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Theorem IX. In any of the formal systems mentioned in Theorem VI
there are undecidable problems of the restricted functional caleulus®® (that
is, formulas of the restricted functional calculus for which neither validity
nor the existence of a counterexample is provable).*®

This is a consequence of

Theorem X. Every problem of the form (z)F(z) (with recursive F) can
be reduced to the question whether a certain formula of the restricted fune-
tional caleulus 15 satisfiable (that is, for every recursive F', we can find a
formula of the restricted functional calculus that is satisfiable if and only
if (z)F(z) is true).

By formulas of the restricted functional calculus (r. f. ¢.) we understand
expressions formed from the primitive signs =~ , V, (z), =, z, y,... (indi-
vidual variables), F(z).G(z,y), H(z,y,2),... (predicate and relation vari-
ables), where (r) and = apply to individuals only.’® To these signs we add
a third kind of variables, &(z), ¥(z,y), x(z,y, 2), and so on, which stand
for functions of individuals (that is, ¢(z), ¢(z,y), and so on denote single-
valued functions whose arguments and values are individuals).’” A for-
mula that contains variables of the third kind in addition to the signs of
the r. [. c. first mentioned will be called a formula in the extended sense
(i. e. 5.).5% The notions “satisfiable” and “valid” carry over immediately
to formulas i. e. 5., and we have the theorem that, for any formula A i. e.
s., we can find a formula B of the r. f. ¢. proper such that A is satisfiable
if and only if B is. We obtain B from A by replacing the variables of the
third kind, ¢(z),¥(z,¥),..., that occur in A with expressions of the form
(12)F(z,2), (12)G(z,7,y),..., by eliminating the “descriptive” functions by
the method used in PM (1, +14), and by logically multiplying®® the formula
thus obtained by an expression stating about each F, .. .. put in place of

34Sec Hilbert and Ackermann 1925 In the system P we must understand by formulas
of the restricted functional calculus those that result from the formulas of the restricted
functional caleulus of PM when relations are replaced by classes of higher types as
indicated on page 153 above.

551n 19%0 1 showed that every formula of the restricted functional calculus either
can be proved to be valid or has a counterexample. However, by Theorem IX the
existence of this counterexample is not always provable {in the formal systems we have
been considering).

56 Hilbert and Ackermann (1928) do not include the sign = in the restricted functional
calculus. But for every formula in which the sign = occurs there exists a formula that
does not contain this sign and is satisfiable if and only If the original formula is (see
Godel 1950).

TMoreover, the domain of definition is always supposed 10 be the entire domain of
individuals.

S8 Variables of the third kind may occur at all argument places occupied by individual
variables, for example, y = ¢(z), F(z,¢(y)), G(¥(z, é(y)), 2), and the like.

"%That is, by forming the conjunction.
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some @, 1, ... that it holds for a unique value of the first argument [for any
choice of values for the other arguments)].

We now show that, for every problem of the form (z)F(z) (with recursive
F), there is an equivalent problem concerning the satisfiability of a formula
i. €. 8., s0 that, on account of the remark just made, Theorem X follows.

Since F is recursive, there is a recursive function ®(z) such that

F(z) ~ [®(z) = 0],

and for @ there is a sequence of functions, ®,,®,,...,®,, such that §,, =
@, ®,(z) =z + 1, and for every ®; (1 < k < n) we have either

L. (22, 2 [ Pu(0,22, ..., Zp) = Bp(22,...,2m)],
(z’IQv AL szm){‘bk[’l(z)‘zz’ vee 'zm] —
Oz, Pu(z,22,...,2Zm), 22,..., Zm]},

with p,q < k% (18)
or
2. (1, Zm [ Ou(Zr, - Zm) = B (®4, (1), - - -, P4, (5))],
withr<k, i,<k (forv=12,...,5)5 (19)
or

3. (3l’-“1"!!)[.&(:1"-"3!")-°l(°l("'(ol(o)).._))]° (20)
We then form the propositions

(2)®(2) = 0& (2,y)[®1(2) = &) (y) — z = y], (21)
(z)[®n(z) = 0]. (22)

In all of the formulas (18), (19), (20) (for k = 2,3,...,n) and in (21)
and (22) we now replace the functions ®; by function variables ¢; and the
number (0 by an individual variable zo not used so far, and we form the
conjunction ' of all the formulas thus obtained.

The formula (Ezg)C then has the required property, that is,

394 The last clause of footnote 27 was not taken into account in the formulas (18).
But an explicit formulation of the cases with fewer variables on the right side Is actually
necessary here for the formal correctness of the proof, unless the idemtity function,
I{z) = z, is added to the initial functions.]

“OThe g, (i = 1,...,s) stand for finite sequences of the variables x,,xa...., Tm; for
exmmnple, zy,73,22.
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L If (z)[®(z) = 0] holds, (Exzo)C is satisfiable. For the functions
®,,P,,..., 9, obviously yield a true proposition when substituted for
$1,82,...,¢n in (Exo)C.

