considered, when K is 
positive. We may denote it by (c, r 2 ) in the first case, and 
by (c, - '2) in the third case, ±, being the ordinates to the 
plane at c. 

The discriminant of (1) is pa - aa; the curve is a circle 
when this is negative. 

Replacing x by fj (or x by y) we have from (1) the general 
inversion pxfi - ax - afj + a = 0, this being hyperbolic, para­
bolic, or elliptic as its discriminant pa - aa is negative, 0, or 
positive. 

Exerci8e 12 - Under an inversion (0, K) the circles (c, rS ) and (C]., r1S ) are 
interchanged, where 

cJc=cJc= K/(ce-r") =(cA -r1S)/K 

Two circles (ci , rl) are orthogonal when 

(3) 

For the homogeneous forms (1), (3) becomes, since ci = -ai/Pi 
d 2_ (- ')/ 2 an ri - a.ai - PiPi Pi' 

The expression is the bilinear invariant (or polar) of the two 
curves. For coincident curves it is twice the discriminant. 

Denoting it by 112, then 112/ V In V 122 is the fundamental 
constant of two circles, under homographies. When they 
meet it is from (3) the cosine of an angle of intersection; 
when they touch it is ± 1; when they do not meet it is 
cosh A, where A is a hyperbolic distance. 

Exercise 13 - When a given circle touches an extra pair at a given point, the 
locus of the latter is two lines, inclined to the plane considered at 45°. 
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§ 87. The n-line - Let us write the equation of a line in 
the form 

x = - (x - XI)XI/XI 

where Xl is the image of the base-point. 
Denoting the reciprocal of the clinant by t l , this is 

(1) x=tl(x -Xl) 

where 

(2) 

We have then for two lines 

X=ti(X -Xi) 

whence the intersection is 

(3) 

For three lines we have three such intersections. All are 
included in 

3 

(4) X = ~Xltl(tl - T)/(tl - t 2)(tl - t3) 

since this when T = t3 is X12, and so on. 
Now (4) is of the form 

It is then the circumcircle of the three-line. Thus the 
circum centre , X 123' is 

3 

(5) X123 = Co = L, XltI2/(tl - t2)(tl - t3) 

and the radius is I CI I where 
3 

CI = L,Xltl/(tl - t2)(tl - t 3) 

For four lines there are four circumcentres. All are included 
in 

4 

(6) X = ~XltI2(tl - T)/(tl - t2)(tl - t3)(tl - t<1) 

since when T = t<1 this is X123' and so on. 
Hence the four circum centres lie on a circle whose centre is 

<1 

(7) X123<1 = L,Xl t I3/(t l - t2)(tl - t3)(tl - t<1) 
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and whose radius is I C1 I where 
4 

C1 = LX1t12/(tl - t2 )(t1 - ta)(tl - t<1) 
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And the argument can be continued indefinitely. Thus we 
have for n lines no two of which are parallel a covariant 
point Co (under homologies) which is the natural base-point, 
and a covariant circle which is the natural base-circle. We 
call this point the centric point, or simply the centric, and this 
circle the centric circle. 

Let us repeat the argument more generally. Write 
J(t) for 

(t - tl)(t - t2 ) ••• (t - tn ) 

(tl - t2)(t1 - ta) ••• (tl - tn ) 

where n is the number of lines considered. 
We have for a three-line the circumcircle 

a 
(8) x = LX1t1(tl - T)/f(t1) 

For a four-line we have the expression 
4 

(9) X = ~>ltl(tl - Tl)(tl - T2)/j'(t1) 

This when T2 is t4 becomes (8). 
It thus includes the four circum circles of the lines taken 

three at a time. 
Let us write (9) as 

(10) 

Then 

Hence we have 

where 

and 

<1 

Co = LX1t1a/f(t1) 
<1 

C1 = LX1t12/f(t1) 
4 

C2= LX1t1/f'(t1) 

11 
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For a canonical form of (10) we may then take co=O, C1 = -1, 
and 

X=71 +72 -717 2. 

The envelope of this (§ 84) will be a curve Or curves touched 
by the four circumcirc1es. This envelope is: 

(1) the curve X=27 - 7 2 

(2) the point x = 1. 

In particular then the circumcirc1es of 3/4 lines meet 
at a point (fig. 44). And this point is on the centric circle. 

FIG. 44 

So for a five-line we write the expression 
5 

(11) x = L. X1t1(t1 - Tl)(t1 - 72)(tl - 73)/f (tl) 

This when 7S=ts is (9). 
We infer that there is intimately connected with the five­

line (in Euclidean geometry) a curve 
5 

x = ~Xltl(tl - 7)s/f(t1) 
Or 
(12) 
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I) 

Co= LX1tl l1/f'(t1) 
I) 

C1 = LX1t1a/f'(t1) 
I) 

C2 = LXlt12/f'(~) 
:; 

Ca= LX1t1/f'(t1) 
(;1= -8:;Ca 
C2 = -81)C2 

81) = tlt2tatl1t:; 
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and in general with an n-line is intimately connected a curve 
n 

x= ~Xltl(tl -T)n-2/f'(t1) 
=cO-nc1T+ •.. 

where 
n 

Ci = LXltln-l-i/f(tl) 

and 

(13) 

We shall consider these curves in Chapter XXI. Here we 
notice that while Co is a covariant point, C1, C2 • • • are con­
stants under translations. They form with the n clinants a 
system of constants for the n-line. 

The five centric circles for 4i5 lines are included in 
I) 

x = ~Xlt12(tl - Tl)(t1 - T2)/f'(t1) 
or 

x =Co - Cl(Tl + T2) +C2TIT2 

The envelope of this will be touched by the five circles. 
By the rule of envelopes 

Tl(Cl - C2Tl)/(C1T2 - ( 2 ) =T2(C1 - C2Tl)/(C1Tl - ( 2 ) 

so that either Tl =T2 Or 

C1{C1(Tl + T2) - C2TIT2} =CIC2 

Thus the envelope is the curve 

x =Co - 2C1T + C2T 2 
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and the point 

(14) 
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That is, the five centric circles meet at a point. The argu­
ment subsists unchanged for (n -I)/n lines. 

Thus the n centric circles, for each (n - I)-line in an n-line, 
all meet at the point (14).* 

Exercise 14-The value of x in (14) makes cO-C1(t+T)+Cst7·-x self­
conjugate; then for any t there is a turn T. This could be used instead of 
finding the envelope, in proving the theorem. 

§ 88. Stretches - The argument of the last section can be 
applied in other cases. Take the case of stretches. It is 
convenient to think of a map, say of an island. Under a 
stretch we get a second positively similar map, the north to 
south line agreeing. To consider several such maps, write 

fLixi=x+ai 

where fLi is real. As x travels over the given map, Xi will 
travel over say Mi. The fixed point for MIM2 is 

xu=al/(fLl - fL2) +aJ(fL2 - fLI) 
We write 

a 
X = ~al(fLl - fL)/(fLl - fL2)(fLl - fLa) 

This is a line, on which lie x 2a, x al, Xu. On the line is the 
point 

a 

X123 = ~ ulfLl/(fLl - fL2)(fLl - fLa) 
for which 

Xua - X2a = fLI~al/(fLl - fL2)(fLl - fLa) 

Call this the centric point for the three maps. For four maps 
we write 

'i 

X = L. UlfLl (fLl - fL )/1' (fLI) 

This when fL = fL'i is X 12a• 

Thus the centric points for 3/4 maps are on a line. And 
so on. 

* This theorem is attributed to de Longchamps, Nouvelles Correspondances de 
Math., vol. iii. (1887), by Prof. Coolidge, Treatise on the Circle and the Sphere, 
Clarendon Press, 1916. This is a valuable work of reference. 
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Exercise 15 - The equation 
xit +xt - 2p=0 

is that of a directed line. If we define the distance of a point from n such 
lines as the sum of the distances, then the point at zero distance is on the line 

X81 +XSI -2~p=0 
Call this the zero-line. 

Prove that the zero-line of two directed lines is the bisector of the angle 
between them, and that the zero-lines of m directed lines and n directed lines 
meet on the zero-line of the m+n lines. Thus we have on the zero-line of n 
lines 2n- 1 _1 points. The figure can be constructed by paper-folding. 

Exercise 16 - State the similar theorem for planes in a space. 

It remains to relate a set of points of the plane to a set of 
lines. 

Exercise 17 - There is one point x which is the centroid of its images in 
n given lines. 

This puts the n-lines of a plane in a one-to-one corre­
spondence with the n-points. So that a comitant (that is an 
invariant or covariant) of an n-line, under the Euclidean 
group, is a comitant of the related n-point, and conversely. 

Exercise 18 - Four directed lines 

x/t,+x~=2r, 
touch a circle if 

<l 

Lr.-t;/!,(t;} =0 

wheref(t}=(t-t1} ••• (t-t4 )· 

Five directed lines touch a circle if 

and 

And so on. 

5 

~r.-tJ!,(t,} =0 

5 

L'I'it;9/!,(t,} =0 
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REGULAR POLYGONS 

§ 89. The Regular Pentagon - A rotation y=tx, effected 
n times, sends x into t"x. This is x itself when t" = 1. In 
this case the points of the plane are arranged in regular 
polygons. To construct a regular polygon we have then to 
solve the equation t" = 1. We give here a few examples. 

For the pentagon to -1 =0, or removing the factor t -1, 

We write 
t 2+ I/t2+t+ I/t+ 1 =0 

fLl =t + lit 
fL2=t2+I/t2 

so that mi=fLi/2 is the mean of ti and I/ti . The construction 
is effected by finding m i and erecting verticals to cut the 
base-circle. 

We have 

(1) 

Consider the circle on the two points fLl and fL2' with centre 
on the base-line. It has the centre - 1/2, and meets the 
vertical axis at ±£. If we polarise (1) we have 

This gives the pairs of reals which are inverse as to the sought 
circle. The lines from £ to fLl and fL2 are the bisectors of the 
angle fL£fL'. Thus taking fL = 0, fL' = 2 the construction for 
fLl> fL2 is to bisect the angle 0, £, 2; or for m l , m2 is to bisect 
the angle 0, £/2, 1 (fig. 45). 

Analytically, instead of ' completing the square' we write 
(1) in the form 

(
1 + £fL)2 1 + 2£ 
I-£fL =1-2£ 
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1 

FIG. 45 

which expresses that the angle 0, t, 2 is bisected by the lines 
from t to /L. 

Exerci8e 1 - Gauss showed in his Disquisitiones Arithmeticce (1801) that 
constructions are possible by bisections alone whlli"e n is a prime number of 
the form 2.2' + 1, of which the next case is n = 17. Hete we have eight points 

8 

p,=t'+ I/t'l where L,P'+ 1=0. If we write 

and also 

VI =Pl +PO+P4 +Ps 
v.=P.+P,+P6+P& 

/;1=Pl +P4 
/;s=P.+Ps 
/;.=P,+PG 
/;&=P,+P. 

the construction may be effected by the three steps: 

(1) Bisect angle 0, ±t/4. 1 to find Vl/8, vsl8. 
(2) Bisect angles 0, ±t/4, v.i8 and 0, ±t/4. vJ8 to find /;1/4. /;s/4 and 

/;./4, /;./4. 
(3) Bisect angle 0, ±tY /;s/4. /;J/;. to find m.=ps/2, m5=P6/2. 

These steps are shown in fig. 46. In the third step q=/;s//;. is constructed by 
the proportion 

q -1 

- t/;&/4 = t/;I/4 

and h= ±£Y /;s/4 is found by cutting the t-axis with a circle on /;s/4. 1 os 
diameter. 
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q 

FIG. 46 

This form of the construction is adapted from H. W. Richmond, Quarterly 
Journal of Mathematics, vol. 26 (1893), pp. 206, 207. Cf. H. P. Hudson's 
Ruler and CompaS8es (London, 1916), p. 34. We refer also to Klein's Fa'l1WUB 
Proble'l'T/,$ in Elementary Geometry, translated by Beman and Smith (Boston, 
1897), and for a discussion of the algebra and a proof of Gauss's Theorem. to 
Weber's Algebra. 

§ 90. The Regular Heptagon - Here 

Let 

Then 

tS + Ijta+t2+ Ijt2+t+ Ilt+ I =0 

/LI =t + Ijt = t6 + Ijt6 
/L2=t2+ Ijt2=to+ lIto 
/La =ta + 1jt3 =t4 + Ijtl! 

/LI + /L2 + /Ls = - I 
/L2/La = /LI + /L2, /La/LI = /L2 + /La, /LI/L2 = /La + P.I 
/L2/La + /La/LI + /LIfL2 = - 2 
/LIfL2/La = /L12 + /LI/L2 = I 

The /Li are then given by the cubic 

3(/La + /L2 - 2/L -I) 
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of which the Hessian is 
-7(h2+h+ 1) 

Thus the Hessian points are wand w 2 • We may now apply 
§ 42; but it is better in this case of three real roots to use 
lines only. We seek the coincidence points of the involution 
along the axis of reals 

3pqr+qr +rp +pq - 2(p +q+r) - 3=0 

whose neutral pair is w, w 2• Putting these in evidence, the 
involution is 

(p - w)(q - w)(r - w) = K(p - w2)(q - w2)(r - w2) 

and for the coincidence points 

(fL - w)3 = K(fL - w2)3 
Hence 

(fL - w)3/(p - w)(q - w)(r - w) 

is real; that is, the product of the directions from w to p, q, r 
is the cube of the directions from w to fLi. Letting p and r 
coincide, the angle p, w, q is then thrice the angle p, w, fLi' 
when 

3p2q+p2+ 2pq - 2(2p +q) - 3=0 

If in particular we take p = 00 , then q = - 1/3; Or if we take 
p = 0, then q = - 3/2. Fig. 47 is drawn for the latter case, 

t Z 

1 

FIG. 47 
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the points mi = ILil2 being found by trisecting the angle 
0, w12, - 3/4. 

Exerci8e 2 - The value of K is here (2£0· -1)/(2£0 - I). 
Exercise 3 - COIisider n a prime number of the form 2.3' + I; for example, 

construct the 19-9on by two trisections. 
Exercise 4 - Consider n a prime number of the form 2. 2T • 38 + I; for 

example, n=2.2.3+1=13, for which the construction is effected by one 
bisection and one trisection. In this case there are six points p, where 

6 

PI =Pu, etc., Ps=P" etc., and L. p,+ 1 =0. Take the trisection first. Let 

tl 

FIG. 48 

"1=Pl +P6> "4=PS+P4' ".=Ps+P.· To find "J2, "./2, ",/2 trisect, say angle 
0, - £0·/2, 3i8. A pair of m's, say m. = p./2, m. = ps/2, may then be identified 
by bisection, or equally (as in fig. 48) by cutting the base-line with a circle, 

centre "./4, radius V ("./4)· - "1/4. 
§ 91. The Regular ll-gon - The equation to be solved is 

(I) to + lIto + til + IjtI1 + tS + IltS + t2 + IIt2 + t + lIt + I = 0 

If t is any root, then t2, til, tB, t16 -= to, tID, t9 , t7 , t3, t6 are also 
roots. Let 

ILl =t + lIt = tID + Ilt lD 

IL2=t2+ Ilt2=t9 + IIt9 

ILl! = til + Iltl! = t7 + I jt7 
ILs =tB + IftB =tS + IltS 

ILo=to+ Ift6=t6 + IIt6 
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We have 

+ 5(tS + I/t S
) + IO(t + lIt) ILI6 =t6 +llt6 

ILl4 = t4 + I/t4 + 4(t2 + I/t2) + 6 
ILlS = t S + 1jt3 + 3(t + lIt) 
IL12= 

ILl = t+ lIt 

whence ILl is a root of 

(2) 

and since we can replace t by t2, t4 • •• the roots of (2) are ILi. 

We have ILl2 = IL2 + 2, IL22 = IL4 + 2, ". "' IL62 = ILl + 2, and 
generally 

(3) ILrlLs = ILr+s + ILr-B> where ILo = 2 

Let now E be a fifth root of unity, say E = }l/6. Consider 
the expressions: 

VI = ILl + EIL2 + E2IL4 + ESlLs + E4IL6 
v2 = ILl + E2IL2 + E4IL4 + ElLs + ESIL6 
Vs = ILl + ESIL2 + EIL4 + E4ILs + E2IL6 
v4 = ILl + E4IL2 + ESIL4 + E2ILs + EIL6 

where the last three are obtained from the first by writing 
E2, ES, E4 for E. Since the ILi are real, VI =v4 and v2 =Vs• 
Squaring VI and reducing by (3) we have 

Vl2 = IL2 + 2 + E2(IL4 + 2) + E4(ILs + 2) + E(IL6 + 2) + ES(ILI + 2) 
+ 2E(ILs + ILl) + 2E2(IL6 + ILs) + 2eS(IL4 + IL2) + 2E4(IL6 + IL4) 

+ 2ES(IL6 + IL2) 
+ 2E4(IL6 + ILl) + 2(IL4 + ILs) + 2(IL4 + ILl) + 2E(IL2 + ILl) 

+ 2E2(ILs + IL2) 

or collecting terms in ILi and reducing each coefficient to 
three terms by 

we have 

or 

(4) VI2=(2E-2E2-ES)V2 

It follows without calculation that 

(5) 
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and taking the conjugates 

V 2
2 =VS

2 = (2ES - 2E - E4)Vl 
VI2=V42=(2E4 - 2ES - E2)V2 

The number (2E - 2E2 - ES) has as modulus vIi; it may 
be written as vTI. 71. Similarly (2E2 - 2E4 - E) may be 
written as vTI • 72. Hence from (4) and (5), since VI =v4 , 

V l
4 = (VU)S71272Vl 

and similarly 

FIG. 49 

If VI be written as ptl' V2 as pt2' we have 

pStl o = (VTI)S71272 

pStl = (Vll)3722/71 

Then p= Vll, and t1, t2 are given by 

t10 =71272 
t2o=722j71 
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These equations may be solved by dividing two given angles 
each into five equal parts. Having selected a value for t1, 

the corresponding value for t2 is determined without further 
ambiguity by the connection 

t2=t12/71 

The point fLl is determined by VI' v2 and their conjugates 
v4 , Va. For adding 

- 1 = fLl + fL2 + fLa + fL4 + fLo 

to the four expressions Vi' we have as the sum 

To recapitulate the construction geometrically, it pre­
supposes the construction of the regular pentagon 1, E, E2, 
Ea, E4. With this given the two 
points (2E - 2E2 - Ea), (2E2 - 2E4 - E) 

may be marked on the circle 

centre 0, radius vII. Radii to 
these points cut the base-circle 
at 71' 72; one may thus mark the 
points 71272' 722/71 on the base­
circle. Divide the positive arcs 
from 1 to 71272' 722/71 each into 
five equal parts. Choose the first 
partition in each case, as the 
determination of t1, t2• Produce 

FIG. 50 

radii through t1, t2 to meet the outer circle at VI' V2. Per­
pendiculars from VI' V2 to the base-line mark the real points 
!(v1 + v4), !(V2 + va). The point fLJ2 or m 1 on the base-line is 
determined by 

5m1 =!(V1 + V4) + !(V2 + Vs) -! 
The perpendicular to the base-line at m1 cuts the base-circle 
at t, the first vertex of the regular ll-gon (fig. 49). 

Exercise 5 - Two equal triBectors provide a simple instrument for dividing 
an angle into five parts, and so on (fig. 50). 
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§ 92. Knots - The construction of a regular pentagon by 
tying a knot in a strip of paper leads to a generalisation for 
the construction of any regular polygon of 2n + 3 sides. * 

The construction of the pentagon is as follows (fig. 51 (a)). 
Call the ends of the strip a, f3. Holding f3 horizontal, 

c 

FIG. 51 (a) 

a 

a e 
FIG. 51 (b) 

c 
.··t,;··. 

l /\ i /\ {- '~/\i :./ ... / .. ,.... .' V'{ .• ' ............... , ......... >< ......... / ............. >< ......... / ........... ;:><.\ 
t q p m a e 

FIG. 51 (0) 

(1) Fold a up on ed; 
(2) Fold a down on ea, carrying it under dabe (that is, 

under (3); 
(3) Fold a up on be, carrying it under acde (that is, through 

the loop). 

Pull ends alf31 and when the knot is tight, flatten by creasing 
ed, ea, be. 

* For the pentagonal knot, c/. Lucas, Recreations Math€matiques, vol. 2, p. 202, 
and Faurey, Procbl€s Originaux de Constructions Geometriques (Paris, 1924), p. 135. 
For the generalisation, see F. V. Morley, Proc. Lond. Math. Soc., June 1923. 
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Two further steps are possible: 
(4) Fold a down on de, carrying it under ceab, to emerge at 

ab; 
(5) Fold f3 up on ab, carrying it under acde, to emerge at de. 

Flatten these last folds by creasing de, ab (fig. 51 (b». The 
knot is completely tied. The ends a, f3 are collinear, but 
present different faces. 

FIG. 52 (a) 

FIG. 52 (b) 

FIG. 52 (c) 

If, with a somewhat narrower strip of the same length, 
we start from stage (3) in the above process, and, instead of 
pulling the ends immediately, pass a again down and below 
the double thickness, we have a double loop instead of a 
single one. By carrying a up and through the double loop, 
and then by pulling both ends and flattening when the knot 
is tight, we have the regular heptagon (fig. 52 (a». Two 
further steps make the knot completely tied (fig. 52 (b». 

In this manner we may construct any odd regular polygons 
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of a greater number of sides merely by increasing the loopage 
of the knot. 

Exercise 6 - The theorem will include the equilateral triangle if we admit 
the following process as knotting. Call the ends of the strip a, f1 and the 
edges 1, 2. Holding f1 horizontal, fold a up On be, letting edge 2 cross edge I 
at a point a; fold a down on ca, so that edge 1 comes under b. 

Exercise 7 - Construct the even regular polygons by knotting two strips. 



CHAPTER XIV 

MOTIONS 

§ 93. The Equation of a Motion - The general rotation is 
given by 

(1) y=tx-b 

We regard this now not as an alibi, but as an alias. We 
think of a plane whose points are named y moving over a 
plane whose points are named x, the unit of length being the 
same in both planes. The relation (1) expresses that the 
point y is on the point x. It is a restatement of the equations 
for change of origin and rectangular axes in elementary 
analytic geometry. 

From the 00 3 equations (1) we select 00 1 by writing b =f(t). 
We have then for varying t the equation of a motion 

(2) Y =tx - f(t) 

If we fix x, the equation maps the circle I t 1=1 on to the 
points of the y-plane which successively coincide with x; 
that is, the path traced on the y-plane by a pin fixed in the 
x-plane. Similarly, if we fix a pin in the y-plane we have in 
(2) the map-equation of the path traced in the x-plane. 

If we make slots along two such paths we have two pins 
moving in two slots, and the motion is mechanically defined. 
The two pins may be in one plane, and therefore the two slots 
in the other, or there may be a pin and a slot in each plane. 

Motions then are classified by the nature of the function 
f(t). When the function is rational the motion is rational. 

§ 94. The Point of No Velocity - For a given x, say xu, we 
have a path in the y-plane, for which 

dy=xudt -f'(t)dt 

Thus when xu=f'(t), the point Xu has no velocity over the 
y-plane. The path then has a cusp. 

177 12 
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There is then in the x-plane a locus of points of no velocity, 

(1) xo=f(t) 

This is called the centrode in the x-plane. 
So for a given y, say Yo, we have a path in the x-plane for 

which 
x =yo/t + f(t)/t 

dx/dt = - yo/t2 + f(t)/t - f(t)/t 2 

and the point Yo has no velocity in the x-plane when 

(2) yo=tf'(t) -f(t) 

This curve is the centrode in the y-plane 
Since 

Yo=txo -f(t) 

the points of no velocity are at any instant superposed. 
For any constant x, 

dy = (x - xo)dt 

and for any constant y, 

dx = - (y - yo)dtjt2 

For superposed x and y, y -Yo=t(x -xo), so that 

(3) dy/(y - Yo) = - dt/t = - dx/(x - xo) 

Since dt/t is a pure imaginary, LdO, dy is normal to y - Yo, and 
dx to x - Xo' Hence in the motion the paths of x and y 
touch. 

The motion is thus the sliding of the x-paths y=b over the 
y-paths x=a (or conversely) where b and a obey the equation 

b =ta - f(t) 

The motion may be described as the rolling of the centrodes 
on each other. For, from (1) and (2) 

dxo = j"(t)dt 
dyo =tj"(t)dt 

whence not only do the centroids touch, but also the elements 
of arc are equal. 

But this is no simplification mechanically. For example, 
to make a circle roll on a circle is a fundamental mechanical 
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problem which is solved by making toothed wheels which 
slide on one another. 

§ 95. The Points of No Acceleration - To write the velocity 
and acceleration we need a real variable O. Let then t = etO, 

or dt/dO=Lt. The velocity of x over the y-plane is then 

y == dy/dO = Ltdy/dt = Lt(X - xu) 

The acceleration is 

ii == d2y/d02 = ddy/dt = - t{x - J'(t) - tf'(t}} 

There is then a point of no acceleration given by 

(1) Xl =J'(t) +tf'(t) 

or by 
Xl -xu=tf'(t) 

where Xu is the point of no velocity. 
Thus the acceleration of X is 

(2) 

The velocity of a given y over the x-plane is, since 
X =y/t + J(t)/t, 

x = LtdX/dt = -L{Y/t-J'(t) +J(t)/t} = -L(y-YU)/t 

The acceleration is 

x = ddX/dt = - y/t - tf'(t) + J'(t) - J(t)/t 

Thus there is a point of no acceleration given by 

(3) YI = tJ'(t) - J(t) - t2f"(t) 

Exercise I - These points of nO acceleration are then not superposed; 
they are opposite with regard to the point of no velocity. 

§ 96. The Curvature of a Path - We here prove the curva­
ture formula used. When X describes a curve, given III 

terms of a real parameter which we take as the time, then 

x=set¢ 

where 8 is the are, and cp the angle of the curve at the point 
considered. 
The acceleration is the stroke 

(1) 
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The radius of curvature is the stroke 

r=tset¢/1> 
Hence 

and 

That is, 

(2) 

xr+xr=2s2 

Ixllrlcos(x,r)=s2=lxI2 
We now find the centre of curvature of a path. Let 

(fig. 53) S be the distance from x to xu-that is, since 
y=tt(x -xu), let S be I y I. Let 
K be the distance from x u to Xl. 
Let if; be the included angle x, 
Xu, Xl. The distance from X to 

Xo Xl is, by § 95 (2), I y I. Hence, 
by the curvature formula (2), 

(3) S2/r =S - K cos if; 

or, ifr=S+S', 

SS'/ I r I =K cos if; 
or 

(4) (I/S +1/S') cos if; = 11K 
The latter formula shows that 
if y' be the centre of curvature 
of the path of x, then y is the 

FIG. 53 centre of curvature of the path 
of x'. 

The path of X has a point of inflexion when S' = 00 , that is 
when 

S=K cos if; 

This is the circle of which X u and Xl are diametral. It is 
called the circle of inflexions. 

There is a circle of inflexions in each plane, as shown in 
fig. 54. 

Exercise 2 - The number 1/ K is the relative curvature of the two centrodes 
at the point of contact-that is, the difference of their curvatures. 

Granting this (4) takes the form 

(l/~ + l/~') cOS rp = l/R + l/R' 
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for the curvature of a point when a curve rolla externally on another curve. 
This is Savary's formula. 

We have in (4) the curvature of the path x = constant. For 
the path y = constant 
we must write if; - 'TT for 
if;. The formula is then 
(I/S + I/S") cos if; = - 1/ K 

Hence 
2/S + I/S' + I/S" =0 

or measuring S from Xo 

(5) 2/S = I/S' + I/S" FIG. 54 

That is, the two centres of curvature are apolar with x o, and 
the overlying points x, y. 

Thus when a circle in the x-plane rolls on a line in the 
y-plane the path of the centre x of the circle is a line. When 
then the line rolls on the circle the point y which overlies x 
describes a path whose centre of curvature is the mean of 
x and the point of contact. 

Exercise 3 - The equation of this motion is 

y=xt-Iog t 

By the theorem the path of y=O should have at x=O the centre of curvature 
x=lj2. 

Verify this analytically. 

§ 97. Envelopes - In a given motion the points of a curve 
x =CP(T) in the x-plane will mark slots in the y-plane which 
will in general have an envelope. We have y a function of 
two turns t and T, 

y=tCP(T) - J(t) 

By the rule of envelopes (§ 84) we have that 

t{CP(T) - f'(t)}/Ttcp'(T) is real. 

When the curve x = cp( T) is a path; that is, when 

cp(T) =b/t + J(t)/t 

the point b will be a part of the envelope. 
§ 98. The da Vinci Motion - For a simple illustration of 

motions, let J(t) be t2; that is, consider the quadratic 

(1) y=xt _t2 
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The points of no velocity are 

xo=2t, YO=t2 

The loci of these-the centrodes-are 

x=2t, 

Thus the motion is the rolling of these two circles on each 
other. 

For given y we have a slot in the x-plane, 

(2) x=t +y/t 

Thus y=1 gives the straight slot x=t+l/t, and y=to gives 
the straight slot x=t +to/t. The motion is that of two pins 
in the y-plane moving in two straight slots in the x-plane. 
In this form it is the elliptic trammel, the general path in 
the x-plane being the ellipse. 

The general path in the y-plane is a limac;on; but for 
x = 0 it is a circle. 

Exercise 4 - Draw limat;lons by cutting perpendicular straight slots in a 
card, and placing them over fixed pins. A pencil whose point passes through 
a small hole in the card describes the curve. 

Suppose that we wish to draw the curve 

y + aJ3 + a1t2+ aJ=O 

Replacing ao by x we get an equation of motion. For 
x=o we have the limac;on 

y + a1t2 + aJ=O 

And for y = 0 we have a related limac;on 

x + aJt + aJt2 = 0 

Thus a pin in each plane engages a slot in the form of a 
limac;on in the other plane. 

Step by step, then, we can draw the curve * 
y + aJn + a1tn-1 + ... + an_It =0 

Exercise 5 - Let y = xt - tl( 1 - t) 
Show that the motion is that caused by a pin in each plane moving in a 

straight slot in the other plane, the distance from pin to slot in each plane 
being the same. 

Exercise 6 - Let y = tx - tn 

Then the path in either plane is a trochoid, the centrodes being circles. 

• F. Morley, American Journal of Math., vol. 47, 1925. 
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Exercise 7 - If in a triangle ABC the points B, C are fixed and the angles 
B, C are in a given ratio, then if the edge BA is fixed any point attached to 
CA describes a trochoid. 

§ 99. Three-bar Motion - Another simple example is pro­
vided by the jointed quadrangle, the lengths of whose sides 
in order of size are PI, P2, Pa, P4' and their directions ti • We 
have then two conjugate identities expressing closure: 

(1) Pltl + pJ2 + Pata + P4t4 =0 
(2) Plltl + P2!t2 + palta + P4/t4 = 0 

When one bar P4, t4 of the jointed quadrangle is fixed there 
is still one degree of freedom, which gives three-bar motion. 
Let P4 = 1, t4 = - 1 by calling the ends of the fixed bar 0 and 
1. The identities are then 

(3) 

(4) 

The tracing-point x, rigidly attached to the traversing bar 
P2' t2, may be named from the base-point 0 as 

(5) XO=Pltl + KPJ2 

where K is constant. Named from the point 1, x will be 
(using (3)) 

Xl =pJ2(K - 1) - Pata 

Thus X is best named symmetrically from base-point anywhere 
as 

(6) 

where the Ci are constants. Considering each Ci as a point of 
the plane, since (3) holds, we may write (6) as 

X - Ca =(CI - Ca)Pltl + (c2 - Ca)pJ2 

which must be identical with (5) when ca=O, c l =1. Thus 

CI - ca= 1 
c2 -Ca=K 

There is then a third point K which plays a part equivalent 
to 0 or 1. Hence we have the triple generation theorem of 
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Roberts, that the curve traced by a three-bar linkwork 
attached to two fixed points Ca, CI will also be traced simul­
taneously by three-bar linkworks attached to the other 
pairs of fixed points Cl> C2 and C2, Ca. 

Exercise 8 - If 

then 

3 

L,p,t;=I, 
3 

L,c;p;t,=x, 

xy+x+ii=A 
This equation and its conjugate give the focal pairing (see § 109) which sends 
the three-bar curve into itself. For further discussion of the three-bar 
curve see Hippisley, Proc. Lond. Math. Soc., series 2, vol. 18, p. 136; Bennett, 
t"bid., vol. 20, p. 73; F. V. Morley, ibid., vol. 21, p. 140. 

The three-bar curve will be bipartite, unipartite, or rational 
(fig. 55) according as the coefficients P2 + Pa are greater than, 
less than, or equal to PI + P4. If we force the two conditions 

FIG. 55 

to be true 
- PI + P2 + Pa - P4 = 0 
- PI + P2 - Pa + P4 =0 

which give PI =P2 and Pa =P4' the jointed quadrangle may 
take either of the arrangements: 

(1) Parallelogram or contraparallelogram, in which the 
equal bars are opposite. 

(2) Kite, in which the equal bars are adjacent. 
The triple generation figure shows that when one three-bar 
is in parallelogram form, the other two are kites_ Hence the 
three-bar motion is in each case the same. 

We analyse the second case. With P4 fixed with ends 0 
and 1 the identities are: 
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Pl(t1 +t2)=I- ta 
Pl(t1 +t2) =tlt2(1 - Ilta) 

185 

whence ta = I, or ta = - t1t2• In the former we have collapse 
of the bar Pa on the fixed bar, and a point p attached to P2 
will trace a circle about o. In the latter consider the plane 
of P2, the x-plane, as sliding over the plane of the pivots, 
the y-plane. The naming of p in the y-plane is 

and in the x-plane is 
X=PIK 

The equation of motion is 

y=P1t1 +t~ 
or, in terms of t, 

y=p1t+x(I-P1t)/(Pl-t) 

For given x this is a biquadratic with a node. 
For the x-centrode Dty=O, giving the lima~on 

(P12 - I)x = PI (PI - t)2 

The y-centrode is another lima~on 

y(P12 
- I) =P12 - 2Plt + P12t2 

It is geometrically obvious that in the case of contraparallelo­
gram motion the centrodes are either ellipses or hyperbolas 
according to whether a short or a long side of the contraparal­
lelogram is fixed. The triple generation property points out 
the equivalence between the rolling of two conics and the 
rolling of two lima~ons. 

The da Vinci motion is a special case of three-bar motion 
where PI> Pa, P4 are all infinite. 

Exercise 9 - The kite or parallelogram motion, the da Vinci motion, and 
the connecting-rod motion (where PI and P4 are infinite) are cases of 

p,,9+ P49=PI9+PS9 

which is the condition that a rhombus may be inscribed with two opposite 
vertices on one circle, the other two on another circle. 

Exercise 10 - When the products of opposite sides of the jOinted quad. 
rangle are equal, we have a poristic arrangement of an equilateral octagon 
on two circles. 
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THE TRIANGLE 

§ 100. The Nine-point Circle - In a study ofthe triangle we 
take the circumcircle as base-circle. The vertices are then 
three turns, tb t2, ta, or collectively ti • 

We write 
81=t1 +t2+ta 
8 2 = t2ta + tat1 + t1t2 
8a=t1tJa 

These are the product-sums or elementary symmetric 
functions of ti • 

Their conjugates are: 
81 = 82/8 a 
82 = 81/8a 
8a= 1/8a 

The mid-point of t2 and ta is 

Hence 

(1) 

x = (t2 + ta)/2 
= (81 - t1 )/2 

X=(81- t)/2 

will pick up the three mid-points. And it is of the form 
x = a + bt; thus we have the map-equation of the circle on the 
mid-points. Its centre is 81/2 and its radius is half that of 
the base-circle. It is called the nine-point or the Feuerbach 
circle of the triangle. 

We call the process here illustrated of passing from points 
to a curve on them, interpolation. 

§ 101. The Orthocentre - The equation of a line on t1 and 
perpendicular to the chord t2, ta is 

or 
x - XtJa = t1 - t2ta/t1 

xt1 -X8a=t181 -82 
186 



THE TRIANGLE 187 

This gives the altitude-line on ti • In the interpolation 

(1) xt-x8a=t81-82 

All three altitude-lines are included. 
Since (1) vanishes for any t when X=81, X=8J8a, the 

altitude-lines meet at the point 

(2) 

This point is called the orthocentre of the triangle. Since 
each point tb t2 , ta, 81 is the orthocentre of the other three, 
the four form what is called an orthocentric set or four-point. 

To find where an altitude-line meets the opposite edge, we 
write the equation of an edge-that is, the line joining t2 and 
tao It is 

x + xtJa = t2 + ta 

The image of tl in this line is 

x =t2 + ta - tJa/tl 
The mid-point of this and tl is 

x = (81 - t2ta/t1 )/2 

This then is the foot of the altitude-line. Now, since t2ta/tl 
is a tum, this is a point on the nine-point circle. 

Exercise I - The nine. point circle belongs to the orthocentric set, not 
merely to the triangle. It should then be on the mid-point of 81 and t1• 

Prove this. 
Exercise 2 - Prove that the image of the orthocentre in an edge is on the 

circumcircle. 
Exercise 3 - Prove that the four circumcircles of an orthocentric set are 

equal. 
Exercise 4 - Construct, say with a meccano set, six jOinted rhombuses 

of 0, tl' ts, t., it + ts, ts + ts, t. + it, tl + ~ + ~ (as in fig. 3). Verify that it is de­
formable in its plane. If the joints are universal it can become a cube. 

§ 102. The Centroid - The centroid or centre of gravity of 
the three given points is 

X =81/3 
It is obtained by taking the mid-point of t2 and ta, 

m = (t2 + ta)/2 

and dividing the segment formed by m and tl (in this order) 
in the ratio 1 : 2. 

Since the circumcentre is 0, the centroid 81/3, the nine-point 
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centre 81/2, and the orthocentre 81, these points are on a line, 
called the Euler line, of the triangle. I t is a convenient 
base-line in the discussion of a triangle. That is, we can 
when we wish take 81 to be a positive number p. 

Exercise 5 - If the clinant of the Euler line is C4• and the clinants of the 
given lines Ci' then 

C4(C1 +<il+ca)+c2ca+cac1 +c1<il=o 

The centroid divides the circum centre 0 and the ortho­
centre 8 in the ratio 1 : 2. It is the centre of a stretch which 
sends the vertices on to the edges of the triangle. 

This suggests that we find the general homology y = a + bx, 
which will send the triangle into another whose vertices are 
on the sides of the first. That is, to find a and b when 
a + btl is on 

x + xtJa = t2 + ta 
and similarly for t2 and ta. 

We have then three equations, 

a + btl + (ii + 5/t1)tJa =t2 + ta =81 - t} 
or 

(a + bt1)t12 + (at1 + 5)8a = 81t12 - t1a 

Interpolating, we have the cubic equation 

(1 + b)ta + (a - 81)t2 +ii8at + 58a =0 

which is identical with 

Hence 

Therefore 

(1 +b)(t3 - 81t2 +82t -8a)=0 

(I+b)81=81- a 
(1 +b)82=a8a 
(1 +b)8a= -58a 

b+5+I=0 

When the homology is a stretch, we have b=5= -1/2, 
a=81/2, y=(81 -x)/2 

Thus the centre is x =81/3, the centroid. 
When the homology is a rotation, then b = t, and 

t + I/t + 1 =0 

Thus the rotation is through 2'TT/3. 

Exercise 6 - The centre of the homology is on the circle of which the 
centroid and orthocentre are diametral points. 
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§ 103. Euler's Relation - We consider the triangle formed 
by three lines ti of the base-circle (the tangents at the points ti)' 
The vertices are given by 

Xl = 2/(t2 + ta) 
= 2/(81 - tl ) 

Hence the circumcircle of this triangle Xi is 

(I) X=2/(8l -t) 

It is then the inverse of the nine-point circle of ti as to the 
base-circle. 

Hence its centre and radius may be readily found (§ 86). 
But, keeping to Euclidean geometry, we seek the stretches 
which send the base-circle (an incircle of Xi) into the circum­
circle. We have 

Xl = 2(tl + t2)(tl + ta)/(t2 + ta)(ta + tl)(tl + t2) 
= 2(82 + t12)/(8l82 - 8a) 

Take for simplicity 81 as a positive number p. Then 82=P8a, 
and 

or 

(2) 

The point 8a/t12 or tJa/tl is where the parallel to the secant 
t2 , ta meets the base-circle again. Calling it Tl' the points Ti 

are from (I) homothetic with Xi. The other homothetic 
set is - Ti' the points where the altitude-lines meet the base­
circle again. The two stretches are 

(3) x=2(p±y)/(p2-1) 

The circum centre of Xi is then S = 2p/(p2 - I) and the radius is 
R= ±2/(p2-1). 

We take as standard case (fig. 56) the base-circle as 
inscribed; the triangle ti is thus acute-angled. In this case 
Xl' X2, Xa are in the same order as tl , t2, ta, and R=2/(I-p2). 

Thus 
S2 - R2=4/(p2 -I) = - 2R 

or if the radius of the inscribed circle be a positive number r 
(4) S2=R2 - 2Rr 

If the triangle be obtuse-angled, the base-circle is escribed 
and one of the radii, R or r, is negative. 