2. If (Ez¢)C is satisfiable, (z)[®(z) = 0] holds.

Proof: Let ¥, W¥,,..., ¥, be the functions (which exist by assumption)
that yield a true proposition when substituted for ¢y, ¢3,...,¢, in (Ez,)C.
Let J be their domain of individuals. Since (Ezp)C holds for the functions
¥, there is an individual a (in J) such that all of the formulas (18)-(22) go
over into true propositions, (18')-(22'), when the ®, are replaced by the ¥,
and 0 by a. We now form the smallest subelass of J that contains a and is
closed under the operation W, (z). This subclass (') has the property that
every function ¥,, when applied to elements of ¥, again yields elements of
Y. For this holds of ¥, by the definition of ¥, and by (18), (19'), and (20/)
it carries over from W, with smaller subscripts to ¥; with larger ones. The
functions that result from the W; when these are restricted to the domain
¥ of individuals will be denoted by W]. All of the formulas (18)-(22) hold
for these functions also (when we replace 0 by a and &, by ¥{).

Because (21) holds for W) and a, we can map the individuals of 7' one-
to-one onto the natural munbers in such a manner that a goes over into 0
and the function ¥} into the successor function ®;. But by this mapping
the functions ¥/ go over into the functions ®,; and, since (22) holds for ¥},
and a,

(x)[®n(z) = 0],

that is, (z)[®(z) = 0], holds, which was to be proved.®

Since (for each particular F) the argument leading to Theorem X can
be carried out in the system P, it follows that any proposition of the
form (z)F(z) (with recursive F') can in P be proved equivalent to the
proposition that states about the corresponding formula of the r. f. c. that
it is satisfiable. Hence the undecidability of one implies that of the other,
which proves Theorem IX.5?

4

The results of Section 2 have a surprising consequence concerning a
consistency proof for the system P (and its extensions), which can be stated
as follows:

81 Theorem X implies, for example, that Fermat's problem and Goldbach's problem
could be solved if the decision problem for the r. [. ¢. were solved.
2 Theorem IX, of course, also holds for the axiom system of set theory and for

its extensions by recursively definable w-consistent classes of axjoms, since there are
undocidable propositions of the form (2)F{z) (with recursive F} in these systems too,




Discussion on
providing a foundation for mathematics

(1981a)

* = *

According to the formalist view one adjoins to the meaningful proposi-
tions of mathematics transfinite (pseudo-)assertions, which in themselves
have no meaning, but serve only to round out the system, just as in ge-
ometry one rounds out a system by the introduction of points at infinity.
This view presupposes that, if one adjoins to the system S of meaningful
propositions the system T of transfinite propositions and axioms and then
proves a theorem of S by making a detour through theorems of T, this
theorem is also contentually correct, hence that through the adjunction
of the transfinite axioms no contentually false theorems become provable,
This requirement is customarily replaced by that of consistency. Now |
would like to point out that one cannot, without further ado, regard these
two demands as equivalent. For, if in a consistent formal system A (say
that of classical mathematics) a meaningful proposition p is provable with
the help of the transfinite axioms, there follows from the consistency of A
only that not-p iz not formally provable within the system A. Nonethe-
less it remains conceivable that one could ascertain not-p through some
sort of contentual (intuitionistic) considerations that are not formally rep-
resentable in A. In that case, despite the consistency of A. there would
be provable in A a proposition whose falsity one could ascertain through
finitary considerations. To be sure, as soon as one interprets the notion
“meaningful proposition” sufficiently narrowly (for example, as restricted
to finitary numerical equations), something of that kind cannot happen.
However, it is quite possible, for example, that one could prove a statement
of the form (Ez)F(z), where F' is a finitary property of natural numbers
(the negation of Goldbach’s conjecture, for example, has this form), by the
transfinite means of classical mathematies, and on the other hand could
ascertain by means of contentual considerations that all numbers have the
property not-F; indeed, and here is precisely my point, this would still be
possible even if one had demonstrated the consistency of the formal sys-
tem of classical mathematics. For of no formal system can one affirm with
certainty that all contentual considerations are representable within it.