190 THE TRIANGLE 

Conversely when two circles satisfy Euler's relation (4), 
S being the distance of the centres, then are 00 1 triangles 
inscribed in the one and circumscribed to the other. The 
triangles are given by assigning 81, the orthocentre of the 

FIG. 56 

Thus with 81 =p they are given by the points of contact. 
pencil of cubics 

t S -pt2 +8s(pt -1) =0 

Exerci8e 7 - The 2 : 2 correspondence of tx and ts is 

txt,,(pS -I) - P(tl +t,,)(1 + txts) + (tl + t,,)s=O 
ExerciBe 8 - An escribed circle B of a triangle has with the Circulll­

circle C two common points and two common lines_ Prove that the line of B 
on a common point, and the point of C on a common line, are incident. 

Exercise 9 - The external bisectors of the angles of the triangle of tangents 
meet the opposite sides at points on the line xiii +XSI =6 (J. H. Weaver, Am. 
Math. Monthly, vol. 40 (1933), p. 91). 
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Euler's relation is a relation between two circles and their 
radical axis. If the circles B, C intersect then the angles 
made by B, C, and the radical axis A are such that 

S2=R2+2Rr 
S2=R2 +r2 - 2Rr cos A 

so that 

or 
2(1 +cos A)=r/R=sin B/sin C 

2 sin C=sin (A -C) 

§ 104. Feuerbach's Theorem - Let us determine the nine­
point circle of the triangle of tangents t.. The mid-point of 
X2 and Xa is, when tl + t2 + ta = P, 

ml =i(X2 + xa) ={2p +8a(l/t22 + l/ta2)}/(p2 - I) 

or, since 
l/tl

2 + l/t22 + l/ta2 =p2 - 2p/8a 
ml =8a(P2 -1/tl2)/(p2 -I) 

Writing y =8a/t2 we have one of the stretches which send 
the base-circle into the 
sought circle, 

m = (8aP2 - y)/(p2 - I) 

The centre is m =8a, a 
point on the base-circle. 
Therefore the circles 
touch. That is, a circle 
which touches the lines 
of a triangle touches also 
the nine-point circle. 
This is Feuerbach's 
theorem (fig. 57). 

§ 105. Interpolation­
From the three points t., 
by a finite number of the 
elementary operations 
(that is, algebraically by 
addition, subtraction, 
multiplication, division; geometrically 
can only obtain a rational fraction, 

x = f(t l , t2, ta) 

FIG. 57 

by antigraphies) we 
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(1) If x is symmetrical in all t's, then it can be expressed 
in terms of 81, 8 2, 8 3• It is a covariant point for all 
permutations. 

(2) If x is symmetrical in two t's, it is then one of a set 
of three points, obtained by a cyclic permutation. In this 
case we express x in terms of 81> 8 2, 8 3 and the third t. Re­
garding this as a variable, we have a rational curve on the 
set. But using the cubic t3 - 8 1t2 + 8 2t - 8 3 = 0 it can be 
replaced by either 
( 1 ) x = a + bt + ct2 

or 

(2) x=a +bt +c/t 

that is, by a lima~on or an ellipse on the set. 
To obtain the circle on the set, let us by an homology 

write (1) as 

Then since 

(t2 +bt)(t -81 - b) + (b2 +b81 +82)t -83 =.t3 -81t2 +8~ -83 

we have the circle on the set in the form 

X(t-8 1-b)+(b2+b81 +82)t-83=O 

(3) If x has no symmetry, it is one of a set of six points, 
given by all permutations. To handle the six points we must 
use in addition to 81, 8 2, 8 3 some alternating function such as 

A = (t2 - t3)(t3 - t1)(tl - t2) 

We have then, if 
X123 = f(t1, t2, t3) 
x213 = f(t 2, t1, t3) 

X123 + X 213 symmetric in tl and t2, and therefore a function 
of t3. 

But 
X l23 - X213 = (tl - t2) x a symmetric function in tlt2 

= A x a symmetric function in tlt2 

so that X123 is by addition a function of t3 alone, with coeffi­
cients in 81, 8 2, 8 3, and A. It is reducible as before, but the 
coefficients will contain A in general. The six points fall 
into two sets of three; we may obtain the circle on each set. 



THE TRIANGLE 193 

§ 106. Taylor's Circle - As an illustration of the third case, 
let the feet of the altitude lines be x. and let the perpen­
dicular from Xl on ta, tl meet it at X I2• Then 

2XI =81 - t.)a/tl 

the image of this in the secant ta, tl is 

X =ta + tl - Xltatl 
so that 

and 
4XI2 = 8 1 + atl - 'Lt2ta/tl 

where a is the alternating function 

a = 1 + tI/t2 + t2/ta + ta/tl 

Thus the points X I2' x2a, xal are on the circle whose centre c is 
H81 - 'Lt2ta/tI) and radius is 11 a I. The points Xl a, X a2, X 21 

are given by 
4xla =81 + atl - 'Lt2ta/tl 

and are therefore on the same circle. This is the Taylor 
circle of the triangle. 

We have 
(Xl2 -c)/a=(xla -c)/a 

a rotation sending X I2' X 2a, xal into Xla, X 2I' xa2 • 

Exercise 10 - The angle () of this rotation is given by 

cot () = cot al cot <Is cot a. 

Exercise II - For the Brocard angle we have 

cot fl = cot al + cot <Is + cot a. 

Thus these two angles, () and fl, specify the shape of a triangle. 

§ 107. The Incentres - In the problem of the circles which 
touch three lines, we have to bisect angles in order to find 
their centres. To avoid the root sign, let us replace ti by 

Ti2 • By Ti is then meant a selected value of vt:. Let us 
take the mid-points of the direct arcs as we go round the 
base-circle in the positive way. Let the unit-point be 
between Ta2 and TI2, and let the mid-points of the direct 
arcs from 1 to T.2 be TI' T2' Ta. Then the mid-point of the 
arc TI2 to T22 is TIT2' that of T22 to Ta2 is T2Ta, but that of 
Ta2 to TI2 is -TaTI. In this last case we have gone round 

13 
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the circle to reach 712, and the sign of 71 is changed. The in­
centre is now the join of the chords 

71
2

, 727 a 

72
2

, -7a7 1 

7a
2

, 7172 

so that 
x = 7172 + 727a - 7a71 

Thus of the eight points 

x=±~V~±Vta~±~v~ 
the incentres are those with an odd number of minus signs. 

Exerci8e 12 - These four points are an orthocentric set. They are the 
counter· tetrad of 00, ti • 

If we have four points on a circle, 7i 2, we have four 
triangles. The centres of the inscribed circles are: 

Hence 

x-t =7}72 + 727a - 7a7 } 

Xl = 727 a +7a7 4 - 7472 

X2=7a74 -7-t7} +7}7a 

Xa = - 7471 + 7}72 + 7274 

X 4 - Xl = (7} + 7 4)(72 - 7a) 

X} - X 2 = (72 - 71)(7a - 7 4 ) 

The clinants, found by dividing each by its conjugate, 
are - 71727a74 and 71727a74. Thus the included angle is a 

FIG. 58 

right angle, and we 
have the theorem 
that the four centres 
of the inscribed circles 
form a rectangle (fig. 
58). 

Exerci8e 13 - Any edge 
of the rectangle and any 
pair of joins of the four 
points form an isosceles 
triangle. 

EXerci8e 14 - The sixteen 
incentres are by sets of four 
on parallel lines, in two 
ways, one set of parallels 
being at right angles to the 
other. 
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§ 108. The Circle of Images - The image of any point T of 
the base-circle in a secant is 

(1) 
XI =t2 + ta - t2ta/T 

=Sl - tl - sa/Ttl 

~he three images b. in the lines of a triangle are then included 
In 

(2) 

This is for given T the map-equation of a segment. Therefore 
the three images lie on a line, the line of images. The 
theorem variously ascribed to Wallace (Mathematical Reposi­
tory, March 1799) and to Simson, that the feet of the per­
pendiculars are on a line follows at once. 

The centre of the segment is SI, the orthocentre. Thus all 
lines of images are on the orthocentre. In particular when 
T = t., the line is an altitude-line of the triangle. 

Exerci8e 15 - For any mUltiples Pi we have from (I) 

}:.P.1J j = 81}:.Pi - '£p;ti - 8s}:.Pi/ti/T. 

Hence if 0.; be the angles of the triangle 

}:'b. sin 20.; = 81}:. sin 2ai. 

Exerci8e 16 - If we apply to (2) the rule of envelopes, we obtain the ortho· 
centre and the circle X=Sl -2t. This is the locus of cusps of the segments. 

Let x. be the images of any point X in the sides of the 
triangle t.. We call the triangle x. the triangle of images of 
x, and its circumcircle the circle of images of x. 

Since 

where 

(1) 

XI =t2 + ta - xt2ta 
1 - XXI = (1 - xt2)(1 - Xta) 

=11/(I-XtI ) 

Hence the circle of images is 

(2) I-xz=I1/(I-xt) 

Since, when z = 00 , t = I/x, the centre y of this circle is given by 

(3) I-xy =11/(1 -xx) 
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and the equation (2) is, subtracting (2) from (3) 

z - Y = II(x - t)/(I - xx)(1 - xt) 
=(I-xY)T 

that is, the radius p is 11 - xY I, and 
(4) p2=(I-Xy)(I-xy) 

From (3) 

or 

or 
x+y -81 +8~Y=X[8a(X+Y) -82 +XY] 

whence, if x is not a turn, we have 

(5) 

and its conjugate 
(5') 

§ 109. Focal Pairing - We consider especially 

(1) X+Y+8aXY=8 1 

and regard it as a pairing, or transformation of period 2, 
of the points of the plane. It is one-to-one in general; but 
there are exceptions. For when x =tl' then 

Y + t2ta?7 = t2 + ta 

Thus to a vertex tl corresponds any point on the opposite side. 
And, when x passes to 00 in the direction T, then 

T+8a?7/T=O 

or y is a point on the base-circle, and for varying T it is the 
base-circle. 

The transformation thus sends each of the four points tl> t2, 

ta, 00 into the circle on the other three. 
It has four fixed points, the incentres, given by 

(2) 

Thus (1) is the polar form of (2). 
The relations of x, y to to are as follows;-
(1) The angle-relations. The angle x, t1, t2 is the angle 
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ta, t l , y (mod 'IT). That is, the clinant of (x - tl)(y - tl ) is the 
clinant of (t2 - tl)(ta - t l ), or is tl2t2ta or satl. 

For suppose two points x, y such that 

Then 

or 

(x - ti)(y - t i ) =Sati(X - Ilti)(fj - Ilti ) 

tia - ti2(X +y) +tiXY -Sa[ti2Xfj -ti(x +fj) + 1] =0 

ti2(X +y +s.jifj -Sl) -ti[Sa(X +fj) +xy -S2J=0 

for three values of ti • Whence we have again equation (1). 
(2) The distance-relations. If ti be the real distances from 

x to the three-lines, and TJi those for y, then, applying 
ptolemy's theorem to the four points x, y, Xi' Yi we have 

4tiTJi =p2 - S2 

where Sis 1 x -y I. Or, from equation (4) of the last section, 
4tiTJi = (1 - xfj)( 1 - iy) - (x - y)(x - fj) 

(2) =(I-xx)(I-yfj) 

The product of distances of x and y from a line of the triangle 
is then a constant, and the constant is given by (2). 

Assuming the elementary properties of conics, it is clear 
that x and yare foci of an inscribed conic. 

The points x and yare usually called, from the angle­
property, isogonal conjugates. The transformation of period 
2, which interchanges the points, is then called transforma­
tion by isogonal conjugates. It is called by Pascal (Repertorium, 
Geometry, p. 732) the Desargues transformation. 

In view of its inversive importance we shall call it focal 
pairing and speak of x and y as a focal pair. 

The axes of the inscribed conic with foci x, yare given by 

p2=(1 -xfj)(I-iy) 
p2 _ S2 = (1 - xx)(1 - yfj) 

The conic is a hyperbola, parabola, or ellipse as 

p < S, p = S, p > S 

Exercise 17 - For four points qi in a Euclidean space, if the points x, y are 
foci of an inscribed. quadric of revolution, then the angle which the plane 
q.q.x makes with qlq.q. is the angle which the plane qlq.q4 makes with q&.y. 

Exercise 18 - Apply the transformation to the figure formed by the 
triangle and its medians. 
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§ 110. The Pedal Circles - Let x and y be a focal pair. 
The pedal circle of x is the circle on the feet of the perpen­
diculars from x on the edges of the given triangle. Since its 
centre is the mid-point of x and y and its radius is half that 
of the circle of images, it is equally the pedal circle of y. 

It has the equation 

2z = x + y + (I - yx)t 
or 

(I) 
If x=O, y=8a and we have the special pedal circle 

(2) 2Z=81 +t 
which is the nine-point circle. 

For any pedal circle let 

-8axy -yXt=O 
that is, 

t= -8aii/y 
Then 2z =81 +t, a point on the nine-point circle. Thus the 
common points of (I) and (2) are discrete, being given by 

2a =81 - 8 aY/y 
2b = 8 1 - 8 aX/X 

Hence 
(2a -81)/(2b - 8 1) =xy/yx 

or, in words, if x, y subtend at 0 an angle 8, then a, b sub­
tend at 8 1/2 the angle 28. In particular, if 8 =0 or 8 = 7T, the 
points a, b coincide and the pedal circle touches the nine­
point circle. This particular case is M'Cay's extension of 
Feuerbach's theorem (see Casey, Sequel to Euclid). 

§ 111. The Invariant 12 - Let us ask for points x whose 
triangle of images is perspective with t.. The join of tl and 
t2 + ta - xt2ta is 

Z t2 + ta - xt2ta tl = 0 
Z I/t2 + I/ta - X/t2ta I/t1 

I I I 
that is, with 8 1 =p, 

z(p - tx/8a - 2/t) 
- z(p - X8 a/t - 2t) 

+ I/t -t=X8a/t2 -xt2/8a 
=x(t - p + 82/t) - x(I/t - P + 82t) 
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Hence, the coefficients of t, I/t, 1 being zero when p if: 0, 

z-x=z-X 

that is, the join of z and x is parallel to the Euler line, and also 

2z -ZXS3 -p =X - XPS3 
2z - zx/s3 - P =x - XP/S3 

Eliminating z and Z, we have either 

(1) (x -x)XX+X2S3 -X2/S3 + 2(x - x) +P(XS3 -x/s3) =0 

or p = 0, which says that for an equilateral triangle x is any 
point. 

This equation may be obtained more easily by asking that 
the join of a focal pair x, y be parallel to the Euler line. 

For then 

and 

so that 

(2) 

and 

x +y +XfjS3=P 
x +fj +XY/S3 =p 

y=x-p 

2x +X2S3 - P =p(I +xs3) 
2x +X2/S3 - P =p(I +x/s3) 

(2x +X2S3 - p)(1 +x/s3) = (2x +X2/S3 - p)(1 +xs3 ) 

which is a form of (1). 
The map-equation (2) is the simplest. It assigns to any 

real, p, an orthocentric four-point on the curve. Thus p = 0 
gives the four incentres. 

The curve, as defined by Neuberg, is 

(3) 
A23AU A23 + Au 1 
A31A24 A31 + A24 1 
A12A34 A12 + A34 1 

with the usual meaning Ail = (x. - Xi)(x. - xI). To identify 
the two forms, note that (3) is also a biquadratic. It is on 
00 since, when A.4 becomes 00, the second column is pro­
portional to the third. It is on the base-point, for which 
AU =A24 =A34· It is on the points t., for when x=t1, Au=O 
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and >'24 = >'21. 1 t is on the incentres, for then, in the usual 
notation of trigonometry, >'23 = a . . ., 

>'14 =r2 + (s - a)2 
s-a 

=-s-{(s - b)(s - c) + s(s - an 
=bc(s -a)/s 

whence (3) vanishes. 
These nine points are manifestly on the curve (2) as defined 

by focal pairs. The two are then identical. 
The points x, t1, t2, t3 are then mutually related. But 

further, these four and 00 are mutually related. For under 
any inversion (3) written for cyclic interchange of 1, 2, 3 as 

3 

~(>'23>'31 +>'34>'12)(>'14 - >'24) 
becomes 

3 

12 == ~(>'23>'31>'45 + >'34>'35>'12)(>'14>'52 - >'15>'d = 0 

It is thus a sum of twelve terms of the type 

>'12>'23>'3<1>'45>'51 

with the sign + or - according as we interchange an even 
number of suffixes or not. 

We have then in 12 an invariant involving five points at 
symmetrically. When four of the points are given, the locus 
of the fifth is a biquadratic, C2. * 

Exercise 19 - Since Is=O for tj, 00, p, the curve for four points aj is on the 
counter-tetrad. 

Deduce that the Neuberg curve is on the incentres. 
Exercise 20 - Find when the Euler lines of the four triangles formed by 

four points meet at a point.t 

* For this invariant Is, see F. Morley, American Mathematical Monthly, vol. 32 
(1925). For the determination of the four point<; when CS is given, see Morley 
and Patterson, American Journal, vol. 52 (1930). For the five point<; a j so related 
we have five curves CiS by regarding in turn each ai as movable. The five curves 
meet at a point a.; and the relation of the six points aj is a mutual one. See a 
paper by Mrs Dean, American Journal, vol. 52 (1930). 

t R. C. Yates. See a note in American Journal, vol. 54 (1932). 



CHAPTER XVI 

INVARIANTS UNDER HOMOLOGIES 

§ 112. Constants under Translations - Consider the effect 
of a translation T, x=y+b, on an n-point, given by 

(1) f(x) == aoxn +na1xn- 1 + .. + an 

It becomes, let us say, 

(2) aoyn + nf3lyn-1 + . . . + f3n 

the coefficient ao being unaltered. We take it as 1. We 
seek functions of the coefficients a; which are equal to the 
same functions of f3i. These will be the constants or absolute 
invariants of (1) under T. The n-point has a centroid, - a l . 

We make this the base-point by writing x =Z - aI' that is, 
by removing the second term. Let this be 

(3) zn + (i)K~n-2 + ... + Kn 

This will be the same whether derived from (1) or (2). Thus 
the Ki are the sought constants. 

By Taylor's theorem 

f(x) = f(z - al) = f( - a l ) + z!'( - al) + 2z~f"( - al) + ... + zn 

Thus 
when x= - a l 

=a2- a l
2 

KS = XS + 3a1x 2 + 3a2x + as, when x = - a l 
= as - 3a1a2 + 2als 

and generally 

K,.= a,. -rala"-l + (~)aI2ar-2 ... + ( - )'"(1 - r)al" 

Exerci8e I - A triangle, x, + 3al xs + 3<I,ax + a", is equilateral or regular if 

K. == as - als =0. H the roots be Xl' XS' X. the condition is either 

Xl + WXs + wSx. =0 
or 

Xl +W·X.+Wx.=O 
201 
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Exerci8e 2 - One point of the triangle is the centroid of the other two if 

KS == a. - 3alu" + 2a1
3 =0 

Exerci8e 3 - A foux-point is a parallelogram if KS =0. 

Under homologies ao is no longer constant. Replacing 
aT by aTlao and clearing of fractions, we have the invariants 

K2=aOa2-aI2 or fL2 x same, 
KS =ao2as - 3aOala2 + 2al

s or fLs x same, 

from which the constants are determined by elimination of fL. 
Thus in the case of the cubic or three-point there is the 

one constant 
Yo = K2sIKs2 

This is all we can have, for triangles have only 00 2 shapes, 
and the number Yo can take 00 2 values. 

When two of the points coincide, we may take a2 = ° and 
as=O, so that K2= - a12, KS=2als, yo= -1/4 . 

Thus the form has a repeated factor when 

K6 == 4K2S + KS2=0 

A convenient choice of the absolute invariant is now KJ KSZ ; 

that is, we replace Yo by 1 + 4yo, say by y. 
In terms of the roots x, we have 

9KJa o2 = ~(x~s - X12) 
27 Ksl aos = II(x2 + Xs - 2xl ) 
27KJa06= - II(x2 _XS)2 

It is enough to verify the numerical factors. When a l =0, 

that is, when Xl + X 2 + Xs = 0, the second is true. And when 
the Xi are 0, 1, - 1 the first and third are readily verified. 

Under the reflexion X =fj the cubic 

aoxs + 3al x 2 + 3a~ + as 

becomes on taking the conjugate 

ii rJjs + 3iiIY2 + 3ii2y + Xs 

so that all our invariants acquire values which are the con­
jugates of their old values. In particular y becomes y. 
Thus y is not an absolute invariant for the Euclidean group 
unless it happens to be real. If 

y = pet() = t + LTj 

P and t are absolute, whereas e and Tj can change in sign. 
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When y is real, the triangle admits a reflexion into itself; 
that is, it is either isosceles or flat (the three points being 
in a line). 

To distinguish these cases, we observe that when the 
triangle is flat we can take the Xi as all real. Then Ka2/ao6 

is positive, and K6/a06 is negative. Thus y is negative for 
a flat triangle. 

But for an isosceles triangle we may take 

Xa = - tpa' 

so that Ka2/ao
6 is positive and K6/a06 is positive. Thus y is 

positive for an isosceles triangle. 
Four points under homographies have two invariants, 

Y2 and Ya (§ 30). The quartic can be taken with one point 
at 00 as 

42;a -Y~ -Ya 

When the points are concyclic, this regarded as a cubic has 
its three zeros on a line. 

Since here 

ao=4, 
K2= -4yJ3, 

a2= -yJ3, aa= -Ya 
Ka = - 16Ya, K6 = - 44(Y2a/27 - Ya2) 

44 
y= - 3a(Y2a - 27Ya2)/Ya2 

Therefore when the points are concyclic 

(Y2a - 27Ya2)/Ya2 is positive. 

And when the points are anti cyclic, the zeros of the cubic 
are isosceles, and 

(Y2a - 27Ya2)/Ya2 is negative. 

§ 113. Lagrange Resolvents - A polynomial in two vari­
ables Xl and X 2 is a constant under translations T when the 
variables appear only in the combination Xl -x2 • But con­
versely when it is a constant under T the variables must 
appear in this way. For if we write 

so that 
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then the polynomial is a polynomial in 8 and v, and if it is 
a constant it cannot contain 8. The complete system is 
then simply v. 

For polynomials in three variables Xl' X 2, Xa we write 

VI =XI + WX2 + w2xa 
V 2 =XI + w2x2 + WXa 

These are constants under T, since 

1 +w+w2 =0 
Let also 

8=XI +X2+ Xa 

Then, solving for Xi' a polynomial in the Xi is a polynomial 
in 8, VI' V2• If it is a constant it cannot contain 8. Thus VI 

and V2 are a complete system for polynomials which are 
constant under T. 

In the same way, for n ordered points the n -1 expressions 

Vi = Xl + eX2 + e2xa + . . . + en-Ixn 

where e is a root of e n = 1 (other than e = 1), are a complete 
system for polynomials in Xi' under T. We call these n - 1 
expressions the Lagrange resolvents of the n-point. 

Under homologies H these numbers Vi acquire a common 
factor. They are a complete system of relative invariants. 
There are n - 2 constants, which may be taken as 

VJVI' •.• Vn-l/Vl · 

Let us consider, in terms of these resolvents, some special 
ordered n-points. 

(i) If an n-point is a point repeated, then 

VI =V2= ... =vn_I=O 

Conversely if all Lagrange resolvents vanish, the ordered 
n-point is a repeated point. 

(ii) If an n-point is regular, then we may take Xl = I, 
X2 =e, ... Xn =e n - l . All resolvents vanish except Vn- l . 
And conversely. 

(iii) For a next case take the points as given by 

xl+a+b=O, x2+ae+be2, xa+ae2+be4 

For simplicity consider five points. Then VI = 0, V2 = 0, 
va = - 5b, V4 = - 5a. All resolvents but the last two vanish. 
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Exercise 4 - Collectively the points are X5 +a5 +b5 - 5abSxS +5aSbx=O. 

Such a set of points is the images of a point Xo in the edges 
of a regular polygon. They lie on the curve x + at + bt2 = 0, 
which is a lima~on. If we reflect the point 1 in the lines 
x + it2 = 2p.t, the tangents of the circle (0, fL), we have the 
lima~on in the form 

x=2p.t - t2 

The node on double point is the point to which correspond 
two values of t, say t and t'. That is, 2fL =t +t', tt' = I, and 
hence x = 1. The focus is the point for which two values 
of t (where t is no longer restricted) are equal. That is, it 
is fL2. The lima~on referred to its node is 

x+I-2p.t+t2=0 

or in polar co-ordinates 
r=2fL - 2 cos e 

Thus the n-point in this binomial case is constructed also by 
taking a point on a circle, joining it to the vertices of a regular 
polygon in that circle, and producing each join by the 
distance 2fL. 

(iv) For a fourth case, let the points Xi lie on successive 
edges of a regular polygon. Then we may write 

XI=tl(1 +fLlt ), X2=Et(1 +fL2t) . 

where the fLi are real. Taking 5 points, 

Hence 

VI = tt(fLl + fL2E2 + fLaE4 + .) 
V2 = tt(fLl + fL2Ea + fLaE +. . ) 

- t2 = V1/V2 = V2/V1 

Exercise 5 - The equation V1V1 =vsvs is, for any Xi' the equation of a line. 
This line is the edge of a regular pentagon on the other four points. 

And so in general for an n-gon, 

VI/Vn-a=V2/Vn-4= ... =Vn-a/V1 

are the conditions on points taken on its successive edges, 
and the common value is the clinant of the first edge. 

H this clinant is not definite then 

VI =V2= ... =vn_a=O 

There are then on the points two regular n-gons. 
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Thus another definition of the third case is that the points 
are the intersection of corresponding sides of co-ordered 
regular n-gons-that is, where the first side meets the first 
side, and so on. There is a pencil of regular n-gons on the 
points, including as a special case the node of the lima~on. 
The circles inscribed in the n-gons are in fact bitangents to 
the lima~on, whence it follows that these circles are all 
orthogonal to a fixed circle. 

§ 114. The Case of the Triangle - Suppose the cubic for 
the three points Xi is 

(1) 

or 

with the factors 

Here 

X a b 
b X a 
a b X 

Xl +a+b 
x2+w2a+wb 
Xa+wa+w2b 

To construct Vi' we construct the equilateral triangle 
XI'X~a. If it be outwards, then 

Xl' +wXa +w2x2=0 
so that 

If we do the same for the other edges, we have three vectors 

Let us now find the point or points at which the edges of 
the triangle make the same angle (mod 'IT). One case is 
when 

whence each 
ax Xl + w2x2 + wXa 

- Xl - W2X2 - WXa - Xl + WX2 + w2Xa 
that is, 
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(2) X=ba/(j =/2 say. 

The other case is found by writing w 2 for w, and gives 

(2') x=a(j/a=/l say. 

These points occur in the solution of Fermat's problem, 
to find that point for which the sum of the distances from x 

FIG. 59 

to Xi is a minimum. For, if ~ V (x - xi)(x - Xi) is a minimum, 
then 

J-x-x· L. ~=O, 
X -Xi 

But if 
a + fJ + y=O and l/a + l/fJ + 1/y=0 

then 
a : fJ : y = 1: w : w 2 or = 1 : w 2 : w 

We call the two points then the Fermat points of the 
triangle. 

To prove that the three vectors of fig. 59 meet at /2' we may 
either use Euclid's methods, or remark that 

Xl -/2 = - a - b - ba/(j 
= - b(l +b/a + (j/a) 

a real multiple of b. 
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So the three vectors for the interior equilateral triangles 
meet at fl. 

From the equations (2) we see that the distance I g - f21 

x O 
2 

FIG. 60 

Xl between the centroid g and the 
Fermat point f2 is I a I; that is, 
II VI I, and I g - fll is II v21· 

But also the angle from b to 
f2 is the angle from a to b, and 
the angle from a to fl is the angle 
from b to a. Hence if c/> be the 
angle f2' g, fl' the angle from b 
to a (or from V 2 to VI) is a third 
of c/> (fig. 60). 

o X3 A triangle is then uniquely 
constructed when the centroid 

and the Fermat points are given. 

Exerci8e 6 - If PI> P., P. are the squares of the edges and a is the area 
taken as positive, then 

V,Vl =l(p, + P. + Ps) - 2V3a 

v.V.=!(Pl +P.+P.)+2V3a 

v1v.= -PI-W·P.-wp. 

Exercise 7 - The angle if> is given by 

The cubic 
e"tj>= (vlV'/V.Vl )' 

x a b 
b x a 
a b x 

is, as the sum of cubes, 

[(ax - b2)3 (bx - a2)3]/(a3 - b3) 

so that (§ 42) the Hessian points are 

x =a2/b=h2' x=b2/a=hl 

Let us write the antigraphies which send the points into 
themselves. For two of the points x and y we have 

(ax - b2)3 = (bx - a2)3 
(uy _62)3 = (6y - ( 2)3 

whence 

(3) 
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where e3 = 1. These three antigraphies interchange the 
Hessian points; for e = 1 we have the inversion in the circum­
circle, and for e = w or w 2 we have the antigraphies 123 or 
321 of § 39. 

But also 
(4) 

For these each Hessian point is fixed, so that we have the 
three Apollonian inversions. 

When in (3) we set y = 00 we have 
a(ax - b2) =eli(bx - a2) 

Thus the circumcentre is 

(5) x = (b 2a - a2li)/(aa - bli) 

and a Brocard point (§ 40) is 

(6) 

Exercise 8 - The Hessian points subtend at a 
Brocard point the angle 2:nj3. 

Let us now connect the Hessian 
points 

with the Fermat points 

11 = ali/a, I2=ba/li 
We have 

so that 

and 

Also 

and 

hJ2 = bli 
h2.h =aa 

g, hI' 12 are on a line 

g, h2,II are on a line. 

hI - 11 = (b 2a - a2l.i)/aa 

12 - h2 = (b 2a - a2li)/bli 

c 

FIG. 61 

These are then positively parallel. From (5) they are 
parallel to the join of the centroid and the circumcentre 
(fig. 61). 

14 
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Exercise 9 - The intersection of the line on the Hessian points and that 
on the Fennat points is 

This is the symmedian pOint. 

§ 115. The Four-point * - The Lagrange resolvents for an 
ordered four-point give a simple construction for the two 
circumscribed squares (fig. 62). 

For by § 113 (iii) when Xl' + tX2 - Xa - tX4 is 0 all squares 
described positively on X 2, X a, X 4 will have the fourth edge on 
Xl" If then we construct xI'-that is, draw from Xa a 
vector equal to X 4 - X 2 and making with it the direction t (or 

FIG. 62 

a positive right angle), the join of Xl' to Xl will be an edge of 
a positive square on Xi' 

Similarly, changing the sign of t, we get the negative square 
whose successive edges are on Xl' X 2, Xa, X 4• Both squares 
are shown in fig. 62. 

So in the case of regular (or equilateral) triangles on three 
points, we have the positive series, containing the point 12 

* On the question of the complete system of comitants, under the Euclidean 
group, for a three-point and a four-point, see C. H. Rawlins, American Journal, 
vol. 40 (1918). 
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taken three times, and the negative series containing!l (§ 114). 
In the notation of § 114, the two lima~ons (one for each series) 
are 

and 
x +at +bt2=0 
x+bT+aT2=0 

Taking the former, the conjugate is 

li + at + xt2 = 0 

Eliminating t, we have the self-conjugate equation 

(xa - ali)(ax - ba) = (xx - bli)2 

Writing similarly the second lima~on, we see by subtraction 
that the two meet at four points on a circle-that is, since 
they are on the points Xl' X 2, Xa they meet again on the 
circumcircle. 

Exercise 10 - If ai' bi , ci ' di is a positively ordered square when i is 1, 2, 
3 or 4, and if Ilt, bl , cl , dl and a" b., c •• d. are also positively ordered squares, 
then a,. b •• c •• d. and a4• b4, c4, d4 are positively ordered squares. * 

For four points Xi under y=tx+b we have 

Ya - YI =t(xa - Xl) 
fiB -fi4=(X2 -x4)/t 

so that 
(Xa - X I )(X2 - x4 ) = K 

a constant. It is of course the product of the lengths of the 
diagonals and their relative direction, say e t </>. 

Placing the join of the diagonals at the base-point, let 

Xi = pLedJ, 
Then 

- XIX2 = - PIP2et(el - e.) 

= - !(PI2 + P22 - P12) + 2w012 

where P12 is the squared distance of Xl> X 2 and U 0I2 is the 
area of the triangle 0, Xl' x 2 • 

And 
x 2Xa = !(P22 + Pa2 - P2a) + 2iuo2a 

so that on the whole 

* J. R. Musselman, "On Certain Types of Polygons," Am£rican Math. Monthly. 
vol. 40 (1933). 
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where 
t = I(PI2 - P23 + P34 - P 41) 
TJ =2U1 234 

where U l 234 is the area of the quadrangle. 
If for a polygon of an even number of sides we call 

!(P12 - P23 + P34 - ..• ) 
the norm then for the quadrangle 

K=2(norm+L area) 

Exercise II - When the norm vanishes the diagonals are at right angles; 
when the area vanishes they are parallel. 

Exercise 12 - The constant K is not altered by translation of a diagonal 
relative to the other. 

By interchange of suffixes we have for a four-point six 
invariants such as K. Let us write them K; and K; where, 

KI = (X2 - X 3 )(XI - x4 ) 

K2 = (X3 - X I )(X2 - x4) 

K3 = (Xl - X 2 )(X3 - x4 ) 

The sum is o. They may be taken as the complete system 
of invariants under homologies. 

Exercise 13 - Neuberg's invariant (§ Ill) is in this notation 

I:KiK,{Ki+ Ki)· 

Exercise 14 - A canonical form for four points under homologies is 
Xi = {to + II {t" where {ti is real. Show that Neuberg's invariant vanishes 
when 3+s1s.-lOs4 +384

2 =0 where the si are product-sums of the {ti. 

§ 116. The Hexagon - When we have an equation j=O 
expressing a relation it is proper to ask for the meaning of 
j when it does not vanish. 

Let us do this for the expression 

(1) I Xi ij; 1 

whose vanishing means that the triangles Xi' Yi are nega­
tively similar. 

We regard the six points as vertices of a hexagon and 
write (1) as 

Xl X3 Xv 

X4 X6 x2 

111 
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that is 

Now 
XIXS = HpOI + P 06 - P16) + 2£a OSI 

where, as usual, Pu is a squared distance and a OSI is the area 
of 0, X s, Xl. 

Thus the determinant is t + £TJ, where 

2t=P12-P2S+ ... -PSI 
and 

TJ=2a 

where a is the area of the hexagon. 
The determinant is a constant under translations applied 

to either triangle. Under the homology x=ax' +b applied 
to the triangle Xi it acquires the factor a. Thus by proper 
choice of a we can make either t or TJ zero. 

If 
cot f)=t/TJ=(P12-P2a+ •.. -psI)/4a 

then f) is a constant angle under translations of one triangle. * 
Exercise 15 - If the hexagon reduces to a triangle by coincidence of X6 and 

Xu x. and x •• X4 and x6• then () becomes the Brocard angle given by 

cot f1 = (P •• + Pal + P12)/40 

Exercise 16 - Given two ordered triangles Xt, x •• X6 and X4. Xo. x., lines 
from the vertices of the second making with corresponding edges of the first 
the angle () meet at a point. 

Let us show in this case of the ordered hexagon how the 
Lagrange resolvents behave when n is not a prime. There 
are five resolvents, the first being 

VI = X l W 2X 2 + WXa - X, + w2X6 - WX6 

Let U I and U 2 be the resolvents for Xl' Xa, X6 and u I ' and U 2 

those for X" X s , X 2 

Then 
VI =UI -ul ' 

V 2 =U2 +U2' 

Va =XI +Xa +X6 - (X, +Xa +X2) 

V,=UI +~' 
V 6 =U2 -U2' 

* For the extension of this invariant to two polygons, Bee L. M. Blumenthal, 
American Journal" vol. 49 (1927). 
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An ordered n-gon, when the n - 1 resolvents vanish, is a 
repeated point. For if Xl =X2 = ... =X" all resolvents 
vanish. When all but the last vanish, the n-gon is regular 
and in the positive sense. Forifxl =l,x2 =E,x3 =E3, ••• all 
the Vi vanish except the last. 

But if all but the last two vanish, we have a polygon 
which may be called semi-regular. The nature varies as n is 
odd or even. 

In the present case of n = 6, we have VI = V 2 =V3 = 0, that is, 

U l =ul ' 

U 2 = -u2' 

81 =81' 

Taking the common centroid as base-point, we have by 
addition J3x4 = £(X3 - x6 ), etc. 

From equation (2) of § 114, the interior Fermat points /2 
are the same. That is, the diagonals of the hexagon meet at 
a point, at angles 27T/3. Also U 2 + U2' = 0 means that the 
middle points m i of the diagonals form a negative regular 
triangle. 

Exercise 17 - The circumcircle of this triangle is on the point 1.. Its 
centre is the centroid. The point - ml is the centre of the positive regular 
triangle with vertices Xs and X5 (or Xo and x.). 

Exercise 18 - The external Hessian points are the same for the two triangles. 

Exercise 19 - A median of either triangle is J3/2 x the corresponding edge 
of the other. 

Exercise 20 - The homography which sends Xl> Xs. X5 into X4. Xo. Xl is 

where 

This homography sends the circumcentre and symmedian point of the one 
triangle into the symmedian point and the circumcentre of the other. 

§ 117. Barycentric Co-ordinates - We have for four points 
Xi the identity 

11=0 
or 

(I) 
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where 

" 
" 
" Let us write 

" 
" 
" 

Xl' X" Xa 

X 4, Xl' Xa 

XS' X a, Xl 

bi =(X - Xi)Ui 

so that the identity becomes 

~bi=O 

Here bl + b2 = 0 is a point on the join of Xl and Xa. But 
then bs + b4 =0, and the point is also on the join of Xs and X 4 • 

Thus bl + b2 = 0 is a diagonal point. 
Collectively the three diagonal points are: 

(bl +b2)(bl +bs)(bl +b4 )=0 
or 

~blb2bs=0 

Two diagonal points are given by 

(bl +bs)(bl +b4 )=0 
or 

Hence 

gives the three points each twice and is to a numerical factor 
(~blb2bs)2 . 

Exercise 21 - The numerical factor is -1. 

The equation (1) implies, making X large, that 

(2) 

And also, writing ti' TJi as rectangular co-ordinates of X - Xi' 

it implies 

that is 

(3) 

where t i are the distances from the four points to any line. 
We may use these facts to name points and lines by 

homogeneous real numbers. We take a reference triangle 
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Xl' X 2, Xs, say of unit area; the areas aI' a2' as will name con­
veniently any finite point X; and numbers r i proportional to 
them will equally serve. 

Again, with the same triangle of reference, numbers Pi 
proportional to the distances from the vertices to any selected 
line will serve to name that line. Then we have from (3) the 
fundamental incidence relation 

rlPI +r2P2 +rsps =0 

expressing that the point r is on the line p. 
The transition from the barycentric naming to the naming 

by a vector is then, writing in (1) x=O, x4=x, 

(4) 

Given a triangle we wish to draw from the vertices to the 
opposite sides three segments of the same length >., all being 
on one point. 

Taking the point on the three segments as the base-point, 
let the vertices be Xl' X 2, Xs. And let the barycentric co­
ordinates of X be r l, r 2, rs. Then the identity (1) is 

~ri(x - Xi) =x~ri 

and therefore a diagonal point is given by 

rl(x - Xl) =x~ri 
whence 

Hence 
x lxl/(r2 + rs)2 =>'2/(~ri)2 

and hence, substituting for Xi in 

or since 

rixi +r~2+rSxS=0 

~rl(r2 +rs)2 =0 
Xl 

2rlr2rS(X2xS + XSXI + XIX2) + ~r2rSXI(r2X2 +rsxs) 

r2x2 +rsxs= -rixi 
2(X2XS+XSXI +XIX2) -XI2_X22_XS2=0 

This is the rationalised form of 

vX1 + VX2 + vXs=O 
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The sought point is therefore given by 

~VX-Xi=O 
or 

3X2 - 2X(Xl + X2 + xa) + 2~X2Xa - ~X12 = 0 

There are then two such points, say f and f'. 
Exercise 22 - Prove that 3(:11. - f )(:11. -f') = - (x,. - x,.)2, and hence that the 

two values of A are the same. 
Exercise 23 - The equation of the circumcircle in barycentric co· ordinates 

is 

or 

Exercise 24 - Hence the equation of the circumsphere of a reference 
tetrahedron is 

§ 118. Foci - There is a useful extension of the transition 
from the equation of a point to the vector of the point. 
Suppose a curve given by a real line-equation, a homogeneous 
algebraic equation with real coefficients in the co-ordinates 
Pi of a line, say 

CP(Pi) =0 

We take Pi as the distance from Xi to a variable line of the 
curve. If the line has a clinant t and if X is any point on it, 
then 

2£ VtPi =X - Xi - t(x - Xi) 

Thus the clinants of the lines of the curve which are on X are 
given by 

(1) 

When x is on the curve two values of t are equal. Thus the 
discriminant of (1) as to t will give the self-conjugate equation 
of the curve. More generally the discriminant as to z of 

(2) 

will give the image-equation of the curve. Let (2), arranged 
in powers of z, be 

CO+C1z+ . 
=c,,(z -Zl) . 