. @ -
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(Assuming the consistency of classical mathematics) one can even give
examples of propositions (and in fact of those of the type of Goldbach or
Fermat) that, while contentually true, are unprovable in the formal system
of classical mathematics. Therefore, if one adjoins the negation of such a
proposition to the axioms of classical mathematics, one obtains a consistent
system in which a contentually false proposition is provable,

* *
Postscript

I have been invited by the editors of Erkenninis to give a synopsis
of the results of my 1991, which has recently appeared in Monatshefte
Jir Mathematik und Physik 38, but was not yet available at the time of
the Kinigsberg conference. That paper deals with problems of two kinds,
namely: (1) the question of the completeness (decidability) of formal sys-
tems of mathematics; (2) the question of consistency proofs for such sys-
tems. A formal system is sald to be complete if every proposition express-
ible by means of its symbols is formally decidable from the axioms, that
ig, if for each such proposition A there exists a finite chain of inferences,
proceeding according to the rules of the logical caleulus, that begins with
some of the axioms and ends with the proposition A or the proposition
not-A. A system & is said to be complete with respect to a certain class
of propositions M if at least every statement of R is decidable from the
axioms of 6. What is shown in the work cited above is that there is
no system with finitely many axioms that is complete even with respect
only to arithmetical propositions.' Here by “arithmetical propositions”
are to be understood those propositions in which no notions oceur other
than +, -, = (addition, multiplication, identity, with respect to just the
natural numbers), as well as the logical connectives of the propositional
caleulus and, finally, the universal and existential quantifiers, restricted,
however, to variables whose domains are the natural numbers, (In arith-
metical propositions, therefore, no variables other than those for natural
numbers can occur at all.) Even in systems that have infinitely many ax-
ioms, there are always undecidable arithmetical propositions if only the
“axiom scheme” satisfies certain (very general) assumptions. In particular,
it follows from what has just been said that in all the well-known formal
systems of mathematicsfor example, Principia mathematica (together
with the axioms of reducibility, choice and infinity), the Zermelo Fraenkel
and von Neumann axiom systems for set theory, and the formal systems

inder the assumption that no false (that is, contentunlly refutable) arithmetical
propositions are derivable from the axioms of the system in question.
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their presence in us may be due to another kind of relationship between
ourselves and reality.

However, the question of the objective existence of the objects of math-
ematical intuition (which, incidentally, is an exacl replica of the question
of the ohjective existence of the outer world) is not decisive for the prob-
lem under discussion here. The mere psychological fact of the existence of
an intuition which is sufficiently clear to produce the axioms of set theory
and an open series of extensions of them suffices to give meaning to the
question of the truth or falsity of propositions like Cantor’s continuum hy-
pothesis. What, however, perhaps more than anything else. justifies the

ONote that there is a close relationship between the concept of set explained in
footnote 14 and the categories of pure understanding in Kant's sense. Namely, the
function of both is “synthesis”, Le., the generating of unities out of manifolds {e.g., in
Kant, of the idea of one object out of its various aspecta),

Cantor's continuum problem 269

acceptance of this criterion of truth in set theory is the fact that contin-
ued appeals to mathematical intuition are necessary not only for obtaining
unambiguous answers to the questions of transfinite set theory, but also
for the solution of the problems of finitary number theory*! (of the type
i's conjecture),*? where the meaningfulness and unambiguity
of the concepts entering into them can hardly be doubted. This follows
from the fact that for every axiomatic system there are infinitely many
undecidable propositions of this type.

It was pointed out earlier (page 265) that, besides mathematical intu-
IHIJTI. t.herp exlﬂtﬂ- almther (though only prnbable} criterion of the l:ruth of
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1974. But for the usual systems and the various non-constructive ex-
tensions that have been considered, it is both much more natural and of
greater generality to follow the lead of Lab 1955, in which quite elegant
abstract derivability conditions (modifying those of Hilbert and Bernays)
proved to be the appropriate means for settling the status of various self-
referential statements and reflection principles in such systems. Lob's
results have been put in an even more general logical context through
the work of Solovay ( 1976) on the completeness of certain modal logics
under the provability interpretation of the necessity operator.! Still, to
study the question of applicability of Lob's derivability conditions, one
must consider how formal systems may be presented within themselves.
Here, as Kreisel has often stressed (see for example his 1965, page 154),
dealing with the question of what constitutes a canonical presentation
of a formal system becomes the central concern. One solution has been
provided in Feferman 19582
One final technical point concerns incompleteness theorems for sys-
tems (much) weaker than arithmetic, for example those such as PRA
which are quantifier-free. Gidel points out that his “most general” ver-
sion of the second incompleteness theorem can be extended to apply to
such systems. For the technical tools needed to deal with related ver-
sions of the theorem, see Jeroslow 1973,
Solomon Feferman

Remark 2

This remark begins with what Godel terms “another version of the
first undecidability theorem™, which concerns the degree of complexity
(or “complication”, in Gidel's words) of axioms needed to settle prob-
lems of “Goldbach type” of high complexity. Godel had also referred
to problems of this type in 1964, and he explained there (in footnote
42) that by such he meant “universal propositions about integers which
can be decided in each individual instance” . * Most generally, then, such
propositions arc statements of the form VzR(z) with R general recur-
sive (or effectively decidable, by Church's thesis). It is shown in re-
cursion theory that every such statement is equivalent to one of the
same form with R primitive recursive, and by definition these comprise
the class of I} statements. In fact, it is known through the work of

iSee also Boolos 1979.

kSee p. 269 above. Goldbach’s own statement, dating from his 1742 letter to
Euler, is the still unsettled conjecture that every even integer is Lthe sum of two
primes. (For Goldbach and Euler, 1 was a prime.)
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Matiyasevich that every II{ statement is equivalent to one of the form
Yy ... Yeu[p(er,. ..o 26) ¥ 021, ,::,.::]. where p and ¢ are polynomi-
als with integer coefficients and n < 13.