+C"Z" 
(z -z,,) 
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The discriminant is to a numerical factor 

c,,2(,,-1lII(zl -Z2)2 

If then co=O, so that, say, Zl =0, it contains the factor 
Z22za2 ... Z,,2. It is then of the form 

COP+C1
2Q 

Here 

and C1 is linear in fJ. 
Thus if Co = 0, then two values of fJ become equal. 
Thus cp(x - Xi) = 0 gives those points for which two images 

coincide. They are called branch-points of f(x, fJ) = 0; but 
with respect to the curve f(x, x) = 0 they are usually called the 
foci. 

Thus the foci of the curve CP(Pi) = 0 are found by replacing Pi 
by X - Xi. When the curve is a point, this is the above 
transition, § 117 (4). 

If the relation (1) is not homogeneous we can render it 
so by the quadratic relation of § 38. If it contains the 
distances from any number of points the argument is un­
altered. The result is that we make the substitution of 
X - Xi for Pi in the highest powers alone. 

For example, the equation 

PIP2=K 

is a conic in lines. The foci are 

(X - x1)(x - x 2) =0 

And the foci of 'E)'i/Pi=O are given by ~Ai/(X -Xi) =0. 



CHAPTER XVII 

RATIONAL CURVES 

§ 119. The Curves - We consider a rational algebraic 
function of z, of degree n, x=(az)"/(f3z)" 

(I) x = (au + a1z + . . . + a"z")/(f3u + f31z + . . . + f3"z") 

or, in partial fractions, 

(2) 

when the constant a,,/ f3,,-the value of x for z = 00 -has been 
made the base-point. 

We now restrict z to the base-line, or to the base-circle. 
Then x moves on a curve R" which we call a rational curve 
(algebraic being understood) or, when n is specified, a rational 
bi-n-ic curve. The integer n is the inversive degree of the 
curve. A rational curve being the rational map of a line or 
circle, is essentially an actual curve, a continuous closed 
succession of points of the plane. Thus, whereas the bilinear 
curve was a circle or an extra pair, the rational bilinear curve 
is a circle. 

The number of real parameters in (I) is at first sight 
4n + 2. But the variable z is subject to a homography with 
three parameters. Thus the curve has 4n -I parameters. 
There are three for the circle, seven for the rational biquad­
ratic, eleven for the rational bicubic, and so on. 

The transition between x=(ap)"/(f3p)" and x = (at)"/(f3t)" is 
effected by any one-to-one correspondence between p and t, 
for instance, by 

t=(1 +Lp)/(I-Lp) 

This does not alter the degree n. 
An antigraphy applied to x, ii = (ax +b)/(cx +d), gives for 

y again a partial fraction of degree n; so that a rational curve 
is an inversive thing. Under inversions it has 4n -7 real 
constants. 

219 
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We are taking the rational fraction 

(1) x = (az)"J({3z)" 

and making z move on the base-line. But consider two 
points z, Z images in the base-line. Let 

y = (az)"/({3z)" 
Then 

(3) y = (iiz)"J(~z)" 
and if we eliminate z between (1) and (3) we have an equation 

(4) f(x", y")=O 

If we eliminate z between the conjugate equations of (1) 
and (3) we have 

f(y", x") =0 

Either is the image-equation associated with the curve. 
For any point x we have n images y. The curve itself is 
those points for which a point coincides with an image­
that is, its self-conjugate equation is 

f(x", x")=O 

§ 120. The Foci - We define the foci of the curve as those 
points x for which two values of z are equal. They are given 
by the discriminant of 

x({3z)" - (az)" 

The discriminant of a polynomial is of degree 2(n - 1) in the 
coefficients. There are then in general 2(n - 1) foci. 

The values of z which give the foci are the zeros of the 
Jacobian of (aZ)" and ({3z)"-that is, in the abridged notation 
I a{31 (az),,-l({3z),,-l. They are given in practice by dxJdz = o. 

Where x is a focus, two values of z become equal, two 
values of z become equal, and therefore two images of x 
coincide, at a double image. 

Consider the case 
2x=z +LJZ 

The discriminant of 2xz = Z2 + t gives x 2 = t. 
The equal values of z are given by Z2=t. To z=e tnf4, 

corresponds the focus x = emf4• To z = e-mf4, corresponds 
2y = e-mf4 + em;f2+m/4 = o. 
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The image-equation is, since 2x = P + L/ p, 2y = P - L/ p, 

x2 - y2 =L 

221 

From this we see again that the two values of yare equal 
when X 2 =L. 

Thus for the rectangular hyperbola 

2X=P+L/p 

there are two foci. Each has a double image, and here the 
double images coincide. 

Instead of foci and their double images we may speak of 
branch-points and their crossing-points, with reference to the 
equationf(xn, yn) =0. 

§ 121. The Double Points - When x=(az)n/({3z)n there are 
for a given x n points z, say Zl' Z2 • . . Zn. The relation of 
these is found from 

(aZI)n /({3zl)n = (az2)n/({3z2)n 

On removing the factor Zl - Z2 we have a symmetrical 
equation, say Azl n- I Z2n-I=0, of degree n -1 in each. For 
the full study of this we should develop it in a Clebsch 
series; the first term is when Zl =Z2, giving the Jacobian of 
(az)n and ({3z)n. 

It is sufficient here to notice that when Zl is P, Z2 (that is, 
all the other z's) describes a residual curve which is found by 
elimination of P from Azn-Ipn-l and A.zn-Ipn-l. 

By the rule of elimination we get for the residual curve 

A n-l A n-Iz(n-1l2z(n-1l2 

It has therefore with the axis of reals 2(n -1)2 common 
points, intersections or common image-pairs. 

Now the intersections pair off, for if Zl =PI gives Z=P2' 
then Zl = P2 gives Z = Pl. There are then (n - 1)2 pairs of 
intersections and image-pairs. 

Therefore the rational curve Rn has (n - 1)2 special points 
which correspond either to two values of P or to two con­
jugate values. These we call double points (or nodes). 
When the values are real, the curve intersects itself, and the 
double point may be called actual or hyperbolic. In the 
other case, the double point is isolated, or elliptic. 
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A double point may be regarded as the union of two foci. 
Thus the general algebraic curve,l(xn, :En), has 2n(n - I) foci. 
But when it is rational it has 2(n -I) foci and (n - 1)2 double 
points. 

And 
2(n -I) +2(n -1)2=2n(n -I) 

§ 122. Cusps - A focus may coincide with its double image. 
Then we have a cusp, or stationary point. The focus is given 
by dxjdz=O; that is, by the Jacobian of (az)n and ({Jz)n. For 
a cusp, the variable must take one of these 2(n - I) values. 
When z is a real, then dzjdp must vanish for a real; and 
when z is a turn, then dzjdt must vanish for a turn. 

Thus when X = (ap)nj({Jp)n the foci are given by 

I a{J I (ap )n-l({Jp )n-l 

If between this and its conjugate we eliminate p, we have the 
condition for a cusp, of degree 2(n -I) in ai, {Ji; iii' Pi. 

A cusp is on the curve; but it is not correct to say that 
when a focus is on the curve we have a cusp. To a focus 
correspond ZI' Z2 = ZI' Za • • • Zn. If the base-line is on Za, 
we have a focus on the curve, but no cusp. 

A further singularity is when y is the double image of x, 
and x is the double image of y. 

§ 123. The Curve R2 - In this case, x = (az)2j({Jz)2, where z 
moves on a circle. There are two foci, 11 and 12' for each of 
which the values of z are equal. Thus the equation can be 
written 

(x - 11)j(X -12) = K(Z - ZI)2j(Z - Z2)2 

or, by independent homographies on x and z, 

(I) 2X=Z2 

This then is a canonical form for the 1: 2 correspond­
ence. When z describes a circle, x describes an R2 with foci 
at 0 and 00. This is in Euclidean geometry a lima~on. To 
a given x correspond z and - z, and as z describes its circle, 
- z describes an equal circle. If these circles intersect, the 

curve R2 has an actual double point. If they do not intersect, 
their common image-pair gives the curve an isolated double 
point. If they touch, the curve has a cusp. But they can 
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touch only at 0 or 00. In the former case we have in Euclidean 
geometry a cardioid, in the latter a parabola. Thus the 
parabola is a curve given by 2x =Z2, where z describes a line. 
It has the focus 0, and the cusp 00 • 

When there is a double point, let us place it at 00 , and take 
as the foci x = ± I, corresponding to z = ± 1. The corre­
spondence is then, if to z = 00 corresponds x = 00 , 

(x - 1)/(x + I) = (z - 1)2/(z + 1)2 
or 

(2) 2x=z + liz 

The parameters of the double point are z = 0, z = 00. The 
circles are either on these points or about these points. If 
we write then z=pt, we have for p=constant an R2 with an 
isolated double point at 00 , the ellipse in Euclidean geometry, 
and for t = constant an R2 with an actual double point at 00, 

the hyperbola. 
We shall discuss these curves in the next chapter. 
§ 124. Sections of R" by a Circle - We denote the general 

algebraic curve 
x"x"+ ... 

by C". In general two curves Cm and C" have 2mn common 
points. If Cm is on a double point of C", this counts for two 
common points. If Cm and C" have a common double point 
this counts for four common points. 

The bilinear curve C and R" have then 2n common points. 
Let the parameters of these be Pi. Since three of these points 
determine the C, there is between any four of the Pi a sym­
metric relation 

S(PI2,,-a, P22,,-a, Pa2,,-a, P42n- a) = 0 

If PI = P2, the C is tangent; if PI = Pa, and P2 = P4, it is 
bitangent. 

Thus a bitangent C is given by 

S(PI4n- 6, P24"-6) =0 

and we may expect 4n - 6 systems of such bitangents. 
If PI=P2=Pa, the C is osculating. If PI=P2=Pa=P4' the 

C is stationary. We have then an equation of degree 
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4(2n - 3) in Pl. This gives the parameters of the apses. For 
a real PI the apse is actual, and when C is a circle it meets R" 
there at four consecutive points. Conjugate values of PI give 
pairs of isolated apses. 

There are then 4(2n - 3) apses. 
§ 125. Sections of an R" by a C,,-2 - Let us cut the curve R" 

by a curve Cn-2. We are to substitute in 

C,,-2 == X n -llX,,-2 + . . . 
x=(ap)n/({3p)n and x = (ap)"/(Pp)" 

If the 2n(n - 2) intersections be Pi' where i = 1 ... 2n(n - 2), 
we have 

Cn-2 == ao"-2ao"-2I1(p - Pi)/({3p)n(pp)" 

where x is any point of the curve whose parameter is p. 
Let x be an actual double point, with the two parameters 
aI' bl • Then 

I1(al - Pi)/({3al ),,(pal )" = same in bl 

Therefore I1(al - pi)/I1(bl - Pi) is a constant KI for all curves 
Cn-2. 

To determine the constant, consider the curve C,,-2 on the 
n(n - 2) other double points. Let the parameters of a double 
point be ai' bi. Then 

or if 
cp(x) = I1(x - ai)(x - bi) 

KI = - cp'(al)jcp'(bl ) 

Thus we have for the parameters Pi the (n - 1)2 equations 

(1) 

But, since by the theory of partial fractions the sum of these 
expressions is 0, there are n(n - 2) independent equations on 
the 2n(n - 2) numbers Pi. 

Hence there are curves Cn-2 of contact, which are tangent 
to R" n times. For if we make the Pi two-by-two equal, we 
have n(n - 2) equations in n(n - 2) numbers. On these 
contact curves, see F. Morley and W. K. Morrill, American 
Journal, vol. 54, 1932. 
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If we cut the curve R" by a C2(n-2) we have by similar 
argument for the 4n(n - 2) intersections, 

I1(ai - Pi)/I1(b1 - pt} = K/ 
To determine the constant we take the curve C,,-2 on the 
other double points twice, so that K/ = Ki2• 

We have then the (n - 1)2 equations 

(2) I1(ai - Pi)/cP'2(al) - I1(b1 - Pi)/cP'2(b i ) =0 

on the 4n(n - 2) parameters, these equations being now 
independent. 

Thus when the curve is an R3, a curve C2 meets it in twelve 
points, subject to the four conditions (2). And eight points 
determine a C2. 

When the curve is an R4, a curve C4 meets it in thirty-two 
points, subject to nine conditions. And twenty-three points 
on the givenR4 serve to determine the pencil R4 +AO. When 
the curve is an Ro, a curve C6 meets it in sixty points, subject 
to sixteen conditions. And forty-four points on the given Ro 
serve to determine the pencil RoC + AC6, C being any bilinear 
curve. 

§ 126. Degeneration - A curve given by a self-conjugate 
equation f(x, x) = 0 breaks up when f is a product, f = f d2' 

Let us consider one way in which a curve given by a map­
equation can break up. Suppose that 

x=(ao + aIP + •• ·)/(f3o+ f3IP + •.. ) 

Let x=O correspond to p=O, so that ao=O, and 

(1) x=(aIP+" ·)/(f3o+f3IP+"') 

If now f30 = 0 the curve breaks up into 

x=(al+a2P+" ·)/(f31+f32P+.") 

and a something. To find that something, make in (1) f30 
real by dividing numerator and denominator by its direction, 
and then write p=f3op'. Then (1) is 

x= f3op'(al + a2f3op' + ... )/(f3o + f31f30P' + ... ) 

with the limit 

which is a circle. 
15 
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Thus an R2 can degenerate into two circles; an R3 can 
degenerate into an R2 and a circle, having five double points, 
or into three circles, having six double points. 

From n circles, mutually intersecting, an idea of the look 

FIG. 63 

of one type of R" is easily formed. Take the case of three 
circles, and round off two of the intersections in such a way 
that a continuous curve is formed; as in fig. 63. 

§ 127. Mechanical Description of R" - If the curve be 
given by 

(1) 
n A. 

y=~-' 
1 ai-t 

we write (a" - tHa" - liT) =a"a" - 1. 
Expressed by proper fractions in T, y becomes 

,,-1 B. 
y=Bo+BI/T+ ~b.~T 

1 • 

Moving the base-point to B o, and replacing Bl by x, we have 
the equation of a motion in the form 

,,-1 B. 
y=xIT+ ~b.~T 

1 • 

When x=O, the slot is 
,,-1 B 

y=~_i 
1 bi - T 

and when y=O, the slot is 

n-l B. 
x-~--' 

- 1 I- bdT 
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Repeating the process for each slot, we come to the case of 
two circular slots, or three-bar motion (rational). 

There remains the more general case when in the given 
expression of y in partial fractions there are repeated poles, 
as, for instance, a term Aj(a - t)2. Geometrically speaking, 
the curve has then a focus at infinity. The easy way is to 
allow inversions. After a suitable inversion, any rational 
curve is expressed in the form (1), the foci being now all 
finite. 

Thus the general rational curve, after an inversion when 
necessary, can be mechanically described by two pins moving 
in two slots, the slots being simpler than the proposed curve. 



CHAPTER XVIII 

CONICS 

§ 128. The Parabola - The parabola, analytically, may be 
defined by 

(I) 2X=Z2 

where z describes a line. We suppose x and z to be points of 
the same plane. We take for the line the vertical at the 
point 1. Its equation is either z=1 +Lp or z=2/(I-t), so 
that the curve is, for a real parameter, 

(2) 2x=(1 +Lp)2 

or for a turn 

(3) x=2/(I-t)2 

If x = ~ + LTj, then in (2) 

2~=I_p2, Tj=p 

Thus the selected real parameter is the ordinate of x. 
Hence 

that is, the distance from the point 0 is the distance from the 
vertical line. This is the usual defining property. 

The focus is x = 0, the directrix is x = 1 + LP, the apse or 
vertex is x=I/2. 

§ 129. Lines of the Curve -If we polarise the above (2) or 
(3) we have 

(I) 

(2) 

2x=(1 + Lp)(1 + LPI) 

x=2/(I-t)(l-tl) 

In this second case, we clear of fractions before polarising. 
Taking (I) for given PI we have a line, and for given P we 
have a line. By the theory of envelopes, all such lines 
touch the curve for which dx/dp has the same clinant as 
dxJdpI· 

228 



CONICS 229 

This requires that P =PI' The lines then are the tangents 
of the parabola, or simply its lines. Similarly, for (2), 
tdx/dt and t1dx/dtl must have the same clinant (§ 84), whence 
for the envelope t=tl . But this does not require independent 
proof; (2) is merely the transform of (1) by 1 +Lp=2/(I -t). 

Since in (1) x = 0 when P = L, the image of the focus in the 
tangent at PI is when P = - L, that is, 

x=I +LPI 

The parabola is then the locus of a line such that the image 
in it of a fixed point is on a fixed line. 

Exercise I - The normal, from the axis to the point e, is 1 + teo 

We have in (1) or (2) the expression for any point outside 
the parabola, in terms of the parameters of the two tangents 
from it. Notice that in general there is a profound difference 
between the regions in which foci of a curve lie, and the other 
regions. We have here for such outside points-osculant 
points-

or 
x=2/(I-tl )(I-t2 ) 

We shall proceed with the latter. 
§ 130. Theory of the Four-line - Consider three lines ti of 

the parabola. The join of t l , t2 is 

x=2/(I-tl )(I-t2 ) 

N ow the equation 

(1) 

gives a circle, and when t=ta x is the join of t l , t 2 • Thus (1) 
is the circumcircle of the three-line t i • When t= 1, x=O; 
thus the circumcircle of any three lines of a parabola is on 
the focus. 

The centre of the circle (I)-that is, the circumcentre of 
the three lines-is 

(2) 

And the equation 

(3) x=2(I-t)/(I-tl)(I-t2)(I-ta)(I-t4) 
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is that of a circle, which for t=t4 is on the point (2). Hence 
we have Wallace's theorem that the circumcentres of all 
three lines selected from four (which for brevity we will call 
3/4 lines) are on a circle, which is also on the focus of the 
parabola which touches the four lines-that is, on the point 
at which the four circumcircles intersect. 

We call this circle (3) the centric circle of the four lines, 
and its centre 

x=2/(I-tl)(1 -t2)(I-ta)(l-t4) 

the centric point, or simply the centric. 
Evidently we have a chain of theorems which can be con­

tinued indefinitely. But when we take more than four 
lines, as tangents of a parabola, they are not general. It is 
for four lines that the parabola gives a canonical treatment. 

Exercise 2 - The orthocentre of three lines of a parabola is on the 
directrix. 

Exercise 3 - Hence the orthocentres of 3/4 lines are on a line. 
Exercise 4 - The mid-points of the three diagonals of a four-line are on a 

line, and this line is perpendicular to the directrix. 

Denote the join of the lines t l , t2 by X12, and so forth. 
Then 

Hence 

where 

Xu = 2/(1 - tl)(1 - t2) 
X a4 = 2/(1 - ta)(1 - t 4) 

I14=(I-tl)(l-t2)(I- ta)(l-t4) 

Thus the three pairs of points are in the pairing or involution 

(4) 

Regarding (4) as a homography (of period 2) it sends the line 
t l , on which are X12' Xla, Xu, into the circle on X 2a, Xa4, X 42 ; 
and so for ti • It sends 00 into the focus o. And it sends 
the centric circle into the directrix. 

A four-line may thus be completed into a configuration of 
eight points and eight circles, four points on each circle and 
four circles on each point. Let the four lines, or circles on 
00 , be I, 2, 3, 4. They give six points, 12, ... These give 
four circles, 1 2 3; and these are on a point 1 2 3 4. On the 



CONICS 231 

point 12 are the circles I, 2, 123, 124. On the circle 123 
are the points 12, 23, 31, 1234. 

That three pairs of a quadratic involution determine a 
fourth in a mutual manner is a case of the proposition that 
any three quadratics determine a fourth in a mutual manner 
(§ 57), there being a linear identity between the four squares. 

Exercise 5 - The quadratics being here 

x2+a1x+4/TI4=0 
x2+a.ax + 4/ TI4=0 
x·+a.aX+ 4/ TI4=0 

x=O 
the identity is 

l:(a.a - a.)(x· + a1x + I/TI4)'+ (a.a - a.a)(a.a - ~)(~ - a.)x· ==-0 

§ 131. Sections by a Circle - Let us here use the parameter p. 
The section of 

by 
2x=(1 +Lp)2 

is the quartic 

(I + p2)2 - 2xo(1 + Lp)2 - 2xo(1 - Lp)2 + 4(xoxo + K) =0 

whence 

(I) 8 1 = PI + P2 + Pa + P4 = 0 
8 2 =2(1 +Xo+Xo) 
8 a = 4L(XO - Xo) 
8 4 = I - 2(xo + Xo) + 4(xoxo + K) 

When PI=P2=Pa=P4 we have an apse. There is then but 
one apse, p=O. 

Exercise 6 - The stationary circle, meeting four times at the apse, is the 
circle ( -1/2, I). 

When PI = P2 = Pa = P, then P4 = - 3p. This gives the circle 
of curvature at the point p. 

When PI = Pa, P2 = P4 we have the bitangent circles. Then 

PI + P2=0 
PI2 + P22 + 4PIP2 = 2(1 + Xo + xo) 

xo=xo=a real, to 
PI2P22 = 1- 2(xo +xo) + 4(xoxo + K) 
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that is 

and 
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K= -1-PI2 

For real values of PI we have circles with actual contact, 
ending with the stationary circle PI =0. For - 1 < Pl2 < 0 we 
have real circles having with the parabola a double image­
pair. For P12= -I we have the focus. And for -I> Pl2 the 
circles become extra pairs. Writing K = '2, the locus of 
extra pairs is 

a parabola in a vertical plane, with its apse at the focus of 
the given parabola, and with its focus at the apse. The 
relation of the two parabolas is mutual; each is the locus of 
imaginary circles (that is, extra pairs) bitangent to the other. 

Exercise 7 - The system of bitangent circles may be written 

x=2A9+At 

when A is real. Verify that the envelope is a parabola. 

§ 132. Bifocal Conics - The general R2 is a rational curve 
with a double point, two foci, and four apses. 

We take the double point at 00, and the equation 

(I) 2x=z+ljz 

where z = pt and P is positive. The foci are the points x = ± I, 
for which the quadratic in z has equal roots, either 1 or - 1. 

The curves for which P = constant we call ellipses. They 
have an isolated double point at 00, for which t=o or 00. 

The curves for which t = constant we call hyperbolas. 
They have an actual double point at 00, for which P=O or 00. 

The curve being 
2x=pto + Ijpto 

the approximations 

2x=pto 
2x= Ijpto 

give the asymptotes. 

for P large 
for P small 

The curves are confocal conics, the map by (I) of the 
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orthogonal system of concentric circles and their rays. Let 
us handle them simultaneously. We have from (1) 

2(x - 1) = (z - 1 )2jz 
2(x -1) =(z -I)2jz 

When z=pt, z=pjt, we have then 

21 x-I I=(z-I)(z-I)jp 
= P + 1 j P - t - 1 jt 

For p + Ijp ;> 2, while t + Ijt <;; 2. 
Hence the sum of the focal distances is p + Ijp, and the 

difference is ± (t + Ijt); the former is constant for the ellipse, 
the latter for the hyperbola. The differential form of (1) is 

(2) dxjVx2-I=dzjz=dpjP+LdO 

Thus for the ellipse dxj V x2 - 1 = LdO, so that the direction of 
dx is that of the exterior bisector of the angle - 1, x, 1. 

Whereas for the hyperbola dxj V x2 - 1 = dpj p, and the direction 
of dx is that of the interior bisector. The two curves on a 
point cut then at right angles, as we knew from the mapping. 

§ 133. Lines of the Curve - The polarised form of (1) above 
is 

(1) 

Thus for the ellipse we have 

(2) 

which for given tl is a line of the curve. Thus (2) is the 
intersection of the lines t and t l • It is an osculant point, 
outside the curve. 

The image of the focus 1 in the line tl is the map of the 
image of the point z = 1 in the circle 1 z 1 =p-that is, of z =p2. 
Thus the image of the focus 1 in the line tl is, writing 
pt=p2 or t=p, 

or 

(3) x-I = (ptl - I)(p - Ijp)j(p + t l ) 

Similarly the image of the focus - 1 is given by 

x' -1 = (ptl + I)(p -Ijp)j(p - t l ) 
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Hence 
(x -I)(x' - I) = (p -1/p)2 

that is, the product of distances from the foci to any tangent 
is a constant. 

The argument for the hyperbola is similar, (2) being 
replaced by 

Exercise 8 - For varying tlJ (3) is a circle. Prove that 00 1 triangles can be 
inscribed in it and circumscribed to the ellipse, and that the orthocentre of 
any such triangle is the focus - 1. 

§ 134. Theory of the Five-line - Let us write the polarised 
form (I, § 133) as 

(x+ I)/(x -I) =(z + I)(zl + I)/(z -I)(zl -I) 

and write Ui for (Zi + I)/(zi -I). 
Then for the ellipse, where Zi = pti' the osculant point or 

join of the lines tl and t2 is 

(I) (x+I)/(x-I)=ul u 2 

Call this point x (12). Consider 

(2) (x + I)/(x - I) =Ul U2UaU4 

This is for varying t4 a circle. When t4 is - t a, it is the point 
(12). Thus the circle is on (12) and similarly it is on (23) 
and (31). It is then the circumcircle of the triangle (123) 
formed by the three tangents. Thus the equation (2) re­
states the theorem that the circumcircles of 3/4 lines meet 
at a point, the focus of the parabola on the four-lines. It is 
convenient-though unfair to Wallace and Miquel-to call this 
the ciifford point of the four-lines. Calling it (1234), we 
write 

(3) 

This for varying t6 is a circle. When t6 is - t s, it becomes 
(1234). Equally it is on the points (2345), (3451), (4512), 
(5123). This is Miquel's theorem that the foci of the para­
bolas on 4/5 lines are on a circle-the Miquel circle of a 
five-line. 

Also when six lines touch an ellipse, the six Miquel circles 
meet at a point given by (3)-the Clifford point of the six-line. 
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The above argument proves the same theorems for the 
case when the five lines touch a hyperbola, p being sub­
stituted for t. 

We thus have the complete five-line. We take the point 00 

and the lines 1, 2, 3, 4, 5. The points 12, 23, 31 are on the 
circle 123. The circles 123, 234, 345, 412 are on the point 
1234. The five points such as 1234 are on the circle 12345. 

Inversively this is a Clifford configuration r s of sixteen 
points and sixteen circles; on each circle are five points, and 
on each point are five circles. 

And when six lines touch a conic we have a special complete 
six-line. We take the point 00 and the six lines 1, 2, 3, 4, 5, 6. 
The six circles, such as 12345, meet now at the point 123456. 
Inversively this is a special Clifford configuration r 6 of thirty­
two points and thirty-two circles, the points being 

00, 12 ... , 1234 ... , 123456 

and the circles 

1 ... 6, 123 ... , 12345 ... 

On each circle are six points, and on each point are six circles. 
This configuration is sent into itself by the involution 

(4) (x + 1 )(x' + 1 )/(x - l)(x' - 1) =UIU2USU4USU6 

Here 00 corresponds to the Clifford point (3); the point 12 
corresponds to the point 3456; the line 1 corresponds to the 
circle 23456, and the circle 123 to the circle 456. 

Also the focus x = 1 corresponds to the focus x' = - 1. To 
the conic itself corresponds an R2 touching the six Miguel 
circles. 

A special case is when a fixed point of (4) is 00. The other 
is then 0, the centre of the conic; and the involution is 
merely x + x' = o. 

§ 135. Section by a Circle-The circle xX-CX-CX+K=O 
meets the ellipse 2x = pt + 1/ pt when 

(pt+l/pt)(p/t+t/p)+ •.• =0 
or 

(1) t4 - 2c(ptS + tIp) - 2c(pt + ts/p) + t2(p2 + l/p2 + 4K) + 1 = 0 
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Hence 

(2) 

or, in terms of 0i when ti = elf]" 

~Oi =0 (mod 2'IT) 

There are then four apses given by tl=t2=t3=t4' that is by 

t4 - 1=0 

and sections by a circle give parameters apolar to this 
quartic. 

The osculating circles are determined by tl
3t = I 

Exercise 9 - Through a point t of the ellipse can be drawn three circles 
which osculate it elsewhere; and the circle on the points of osculation is on t. 

The bitangent circles are determined by t1
2t2 = I; that is, by 

tlt2 = ± 1. For tlt2 = I the centres lie on the focal axis; for 
t1t2 = -I they lie on the transverse axis. We have from (I) 

81 =2(t1 +t2) =2(cp +c/p) 
82 =t12 + t22 + 4t1t2 =p2 + l/p2 + 4K 
8 3 = 2t1t2(tl + t2) = 2(c/ p + cp) 

Taking the system t1t2 = I, we have 

tl +t2=cp+c/p=c/p+cp 

whence c=c=t say, and 

t2(p + l/p)2 + 2 =p2 + l/p2 + 4K 

When the circle is real, of radius r, then K = cC - r2 = e - r2 so 
that the relation of the centre t and the radius is 

(3) 

When the circle is imaginary-that is, points t, ±, in the 
vertical plane through the foci, then 

(4) 

This is a hyperbola in the vertical plane, with apses at 
the foci t = ± I of the ellipse, and with foci at the apses 
t = ± !(p + I/p) of the ellipse. The reciprocity of the two 
conics is to be noticed, as in § 131. 
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For the hyperbola, in the argument P and t have to be 
interchanged. The apses are now given by 

p4 -1 =0 

so that only two are actual. For the focal system of bi­
tangent circles, the imaginary circles are now points on an 
ellipse in the vertical plane, as required in the above 
reciprocity. 

This reciprocity exists also for the general C2. Here there 
are four foci, either concyclic or anticyclic. Taking the 
former case, with each focus goes an apse. We consider 
these four out of the sixteen apses where the four circles of 
the inversions which send the curve into itself meet the 
curve. The imaginary bitangent circles of the focal system 
fill a second C2 on a sphere, apses and foci being interchanged. 

§ 136. The Images of a Point - The image-equation of a 
conic with foci ± 1 is 

(1) X2 +y2 + 2fLXY + fL2= 1 

For the discriminant as to y is (1 - fL 2)(X2 - 1). 
To determine the two images, Xl and X-I' of a point Xo we 

take the equation 2x =Z + I/z. 
Let the given curve be an ellipse, the map of z = Pot. It is 

the map of the circle I z I =Po, but it is equally the map of the 
circle I z I = 1/ Po. The images of any point Zo in these two 
circles, Zl =P02/Z0 and Z-l = I/Po2z, map into the points YI 

and Y2. 
Thus: 

2x=pt+ I/pt 
2XI = Po2t/p + p/Po2t 

(2) 2(x - Xl) =(p2 - P02)(t -I/po2t)/p 

Since the points z, Zl> Z-l are on the same ray the points X, Xl, 

X-I are on the same branch of a confocal hyperbola. From 
(2) the direction of X - Xl depends solely on t; it is the same 
for all points X on this branch, and in particular when X is 
on both the ellipse and the branch it is the direction of the 
tangent to the branch (the normal to the ellipse). 

The construction (due to Laguerre *) of the images of Xo as 
* E. Study, Vorlesungen uber AusgewiilUte Gegenstiinde der Geomdrie, vol. 1, 

p.101. 
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to an ellipse is this. Draw the branch on x of the confocal 
hyperbola, and draw from x the parallels to the tangents 
where this branch meets the ellipse. These give on the 
branch the images of x. 

Similarly for the images of a point in the hyperbola or the 
parabola. 

From x and Xl the whole two-way sequence is determined 
uniquely. The Green function for the point xu-that is, the 
simplest function with zeros at Xu, X±2' xH ... and poles at 
X±l' X±2 ••• , follows with the use of elliptic functions. 

Exercise 10 - For the parabola V;+V:f=I the focus has the double image 
x = 1. This has the new image 4. The sequence of images beginning with the 
focus is thus 0, I, 4, 9 . . . n·. . . 

Exerci8e II - There are four normals from a point to a conic. The feet 
of these form a special four-point, being determined by 7 conditions (5 for 
the conic and 2 for the point). Show that the invariant which vanishes is 

where 
all"Is +41.:rs' 

II = I X,XI' Xl, Xl, I I 
3 

I. =:E A.sAuO.ls + A •• - Au - AM) 
3 

Is = I1(A18 + Au - AlB - AM) 
I. = I Xl" Xi' Xl, II x conjugate 

Exercise 12 - Here I;1s is to a numerical factor Cayley's invariant 

And 

Where 

111 = X. X. I 

Xs Xs I 

x. X. I 

Hence (taking Xl to be 0) Ia' - II' is to a numerical factor the product of the 
areas of the four triangles. Hence the relation on the feet of the normals 
is known in terms of the six powers Ail' 



CHAPTER XIX 

THE CARDIOID AND THE DELTOID 

§ 137. The Cardioid - A tangent of the base-circle is 

x+xt2=2t 

The image of the point 1 in this tangent is 

(I) x=2t _t2 

This we may take as a definition of the cardioid. It has a 
cusp x = 1 when t = I; and with this as base-point the 
equation is x + (I - t)2 = 0, or changing the sign of x 

(2) x=(1 _t)2 

It is thus an inverse of the parabola with respect to the 
focus. Thus the focus of the cardioid is at 00. The polarised 
form of (2) is 

(3) 

This is, for given t1 , a circle on the cusp. This circle touches 
the curve at t=tl' since in (2) 

dx 
dt at tl =2(tl -I) 

and in (3) 

so that the directions are the same. It is called an osculant 
circle. 

Two such circles, tl and t2, meet at the cusp and at the 
point 

X 12 = (I - t1 )( 1 - t2 ) 

Three such circles meet at points on the line 

x=(I-t1)(I-t2)(I-ta)/(I-t)=I1a/(I-t) 
239 
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Four such lines are included in 

x=TI<1j(I-t)(I-t') 

and are therefore tangents of the parabola 

x=TI<1j(I-t)2 

This is merely a repetition of the argument used for the 
parabola. 

Exercise 1 - From (2) t is the direction of the line from the cusp to x. 
Hence, if x = et, 

et=(I- t)2 

e=2{I-cos 0) 

§ 138. Lines of the Cardioid - Taking the equation § 137 
(1) let us find the tangent at t. For two points t and tl we 
have 

x=2t - t2 

Xl =2tl - tl2 

Xl - X=(tl - t)(2 -t - t l ) 

As tl approaches t along the base-circle, tl - t has a limiting 
direction ± d, the sign depending on the side of t considered. 
Thus as Xl approaches X, Xl - X also has a limiting direction, 
± 2d(I - t). This is the direction of the curve at X, and the 
line on X with this direction is defined as the tangent, or 
line ofthe curve, at x. The clinant is ± 2d( 1 - t)j +- 2Ljt( 1 - Ijt) ; 
that is, t 3 when t =1= 1. Thus the line t of the curve is 

X - 2t + t2 = t 3( X - 2 jt + 1 jt2) 
or 

(1) 

This gives for t = 1 the cusp-line, X = x. 
For t = - w or - w 2 it gives X + x = 3. This then is a double 

line, tangent at both - wand - w 2 • 

For a given point x, (1) is a cubic in t. When the roots 
are all turns there will be three tangents from x. The curve 
as a locus of points divides the plane into two regions; the 
exterior is that for which there are three tangents. 

In general, the number of actual tangents depends on the 
regions made by the curve and its stationary lines. 
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Taking an exterior point x, let the roots of (1) be t1 , t2, ta. 
Then 

8 a =tlt2ta = x/x 
Thus the product of the clinants tia of the three tangents is 
the cube of the clinant of x. 

Therefore, given three tangents on a point, the locus of the 
centre of the cardioid is made up of three lines equi-spaced­
that is, making with each other the angle ± 27T3. In par­
ticular, if x be on the double line there is but one other 
tangent; then measuring angles from the double line the 
line to the centre trisects the angle made by the third tangent. 

Exercise 2 - The tangents at t, wt, w"t are parallel. 
Exercise 3 - The points at which tangents are parallel have a fixed 

centroid, namely, the centre. 
Exercise 4 - The cusp is a Fermat point of the pOints of contact of parallel 

tangents. 
Exercise 5 - Find the locus of the other Fermat pOint. 
Exercise 6 - The longest segment of a line which can be placed in the 

curve joins the points wand w". 

§ 139. The Section by a Line - The cardioid being an 
inverse of a parabola, the question of intersections by a circle 
is the same for both. The condition that four points of a 
parabola are on a circle was in terms of the parameter p, 

'1:.Pi=O 

or, in terms of the parameter t, 

that is 

(1) 

This then is the condition that four points of the cardioid 
are on a circle. 

It expresses that the four parameters are apolar to the 
cusp-parameter taken three times and the apse-parameter. 

The bitangent-circles, by inversion of the results for the 
parabola, are when actual all outside the curve. The cusp 
itself, the bitangent line or double line, and the apse­
circle or stationary circle are the features. Then the circles 
leave the curve, and tend to 00. The imaginary circles, or 

16 



242 THE CARDIOID AND THE DELTOID 

extra pairs, are on the curve which is an inverse of a parabola 
with regard to the apse-a curve called the cissoid. This 
cissoid in the vertical plane has its cusp at the cusp and its 
focus at the apse of the cardioid. 

What is proper to the cardioid is the sections by a line. 
Where the line x/a + x/a = 1 meets the curve x = 2t - t2 we have 

(2t - t2)/a + (2/t - I/t2)/a = 1 
so that 

(2) 

Thus 81 = 2, 83 = 2/84, characterise such a section. 

Exerci8e 7 - The sum of the distances from the cusp to the sections by a 
line is a constant. 

If the tangents at three of these points meet at a point, 
then 

3/x=t1 +t2+t3 
=2 -t4 

The locus of points x, the tangents from which have their 
points of contact on a line, is then the circle 

3/x=2 -t 

Exerci8e 8 - This is the circle on the cusp and the points of contact of the 
double line. 

Strictly, for three actual tangents, only the cusp and the 
exterior arc of the circle apply. The rest of the circle applies 
to the case when x is within the cardioid. The roots of the 
line-equation 

x -3t + 3t2 -xt3=O 

are then t, a, 1/0,. To these correspond a point on the 
cardioid, and an image-pair of it. The image-pair defines as 
in § 83 a tangent antilogous form (two reciprocal antilogies) 
whose fixed point is x. When x is on the interior arc of 
the above circle, the axis of the image-pair is on the point 
of contact of the one tangent line from x. 

§ 140. Two Cardioids - Ctlnsider two cardioids with centres 
o and c. The line-equations may be taken as 

(1) 
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and 

(2) 

For a common line of both curves we must have 7 S =tS; that 
is, 7 = t, wt, or w2t. 

Taking the possibility 7=t, we must also have 

(3) c - 3(1 - a)t + 3(1 - a)t2 - etS=O 

Let all the roots be turns, ti • Then 

(4) 

or, since the clinant of a line t is tS , the cube of the clinant of 
the join of the centres is the product of the clinants of these 
three common lines. The same is true if we take 7 = w"t, 
for we then have in place of (3) 

c - 3(1 - aw")t + 3(1 - aw2")t2 - etS =0 

Thus when all the common tangents are nine lines (that is, 
when no antilogies enter) these lines fall into three sets of 3. 

From (4) the centres of the cardioids which touch three given 
lines lie on a system of lines, whose clinants are the three 
cube roots of the product of the three clinants of the given 
lines. Let us call these lines the axes of the given triangle, 
and suppose that there are n of them. When the centres of two 
cardioids are on an axis, the triangle is a set, for these two 
cardioids. The transition from one axis to another occurs 
when one of the given lines is a double line, say a2, as. We 
know that the centre is then found by trisecting the angles 
as, a2, a I ; a2, as, aI, so that there are nine centres when a2, as 
is the double line, or twenty-seven in all. 

The axes then, of which n/3 have an angle cp, n/3 an angle 
cp + 2'TT/3, and n/3 an angle cp - 2'TT/3, meet at twenty-seven 
points. Hence n = 9. The axes are then nine lines, three 
in each of three equispaced directions. 

Exercise 9 - H Pi be the distances of a pOint from the edges of the triangle 
and ai the angles, the nine axes are three such as 

. :n;-al . :n;-a. . -:n;-a3 
PI sm-

3
-+p.sm -3-+P3sm --3-=0 

and six such as 
. 2:n;-a1 • :n;-a. . -2:n;-as 

Plsm-3-+p·sm-3-+P3sm 3 
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FIG. 64 

Consider in particular the cardioids which lie inside the 
triangle. Let CI be the centre of that of which alPs is a 
double line. 

Then 
Las, a2, ci = U2/3 
L cI , as, a2 = us/3 

and we have seen that the lines CI C2' C2CS, CSCI form an equi­
lateral triangle. * 

Exerci.se 10 - Verify this by trigonometry. 
Exercise II - Verify from the figure that the lines of the triangle at make 

with any line of the triangle Ct angles whose sum is 0 (mod 11:). 

§ 141. The Deltoid - We have seen the convenience of 
treating the cardioid from the line-equation 

x - 3t + 3t2 - itS = 0 

Let us now consider the curve whose line-equation is the 
cubic in t, 

(1) 

* For references on this theorem see Lob and Richmond, Proc. London .Math. 
Soc., ser. 2, vol. 31. 

For the analogous theory of the axes of an n.line, see American Journal of 
ltfathematic8, vol. 51 (1929); ExtensWn8 of Clifford'8 Chain· Theorem, by F. Morley, 
and a note by P. S. Wagner, ibid. 
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There is a region for which three lines can be drawn from a 
point. For then the discriminant of (I) is positive. We 
consider a point x of this region. We have then 

(2) 

and 

(3) 

Hence two lines t1, t2 meet at the point 

(4) 

and in particular when tl =t2 =t we have the map-equation of 
the curve 

(5) x=2t + l/t2 

The curve has cusps when dx/dt = 0; that is, when 

t=l, W, w2 

The cusps are then 3, 3w, 3w2 • For each of these (I) is a 
cube. Thus the cusp-lines are from (1) 

x=x 
x=w2x 
x=wx 

They meet at the base-point, which is the centre of the 
curve. The curve has three reflexions into itself in the 
cusp-lines. Hence the cusp-lines meet the curve again at 
apses. 

The curve from (5) is a hypocycloid with three cusps. 
We call it a deltoid. 

The equation (4) is for varying t2 

x=t1+t+l/tlt 

the segment of a line. The mid-point of the segment is the 
point tl of the base-circle and the ends or cusps of the seg­
ment are given by dx/dt=O; that is, t2t1 = 1. They are then 
the points x = 2t + 1/t2, on the curve. 

Thus a rod of length 4 can be moved always touching the 
curve and with its ends on it (fig. 65). 
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The equation of the motion is 

(6) x=ty+l/t2 

The points y = ± 2 mark in the x-plane the deltoid. The 
cusps x = 3, 3w, 3w2 of the deltoid 
mark in the y-plane the curve 

(7) y = 3ft - Ilt3 

an epicycloid with two cusps. With 
every epicycloid there is a hypo­
cycloid with the same cusps in the 
same order. If we call these com­
plementary then (7) is the comple­
ment of the segment. 

Exercise 12 - If, substituting from (7) in 
(6), we find the envelope of (7), we get the 
complement of the deltoid, as well as its cusps. 

FIG. 65 The region within the deltoid is, 
according to Professor Kakeya, the 

region of least area within which a rod, taking in its motion 
all possible orientations, can be reversed. * 

Let us consider the deltoid of which four lines are given. 
We see from 

X =t1 + t2 + l/t1t2 

that three lines ti give three points 

Xi=81-ti +ti/83 

on a circle whose centre is 8 1 and radius II - 8 3 1. The ortho­
centre is x =81 - (I - 1/83)81 ; that is, 81/83. Hence the centre 
of the deltoid which touches three given lines is equidistant 
from the circumcentre and the orthocentre; that is, it is 
on the axis of these two points. Hence for four lines the 
four such axes meet at a point, which is the centre of the 
unique deltoid on the four lines. 

The centre of the nine-point circle of the three lines ti is 
given by 

* See w. B. Ford, Bulletin of the American ltf athematica1 Society, vol. 28 (1922), 
p. 45; and American Mathematical Monthly, vol. 29 (1922), p. 160. 
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Thus for 3/4 lines it is included in 
2x = (81 -t)(1 +t/84) 

where now 8 i refers to the four ti • 

The conjugate equation is 

Hence 

253 = (8a/84 -1/t)(1 + 84/t) 
= (8a/t -84/t2)(1 +t/84) 

2(tx + 53) =82(1 + t/84) 
a line on the point x = 82/284 , and perpendicular to the line t 
of the curve. 

Hence if from the nine-point centre of 3/4 lines a per­
pendicular be drawn to the fourth, the four such perpendi­
culars meet at a point. This is one extension to four lines of 
the orthocentric property. 

Exerci8B 13 - The point is the foot of the perpendicular from the centre of 
the deltoid on the line of orthocentres of the four lines. 

We have said that in general five lines have a Miquel 
circle. We must notice here an exception, that when the 
lines touch a deltoid the circle becomes a line. 

The circumcircle of three lines is 

x =tl + t2 + ta - t +t/t1t2ta 
For four lines the four such circles meet. For the value 
t=tlt2tat4 gives 

For five lines the five such points are included in 
x =81 - t - 8 6/t 

where 8 i now refers to the five ti • And this is the equation 
of a segment-the Miquel segment. 

For six lines the Miquel segments are included in 

X=81 -t-t' -86/tt' 
where 8 i refers to the six ti • And this is the penosculant form 
of a second deltoid, which is merely the given one displaced. 

Thus the six Miquel segments for six lines of a deltoid are 
tangent segments of a second deltoid. * 

* This reciprocity was pointed out by S. Kantor, "Die Tangentengeometrie an 
der Steinersche Hypocycloide," Wiener Berichte, vol. 78, 1). 232. For further 
exceptions to what is known as Clifford's chain, see F. Morley, Tran8. Amer. Math. 
Soc., vol. 1 (1900), and W. B. Carver, Amer. Journal, vol. 42 (1920). 



CHAPTER XX 

CH,EMONA TRANSFORMATIONS 

§ 142. A Simple Illustration - Let us illustrate a Cremona 
transformation by the following simple case. Suppose that 
the vector from x to y sub tends a given angle at 0 and a 
given angle at 1. That is, let 

(I) 

and 

(2) (x -I)(y -I) =t2(x -I)(y -I) 

1£ we eliminate y, then 

(3) 

In general x gives a definite y. But when x=O, let X/X=T. 
Then 

tlTY - t2(y - I) = 1 

which is a line for varying T. And so when x = I, writing 
(x-I)/(x-I)=T, 

another line. 
And if x = 00 , we write again x/x =T, so that 

tlTY - t2T(y - I) = 1 

and y is on a circle. 
In fact to make y arbitrary in (3) we must have 

tlX/X - t2(x -I)/(x -I) =0 
and 

t2(x-I)/(x-I)=1 

Hence, in addition to the singular points 0, t, 00, there is 
the singular point given by 

t2(X/tl - I) =x-I 

Exercise I - To this singular point corresponds the axis of reals. 
Exercise 2 - When x describes a circle draw the curve of y. mechanically. 

248 
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A Cremona transformation is then a one-to-one trans­
formation in general, but with singular points ai to which 
correspond not points but fundamental curves R i . To the 
clinants around ai correspond the points of R i . Where two 
fundamental curves intersect, we have a point y with more 
than one correspondent x; that is, we have a singular point of 
the reciprocal transformation. When then the transforma­
tion is mutual (as in § 109), the fundamental curves intersect 
in the singular points. 

§ 143. Focal Pairing - In § 109 we generalised the equation 
of the secant of the base-circle 

by writing 

(1) x+y+SaXii=SI 

Si referring to three points ti. This we called focal pairing. 
We wish now to remove the restriction that the points 

are on the base-circle. 
Taking any three points ai' consider 

(2) 

where the Ai are real. We have two roots, say x and y, of 
which each determines the other. For if x is given, there are 
in general two conjugate equations determining the ratios 
Al : A2 : As· 

Instead of (2) we write the identity in z, 

(3) (z - x)(z - y)~~ = ~AI(Z - a2)(z - as) 

whence, when z =al , 

(al - x)(al - y)~Ai =A1(al - a2}(al - as) 

showing the angle-property, 

L a2, aI' x= L y, aI' as 

Exerci8e 3 - If a. = t •• then 

Deduce 

(x + y)LA..=LA.1(t. +t.) 
xyLA..=LA.1t.t. 

We have then in (2) a mutual correspondence of two points 
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x and y. It has the singular points ai' to which correspond 
curves. For when x =al> then Al =0, and the equation is 

A2(X - as)(x - at) + As(X - al)(x - a2) = 0 

so that y is (A2aS+Asa2)/(A2+As), any point on the join of a2 
and as. 

But also it has the singular point 00, for then from (2) 

Al +A2 +As=O 
and 

y = 'LAla2aS/'LAlal 

which is the circle on ai • 

To the points aI' a2, as, 00 correspond then the lines of the 
triangle and the circumcircle, as we knew before. 

Let us now apply a homography to (2). 
Writing (2) with accents, 

(2') 'LAI/(X' - a l ') = 0 

let 
x' = K/(X - a4) 

so that a/, a2', as', 00 become say aI' a2, as, a4 • 

Since 

(2') becomes 
3 

L,Al(al - a4 )/(x - al ) = 0 
or 

s 
L,Al/(X -al ) - (AI +A2+ AS)/(X - a4 ) 

or 

(4) 
where 

Al +A2 +As +A4 =0 

This then is the general form. The singular points are now ai 

(corresponding to Ai = 0) and to them correspond the circles 
on the other three points-the fundamental curves. 

The physical meaning is of interest. The effect at x of a 
force of strength Al directed from a l and varying inversely 
as the distance is Al/(X - al). There will be equilibrium for a 
system of such forces when 

'L~/(x-ai)=O 
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that is when 
'.EAt/(X - ai) =0 

We may instance electric currents in long straight wires 
perpendicular to the plane. 

Exerci8e 4 - For a point attracted to three points by forces of equal 
strength, varying inversely as the distance, find the two positions of 
equilibrium. 

Exercise 5 - If four points are on a circle, the focal pairing becomes the 
inversion in that circle. If four points coincide, two and two, the focal 
pairing becomes a quadratic involution. 

Let us take any three quadratics qi' where 

q1 = f3iX2 - YiX + 8i =0 

We wish to show that for real Ai the quadratics 

(5) 

gives the above pamng. The equation maps the pairs of 
points x and y on the points (or lines) of a second plane. 
It sets up thus a two-to-one correspondence of two planes. 

The equation (5) is homographic in x. We may then 
examine it for x = 00. We have then 

and 
A1f31 + A2f32 + A3f3S = 0 

A1P1 + A2P2 + Asi33 = 0 

giving definite ratios Al : A2 : As and a definite y except when 
f3J PI = f3J P2 = f33/ P3. In this latter case 00 is a singular 
point. The equation (5) is then, taking f3i as real and 
including it in Ai' 

3 

(6) L,Ai(X2 - YiX + 8i) =0 

For x = 00 , '.EAi =0, and we have 

a circle. 
The involution is 

corresponds a circle. 
pairing. 

then such that to any singular point 
It is the Desargues involution, or focal 

To substantiate this, let us write from (6) the relations of 
x and y. 
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We have 

whence 

say 
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~~Ax + y) = ~AiYi 
~Ai xy =~Ai8i 

x+y Yl Y2 Ya 
x+y j\ ji2 jia 

xy 81 82 8a 
1 1 1 1 

=0, 

xy + a(x + y) + b(x +y) +c =0 

Under a translation this is 

xy+b(x+y)+c'=O 

and under x = KX' this is 

(7) 

In addition to the singular point 00 , for which y = Tt, there 
are singular points x for which (7) is a line. These are given 
by identifying (7) with its conjugate, 

TXfj+x+y+dT=O 
so that 

or 
x = 1# = (Ti + d)/(x + dT) 

x 3 + d-rx2 = T + dx 

Taking these points as ti , then T=8a, d= -82, and (7) is 

xy + 8 a(X + y) =82 

the standard equation for Desargues pairing. 
It thus appears that the two-to-one correspondence 

Alql +A2q2 + Aaqa =0 

where the Ai are real and qi are quadratics, is reducible to 
<l 

(8) LAi/(X - ai)=O 

The four-point pairing takes a very simple form when we 
regard the four points ai as on a sphere. We have then a 
tetrahedron of reference, and use barycentric co-ordinates. 
Let those of x any point be ti and those of any point y be TJi. 
We consider then the Cremona pairing, 

(9) 
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But we limit this by asking that the sphere on a. be sent into 
itself. The equation of the sphere is 

(10) ~A12t1t2=0 

where "12 is the squared distance of an edge. This becomes 
under (9) 

and identifying this with (10), 

Therefore 

(11) 

AUK1 K2 = fLAs4 

K1 =A2aAS4~2 
K2 = AS4A41A1S 
KS =A41A12A24 
K4 = A12A2SAsl 

Any plane ~a.ti becomes ~Kiai/TJi' a cubic surface with 
double points at the reference points, cutting the sphere in a 
bicubic curve, also with double points at the reference points. 
Thus the pairing sends a circle into a rational bicubic curve RS. 
The points which the circle has in common with the funda­
mental circles become the double points of RS. 

In particular, when the circle is a double point, its trans­
form RS acquires a fifth double point. It then breaks up 
into the five double points, having conjugate factors 

x 2x+ 
and 

xx2 + 
each factor having a single point at Xi. 

The image-form of RS has the factor 

x'1j + ... 
Thus we have the (2, 1) transformation 

(12) ii = (a ox 2 + a1x + a2)/(fJox2 + fJ1X + fJ2) • 

In this transformation there are for a given y two points x. 
These points X are then in an involution. Taking the double 
points as 0 and 00 , we have (12) in the form 

(13) 



254 CREMONA TRANSFORMATIONS 

There may be five fixed points, or three fixed points and an 
interchange, or one fixed point and two interchanges. Con­
sider the first case. We have then a five-point or quintic, ai. 

It gives a transformation (12) or (13), and hence an involution 
giving a second quintic, bi. We prove that a6 and b6 are a 
focal pair as to aI' a2 , as, a4 (or as to b1 , b2 , bs, b4 ). For this 
is so if the four-rowed determinant 

I I, 1/(a6 - a1 ), 1/(a6 - ( 1 ), 1/(a6 + a1 I 
vanishes. But since the ai are given by 

(X2 - a2)(x - fJ) = y 
we have 

a6 -a1 =y/(a6
2 - a 2) - y/(aI 2 - a 2 ) 

whence 1/(a6 - ( 1 ) is of the type A + fL/(a6 - a1 ) + y/(a6 + a1 ) 

and the determinant vanishes. 
If we take one of the five points as 00, then in (12) fJo=O. 

If we then take three of the finite points as t; we have (12) 
in the form 
(14) y={a(x2 -81X+82)+I}/(x+8 sa) 

for this is true when x =y =ti • 

Let 2m be the sum of the roots of this quadratic in x. 
Then 

y=a(2m -81 ) 

This is an antilogy defined by the four finite points. For 
each point there is a conic, with it as focus, inscribed in the 
triangle formed by the other three. Whereas the involution 
above sends each point into the other focus, the antilogy 
sends each point into the centre of its conic. It sends the 
circumcentre y = 0 into the nine-point centre 8 1/2. 

Exercise 6 - The four circumcentres and the four nine-point centres form 
negatively similar quadrangles (H. W. Richmond). 

Exe:rcise 7 - To the point x = 00 in (14) corresponds in the involution the 
point x = - B.a. In the case when this point is outside all four circumcircles, 
each circle subtends the same angle at the point (G. T. Bennett). 

Exercise 8 - The antilogy sends Bennett's point into a point on each 
nine-point circle. Thus the four nine-point circles meet at a point. 

Exe:rcise 9 - When a focal pair is outside (or inside) the four circum­
circles, it has four hyperbolic distances (one for each circle). Prove that 
these distances are equal. 
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§ 144. Intrinsic Co-ordinates - This four-point pairing may 
be treated by the intrinsic co-ordinates of § 41. 

We take two points 8 and cP mutually related by 

(I) 8i +Pi=Ki, i=l, 2, 3 

In general a point 8 gives a definite point cpo But when 
8 = K, CPi = 0, and cP is any point of the circumcircle. And 
when 8 is a reference point Xl' so that 81 = ° but 82 is arbitrary, 
then CPI = Ki' the equation of a circle on X2' K, Xa. Thus we 
have the four singular points Xl, X2' Xa, K. 

If we combine this transformation with the inversion j 23; 
that is, replace CPi by - CPi, then 

(2) 8i - CPi = Ki 

This is again a Cremona transformation. It has the period n 
when nKI =0, nK2=0, nKa=O (mod 'IT). In particular it is of 
period 3 when 

8i - CPi = 'IT/3 
or 

8i - CPi = - 'IT/3 

that is when the fourth singular point is a Hessian point; in 
other words, when the four points are self-apolar. This 
transformation 

8i - CPi = 'IT/3 

sends 00 , for which 8i = - ai' into 

CPi + ai = ± 2'IT/3 

that is into the points at which the edges subtend equal 
angles-the Fermat points, say II and 12. 

Thus the given three-point Xi yields a new three-point, 
00 , II, 12. The relation is a mutual one. 

Exercise 10 - (I) The two three. points are apolar; (2) the Hessian pair of 
each is in the antigraphy of the other; (3) the Jacobian of the two Hessian 
pairs is the intersection of the circumcircles. 

§ 145. The Geiser Transformation - As a second case of a 
Cremona transformation of period 2, or Cremona pairing, 
consider all biquadratics C2 on six given points ai. Two such 
biquadratics have then two other common points, X and y. 
And all biquadratics on ai and X meet at y. There is then 
a pairing of points in general. But when X is al> then C2 
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acquires a double point at a I ; it is determined by this double 
point (three conditions) and the five other points ai. Thus 
y is any point on this C2, which we denote by RI2. Thus a l 

is a singular point, and RI2 is a fundamental curve. There 
is then for six given points a Cremona pairing Tu with the 
points ai as singular points, and the rational curves Ri2 as 
fundamental curves. 

When now x describes a circle, to the four points common 
to this circle and Ri2 correspond the point y=ai taken four 
times-a fourfold point. Thus the curve which is the 
transform of the circle is a Cn with six fourfold points ai. 

To two circles correspond two Cn's, which must therefore 
have two free intersections. 

Thus 

or 
2n2 =6x16+2 

n=7 

A curve of inversive order 7 with six fourfold points, each 
counting as six double points, is rational. Therefore to a 
circle, under T u, corresponds an R7, with six fourfold points a •. 

But when the circle is on a singular point, al> then the 
fundamental curve RI2 peels off, and there is left a curve R6 
with a double point at aI' and triple points at a2 ••• au, 
the equivalent of sixteen double points. 

And when the circle is on a l and a2, then R 7 becomes 
R I2R22Rs, where RS has aI' a2 as single points and as, a4 , av' a6 

as double points. Lastly to the circle on aI, a2, as corresponds 
the circle on a4 , av' au· 

When the six points are taken on a sphere the biquadratics 
are the sections of the sphere by quadrics. When of the eight 
points common to three quadrics six are fixed, the mutual 
transformation of the other two is the Geiser transformation. 
We are stating this above in inversive language, with refer­
ence to a fixed quadric of the system. 

When the circle becomes a double point, the R 7 acquires an 
extra double point, and breaks up. The factors are of the form 

and 
X Sx4 + . 

each having double points at ai. 
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§ 146. The Bertini Transformation - The circles of the 
plane (I) have two common points, and (2) are a triply 
infinite linear system. 

Let us ask what other system of rational curves Cn has 
these properties. There will be multiple points ai • We 
suppose all of the same multiplicity fL, that is when such a 
point is 0 all the terms Xax{J for which a + f3 < fL are absent. 
Thus for fL = 1 the point a i is on the curve; for fL = 2, a i is a 
double point; for fL = 3 it is a triple point, and so on. Let 
there be A points ai' each of multiplicity fL. 

Then since two curves Cn meet in 2n2 points, 

(I) 

and since a fL-fold point imposes fL(fL + 1)/2 linear conditions, 

(2) AfL(fL + 1)/2 =(n+ 1)2 - 4=(n -I}(n+ 3) 

Hence 

(3) 

which is the condition that the curves be rational. 

Also 

that is 

(4) 

(5) 

(n + I)/(n -I) =fL/(fL - I) 

Hence we have the table 

fL=1 2 4 8 
A=O 4 6 7 
n= 1 3 7 15 

That is, we have 

( I) all circles ; 
(2) curves R3 with four given double points; 
(3) curves R7 with six given quadruple points; 
(4) curves R15 with seven given eightfold points. 

We have considered the case (2) and briefly the case (3). 
The case (4) is that known in projective geometry as the 
Bertini transformation (Pascal, Repertorium, vol. 2, p. 370). 

17 
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In the Bertini transformation T 7 from the inversive view 
we have seven points ai ; two curves 0 4 with these as double 
points have 2 x 16 -7 x 4 or four intersections, but these 
pair off. A curve 0 2 on the points and a curve 0 4 twice on 
the points have two other intersections, which are a pair 
of T 7• 



CHAPTER XXI 

THE n-LINE 

§ 147. Cyclogens - We have indicated in Chapter XV the 
advantage of referring a triangle to its circumcircle. And 
we have seen the simplicity of regarding four lines as lines 
of a parabola or as osculant lines of a cardioid. The cardioid 
was strictly analogous to the circle, the equation of the 
curves being 

and the lines being 

x - 2t +xt2 
x - 3t + 3t2 - it3 

X-8 l + X8 2=0 
X -81 +82 - X83 =0 

in the first case for 2/3 ti , in the second for 3/4 ti • 

It is natural, then, to study the n-line from this same point 
of view generalised. 

A curve given by x = J(t) has a cusp when dx/dt = o. Let 
then 

(I) 

or 

(2) dx/dt + (n - 1 ){al + (n - 2)a2t + ... + altn- 2} = 0 

Then we have defined a curve whose map-equation is 

(3) x-xu+(n-l)alt+(n;l)a2t2+ ... + altn-l=O 

whence the line-equation is 

(4) x -xu +nalt + (~)a2t2 + 

for the envelope of this line is obtained by differentiation 
as to t, and the derivative is n x the conjugate of (3). 

We call xu, the value of x when t=O, the centre of the 
curve, and take it to be o. We have then in (3) or (4) a 

259 
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convenient curve as a base for the discussion of n + 1 lines. It 
was indicated in § 87, where we began with the lines, and 
obtained such a curve uniquely. 

If we write a self-conjugate polynomial in t and regard 
the end-coefficients as variable, we have the curve. In the 
abridged notation it is 

(4) 

when (at) = ao + alt, aor al n-r is a coefficient an conjugate to 
aOn-ralr, and aon=x, aln=x. 

We call such a curve a cyclogen of aspect n, n being the 
number of parallel tangents. And we denote it by Bn.* 

When all coefficients ai except two vanish the curve is an 
epicycloid, and when all vanish it is a point (taken n times). 

The equation (3), with xo=O, is in the abridged notation 

(5) 

This is the map-equation of Bn. 
The equation (2) is 

(6) aOal(at)n-2=0 

a self-conjugate equation giving the cusp-parameters 'ri. To 
every root which is a turn corresponds an actual cusp; there 
are also in general pairs of roots, such as z and I/z, giving 
elliptic pairs of cusps. 

The cusps themselves are given by (5) and (6), so that 

ao2(at)n-2=0 

Save as to homologies x =ay + b, the curve is defined by its 
cusp-parameters. Under the group of reflex ions it has n + 1 
parameters. The form (at)n has only n -1 parameters­
the number of fixed coefficients ar and ar, but here the base­
point is taken at the centre. Thus the circle, B2, has three 
parameters; the cardioid, B3, has four, for example two 
for the centre and two for the cusp. 

The cyclogen BI is a point. Here dx/dt =0 is the original 

• The curve B6 is discussed by Father E. C. Phillips, On the Pentacardioid 
(The Lord Baltimore Press, 1909). We may of course, as in the deltoid, regard 
other than the end coefficients as variable. The curve so derived from a quintic 
with as and as as conjugate variables, is discussed by R. P. Stephens, On the 
Pentadeltoid, Trans. American Math. Soc., vol. 7 (1906). 



THE n-LINE 261 

equation. It is convenient here to regard a line as a cyclogen 
of aspect 0, BO. If dx/dt=K/t, and t=et(), then X=XO+LKO, 
a line. 

When we associate with an (n + I)-line its B", the coeffi­
cients ai of the B" are constants of the lines under displace­
ments. They are invariants of the lines under homologies. 
They form with the clinants of the line a complete set of 
invariants under homologies. 

The B" is a rational curve with n - 2 marked points-the 
cusps. The cusp-parameters are subject to homographies 
which leave (6) unaltered, and thus the comitants of (6) will 
tell, in part at least, the story of the lines. 

In a specific case we may take a l to be 1, and replace 
t by - t. Thus the curves, so reduced, are 

n=2, 
n=3, 
n=4, 
n=5, 

x - 2t + xt2, a circle 
x - 3t + 3t2 - Xi3, a cardioid 
x - 4t + 6p.t2 - 4t3 +Xi4 
x - 5t + lOat2 - IOut3 + 5t4 - Xi5 

§ 148. Osculants - To the curve (at)" we now apply Study's 
theory of osculants (Study, Leipzig Berichte, 1886). 

The polar form (atI)( at) ,,-1 is for given t the point ti of the 
curve. But for given ti it is a curve B,,-I, which is called a 
first osculant of Bn. (The phrase polar of a curve is pre­
empted). This osculant touches B" at ti • Its map-equation 
is 

(1) 

This is satisfied when 

Thus a first osculant is on the cusps of B", and also touches 
the curve. These are n - 1 conditions. 

Exercise 1- The Hessian of (1) as to t is the self-conjugate equation of 
Bin-I. 

A first osculant of BI,,-I, say B I2,,-2, is a second osculant 
of B". It is, as a line equation 
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And so on till we come to the completely polarised form 

( atI )( at2) _ • . (at,,) 

which is an osculant line. Explicitly it is 

x + a I 8 1 + a~2 + . . . +X8" = 0 

where the 8 i are product-sums of the ti • 

For n + 1 points ti we have n + 1 osculant lines, and it is 
this form which we may take as canonical for the lines, 
precisely as we took for three lines the form 

x -81 +X82 =O 

for 2/3 ti • It will tend to clearness if we give an account of 
the theory for B3 and for B4. 

The cardioid (at)3 is, reduced, 

x - 3t + 3t2 - xt3 = 0 

The polar (at)2( atI) is 

x - 2t - tl + t2 + 2ttl - Xt2tI = 0 

This is, for given t, the point t of the curve 

x=2t _t2 

For given tl it is the line-equation of the osculant circle at 

FIG. 66 

t I ; a line on the point t of (at)3, and making with the tangent 
at t the clinant tIlt. 

The two curves, the cardioid and an osculant circle, are 
said to be perspective; a tangent of the circle at its point t 
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being on the pOint t of the cardioid. The tangents from the 
latter point to the circle fall apart; that which touches at t 
we may call the isolated tangent. 

The isolated tangents from a point t of the cardioid to two 
osculant circles (at)2( atI) and (at)2( at2) have the fixed clinant 
t I /t2. Thus as t describes (at)a, the lines of a rigid pencil on t 
describe the osculant circles. 

To obtain the envelope of osculant circles, we take the 
map-equation 

x=t +tI -ttl 

By the rule of envelopes, 

tDtXjtIDt,x 

is real-that is, t = tl or either t = 1 or tl = 1. 
An osculant circle then touches the curve and is on the 

cusp. For when t = I, x = 1, the cusp. When tl is 1, the 
osculant circle is the cusp (taken twice). 

Two osculant circles (at)2( atI) and (at)2( at2) meet then at 
the cusp, and also at the point (at I )( at2)( at). Three osculant 
circles meet at the cusp, and points on the line (atI)( at 2)( ata). 
This line is the secant or osculant line at t2, ta of the circle 
(at)2( atI). 

The theory of a four-line from this point of view is that the 
circum circles of 3/4 lines are osculants of a cardioid. The 
cardioid and four points ti on it determine the lines as 
L, = (atI)( at2)( ata), . • • 

The intersection of the lines La and L, is (atI)( at2)( at). 
The circumcircle of L2LaL, is (at I )(at)2. 

The curve B', reduced, is 

x - 4t + 6p.t2 - 4ta + xt' = 0 

Completely polarised this gives the line 

(2) 

and five lines Li may be taken in this way, for 4/5 t1 (com­
pare § 87). 

For varying t, we have the intersection of L, and Ls, 
(atI)( at2)( ata)( at). For ta =t, =t, we have the circumcircle of 
La, L" Ls' (atI )(at2)(at)2. For t2=ta=t,=t, we have the 
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cardioid (atl)( at)3. The five cardioids of the 4/5 lines are 
osculants of (at)4. 

The theorem of Miquel is now that the cusps of these 
cardioids lie on a circle. Let us then find the cusps of the 
osculant cardioids. Let us here write (at)4 as a map-equation, 

x = 3t - 3ILt2 + t3 

The osculant cardioids are 

(3) 

For a cusp, dx/dt = 0, that is 

(4) 

The cusp-locus is then 
X=t+tl -lLttl 

or, eliminating t +tl and writing T for tt, it is 

(5) 

The cusp locus is then a circle or the arc of a circle as 
IlL I > or < 1. 

The double points of (3) 

1 - 2ILt + t2 = 0 

give the cusp-parameters of (at)4. The cusps are on the curve 
when IlL I < 1. 

In this case (5) is an arc connecting the cusps. We may 
call it the Miquel arc, M. It is the Miquel arc or circle of the 
five osculant lines formed from any 5 ti , taken four at a time. 

Exercise 2 - The tangents of the arc at the cusps are the cusp tangents of 
(at)'. 

The equation (3) is for fixed t and varying tl , the map­
equation of the osculant circle (at)2( atl)2. Thus the envelope 
of these circles is the same as that of osculant cardioids 
(at)3( atl). But for the latter the cusps of (at)4 and (at)4 itself 
are the envelopes, and M is the cusp-locus. For the former 
M and (at)4 are the envelope, and the cusps are the special 
osculant circles which are double points. 

Let us illustrate, in this case of five lines, the use of the 
constants a i • 
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First let a 1 = o. The centric circle of § 87 is then a point. 
And the circum centers of the lines taken three at a time are 
all on a circle. 

We place a ring of five circles (fig. 67) with centres on a 
given circle and each intersecting the next on the circle. 

FIG. 67 

The five other intersections of the adjacent circles being 
joined in order form the five-line, and the salient thing is that 
the intersection of non-adjacent sides are also on the re­
spective five circles. 

Next let a2 = o. The Miguel arc in this case is a segment, 
and (§ 141) the five lines touch a deltoid. 

Again, if a 1aa=a2
2 , or if in the reduced form IL=I, the 

Miguel arc becomes a point. The five lines then touch a 
parabola. 

Lastly five lines in general touch either an ellipse or a 
hyperbola according as IlL I > or < I; that is, according as the 
cusps of B4 are not or are actual. 
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The Miquel figure, or the complete five-line, can be con­
structed without having to draw circles on three points_ 

For, taking B' as 
x = 3t - 3fLt2 + ta 

the five lines Li meet at ten points such as 

X'6 = tl + t2 + ta - fL(t2ta + tatl + t l t 2) + tlt2ta 

The circumcentre of La, L" L6 is then 

x =tI + t2 - fLllt2 

The centric circle, CI , of L2, La, L" L6 is 

x = tl + t - fLtlt 

It is on the point fL. The centric circle of all the lines is the 
base-circle. 

The Miquel circle M has the centre I/fL and radius I/fL - fL. 
It is then the circle on fL with centre at the image of fL. 

Taking now a point tl on the base-circle, the circle CI , 

x = tl + t - fLllt 

is the circle on fL with centre tl. It meets M again when 

1 - fLtlt + tIt = 0 

Taking two points t I , t2 on the base circle, and drawing 
circles CI , C2 on fL with these centres, they meet again at 

x =tI + t2 - fLtlt2 
The circle 

x = tl + t2 + t - fL(tlt2 + tIt + t2t) + tlt2ta 

has this as centre, and meets M where CI and C2 meet it. 
Three circles CI , C2, Ca meet at the point X'6. And for four 

circles CI , C2, Ca, C, the four such points are on the line L 6• 

§ 149. Construction of a Cyclogen - To construct the curve 
B' we may take the line-equation 

x - 4t + 6fLt2 - 4ta + xt' = 0 

All these curves for varying fL are parallel. When fL = 0 we 
have the epicycloid 

x=3t+ta 

known as the nephroid. The curve is then a parallel of the 
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nephroid, or an involute of its evolute, which is another 
nephroid. 

Exercise 3 - When parallel rays of light are reflected at a circle, the 
envelope or caustic is a nephroid. 

For the construction of a Bn+I, which is a special case of 

x + alt + a2t2 + . . . + ant" = 0 

the method of slots and pins (§ 127) is proper. 
We may also use the idea of a rigid pencil. 
A first osculant of (at)", say (atI}(at)"-I, is perspective with 

(at)"; that is, the tangent at t of the osculant is on the point t 
of the curve. The tangent of the osculant makes with the 
curve at t the clinant tIlt, for the former is 

x+ ... +Xt"-It1=O 
and the latter is 

x + ... +Xt" 

The tangents from a point of the curve to the osculant fall 
apart; one of them is isolated. The isolated tangents from 
the point t of the curve to all first osculants form a rigid 
pencil. For the ratio of the clinant tIlt and t2/t is constant. 

Thus there is associated with a cyclogen a definite motion, 
that of the rigid pencil of tangents to first osculants in a plane y, 
as the vertex describes the curve in the plane x. To find the 
equation of the motion we have first the proper parameter T, 

the relative direction of a line of the pencil to the base-line 
in the x-plane. 

Thus T2 = t"tllt or, taking tl to be - 1, 
T 2 =tn- 1 

Second we have the centrode in the x-plane. The normals at 
t to the curves (at)n-I( ati) meet at the point of no velocity xu. 
We have then 

XU=f'(T) 

and by integration we have the function f, and the equation 
of the motion 

y=TX - f(T) 

Exercise 4 - The equation of the motion for B4 is 

ytS +xt" - 314 +3pt2 -1 =0. 

The point y=O describes the B4, and any line y=(!to in the plane ofy envelopes 
a cardioid. 
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This construction of a cyclogen may be put thus_ If we 
take two circles meeting at 0, a line on 0 meets them again in 
two points, the tangents at which meet on a B3 with cusp at o. 
If we take three circles on 0, a line on 0 meets them at three 
points, giving three cardioids which are osculants of a B4. 
For four circles on 0, we have four B4'S which are osculants of 
a B5. And so on. 

Exercise 5 - It is clear that two first osculantB of B" have a common first 
osculant, say 

(at) n-S( at1)( ats) 

Prove that if two curves B"-l have a common first osculant, they are first 
osculants of a Bn. 

§ 150. Clifford's Chain - The theorem of Clifford is as 
follows. Two lines, say 1 and 2, have a common point 12. 
Three lines 1, 2, 3 have three common points 12, 23, 31 which 
lie on a circle 123. Four lines have four circumcircles 123 
which are on a point 1234. Five lines give five such points 
which lie on a circle 12345. And so on. We thus get the 
complete n-line, the lines 1 . 2 . . . n 

meeting in (~) points 12, 

these lying on (;) circles 123, .. . 

these meeting in (~) points 1234, .. . 

ending with a point or a circle 123 ... n as n is even or odd. 
Regarding the lines as circles on the point 00, we have the 
Clifford configuration r n of 2,,-1 points and 2,,-1 circles, 
each point on n circles and each circle on n points. 

To prove this we may begin with four lines. They are 
osculants of a cardioid (at)3, which has a cusp given by 

ao2(at)=0 
aOa1( at) = 0 

Five lines are osculants of a B4, (at)4. Taken four at a time 
they are osculants of (at)3( ati). The cusps of these cardioids 
are given by 

ao2( at)( ati) = 0 

aOal(at)(ati ) =0 
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which give on elimination of t + ti the Miquel arc. Six lines 
give six B4'S which are osculants of a B5, (at)5. The Miquel 
arcs are included in 

a 02( at)( atl )( at2) 
a Oal( at)( atl }( at2) 

They are then on the point given by 

a03(atl }(at2 ) 

a 02al( atl }( at2 ) 

aOal2( atl }( at2) 

the Clifford point of the six-line. The point is known in 
advance. For the three cusp-parameters aOal( at)3 have an 
apolar pair for which 

a02al( atl }( at2) = 0 

aOaI2(atl)(at2) =0 

and the osculant of this pair is a cardioid 

(at)3( atl )( at2) 

which is a repeated point, namely, 

ao3 ( atl )( at2) 

A B 2m+l has 2m -1 cusp-parameters Ti. These have a 
canonizant, m parameters apolar to them. These m points 
give an osculant Bm+! which is a repeated point-the Clifford 
point. For the cusp-parameters of any osculant of (at)", 
say (at),,-r( atl) . . . (atr), are the polar as to the cusp­
parameters Ti of the points tl . _ .tr. Thus, when the polar 
is arbitrary, the cusp-parameters of the osculant are arbitrary. 
That is, for (at)2m+l, 

aOmal( atl )( at2) . . . (atm) = 0 

aOal m( atl }( at2) . (atm) = 0 

Whence the osculant (at)m+!( atl) . . . (atm) becomes 

a 0 m+l( atl )( at2) _ . . (atm) = 0 

By eliminating the symmetric functions 8 i of the ti we have 
the Clifford point. 

For (at)2m+2 each first osculant has a Clifford point. The 
equations have the extra factor (atm+I). If we eliminate all 
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symmetric functions except the turn 8m +1 we have a circle. 
This is the Clifford circle of the (at)2m+2. 

Here the simplest covariant of the 2m cusp-parameters Ti is 
a pencil of sets of m + 1 points apolar to Ti. The osculant of 
such a set is a repeated point. 

§ 151. The n-fold Parabola - For an even number of lines 
we might have used, instead of the cyclogen, Clifford's n-fold 
parabola. This is a curve 

n Ai 
(1) x= ~(ai _t)2 

where, taking the standard case, ai is a turn, Ai a constant, 
which satisfies the cusp-condition 

(2) 

that is, where (2) is self-conjugate, so that it implies 

"LA.i a i 3/(at -t)3=0 
or 

The tangent tl is then 

x = "LAi/( ai - t)( ai - t 1 ) 

this being a segment. 
Two tangents tl and t2 meet at 

x = "LAi/ (ai - t1 )( ai - t2 ) 

The circumcircle of three tangents is then 

x = "LAi( ai - t)/( ai - t1)( ai - t2)( at - t3) 

The cardioid of four tangents is then 

x ="LAi( ai - t)2/IIi' 
where 

IIi4 = (ai - t1)(ai - t2)( ai - t3)( ai - t4) 

and in general the cyclogen of m tangents is 

x = "LAi( ai - t)m-2/IIr 

The number of lines which can be taken without restriction 
is 2(n + 1), and when m is 2(n + 1) the cyclogen is 

n 

x= ~Ai(ai -t)2n/IIt2(n+1l 
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This is what we should obtain by writing the cusp-equation 
for B2n+1 in the canonical form 

n 

~ai(t - Ti)2n-1 =0 
giving 

n 

X = ~ai(t - Ti)2n 

as the canonical form of B2n+1, the base-point being the 
Clifford point. 

The theorem of Homersham Cox in the Quarterly Journal, 
vol. 25, p. 67, is so closely connected with that of Clifford 
that we state it. In a Euclidean space take a point P, and 
on it three planes 7Ti. On each pair of planes take a point. 
On these points P23, P3l> P12 take a plane 7T123. We have so 
far merely constructed a tetrahedron. 

But on P take four planes 7Ti and on each pair 7T17T2 a point 
P12. We get four planes 7T123. These meet in a point P123'. 

Again on P take five planes 7Ti. There are five points 
P23'6. These are on a plane 7T123'6. 

And so on ad infinitum. 
This Cox configuration becomes the Clifford configuration 

when the points are all on a sphere. 
§ 152. Foci - Clifford (Works, p. 51) proves the theorem 

first by the consideration of foci. The method does not easily 
lend itself to the special cases where circles become lines. 
We had such a case in § 141. For other special cases see 
W. B. Carver, American Journal, vol. 42 (1920), pp. 137-167. 
But the method is highly suggestive, and we push it a little 
further. 

We are considering a curve given by a homogeneous line­
equation (ap)n = 0, where PI, P2' P3 are distances to a line from 
three reference-points. The foci (§ 118) are (ax)n=o, where 
Xl, x 2, X3 are vectors to a focus from the reference points. To 
touch a given line is one linear condition on the coefficients 
of the curve; to have a given focus is two linear conditions; 
but when the given focus is 00 it gives only one linear 
condition. 

Consider the case n = 3. Let there be six given tangents 
and a focus at 00. There are two other foci X and y. Each 
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in general determines the other, for we have nine conditions 
when x is given. 

The curves (UiP)3 which touch six lines are included in 
4 

L,Ai(U;p)3, where the Ai are real. Their foci are then given by 
4 

L,Ai( UiX)3, where (UiX)3 is a cubic in x whose leading coefficient 
is real, and may be taken as 1. A focus is at 00 when 
~Ai = o. Thus the finite foci are given by 

3 

L,Ai( f3i x2 - rix + Sf) = 0 

that is (§ 143), by what in anticipation we called focal pairing. 
In the case of six lines, when x is the point 12, then y is 

the focus of the parabola on 3456. And when x = 00 , Y is 
the Clifford point 123456. Thus the transformation inter­
changes the points of the Clifford configuration r 6. But the 
circles of the configuration are sent into bicubic curves with 
the singular points as double points. 

Exercise 6-The three foci x, y, z of line-cubics (ap)' on five lines form an 
involution lsi such that any two in general determine the third. The neutral 
pair are the foci of the conic on the lines. H this conic be 

2x=t+ps/t 

and the five lines be tt, prove that 

2p(i + p)(y+p)(z+ P)jIl5(pti + I) 
=(ps + I)(x+ P)(Y+ p)(H P)/I16(tt + p) 
+(ps -I)(x - p)(Y- p)(z - P)jIl5(tt - p) 

This and its conjugate define the involution. By taking z = 00, =ZT, we have 
the transformation which sends r 5, the complete five-line, into itself. It is a 
contact-transformation. 
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