Gaédel here takes the degree of complexity d{A) of a formula A (in a
given language) to be the number of basic symbols occurring in it. In
other words, if, for a given basic stock of symbols s;,...,4,,, the for-
mula is written as a concatenation A = s, ...s;,, then d(A) is defined
to be k. For S a finite set of (distinct) formulas A, ..., A, . considered as
a system of non-logical axioms, the degree d(S) is defined to be
d(Ay) + -4 d(A,) + (n = 1). The theorem stated informally by Gode!
is that in order to solve all problems A of Goldbach type of a “certain” .
degree k, one needs a system of axioms S with degree d(S) > &, "up tc
a minor correction”. It is not clear what kind of minor correction Godel
intended here, so we do not know just how he would have stated this
as a precise result, After examining this question more closely, the au-
thors have arrived at some results of the same character as Godel's, but
not quite as strong as what would be suggested by a first reading of his
assertion; we have not, however, been able to establish the latter itself.
These various statements and their status are explained as follows.

Let £ be a language with a finite stock #q,..., 8, of basic symbols,
including logical symbols such as *=', ‘A’, *¥", a constant symbol ‘¢, the
successor symbol “°, a means for systematically forming variable symbols
‘v;"fort =0,1,2,... from the basic symbols,™ the equality symbol ‘=",
and parentheses *{", *)". L should also contain symbols, either directly
or by definition, for a certain number of primitive recursive functions
foseioy Jj, where fy and f, are + and -, respectively. It is assumed
that we have a consistent finite axiom system S in £ which contains
(or proves) defining equations for fy,..., f;, and enough of the axiom
system of primitive recursive arithmetic for these functions in order to
carry out Godel’s first incompleteness theorem. In particular, Sy should
be consistent and complete for E‘; sentences (and hence correct for Il','
sentences). For the assertion of Godel's being examined here, only those
systems S are considered which are consistent and contain Sy. Then the
following theorem can be proved:

1800 Davis, Matiyasevich and Robinson 1976, Mativasevich latar showed that
one conld take n < 9; see his 1977

" One obvious way to do this is to identify v; with v 0" ...’ where ‘v’ is a new

L]
basic symbol; this makes d{v;) = ¢ + 2. However, there are somewhat more efficient
ways of building vy from basic symbols, so that d(v;) = logy i + Ologg logy i); we
ghall assume that such an encoding is being used in the discussion that ;olluw:.
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(#) There are positive integers ¢y, ¢z such that for all k > ¢z and &y =
(k — e3)/e1, no finite consistent extension S of Sy with d(S) < k,
proves all true 117 statements A having d(A) < k.

The proof of (#) rests on an examination of Godel's construction
in his 1931 (for the first incompleteness theorem) of a true IT] state-
ment G's which is not provable from S for any finite consistent § ex-
tending Sy. Gs can be regarded as a statement which expresses that
Conj(S) — Gs is not logically provable, where Conj(S) = Ay A---A A,
for § = {A;....,A,}. This construction is uniform in §; that is, for a
suitable I1Y formula B(uy) with at most vy free, we have Gg equivalent
to B("Conj(S)™), where "Conj(§)” is the numeral in £ for a Gadel num-
ber of Conj(S). Using this, it may be shown that Gs can be chosen with
d(Gs) < e1d(S)+ ca, where ¢, is a constant depending on the efficiency
of the Gidel numbering of expressions. It turns out that one can take
¢y = [logym] + 1, where m is the number of basic symbols in £." For
the usual logical systems m is between 8 and 16, hence ¢ = 4. But a
first reading of Godel's assertion under consideration would put ¢y = 1
in (#); call that assertion ({). (If (1) holds, Godel's “minor correction™
would simply be ¢3.)

The remainder of Giadel's remark does not depend essentially on
whether one can obtain (f) or not, but only that we at least have (s).
For Godel's way of measuring complexity, the crucial thing is that the
degree of complexity of axiom systems needed to establish true 1] sen-
tences A increases roughly in direct proportion ¢; to the complexity of
A, where ¢, is small.

We now pass from these technical questions to Godel's discussion of
their significance. This shifts, in effect, to systems of set theory. The
reason is that all of present-day mathematics can be formalized in a rel-
atively simple finite system 5, of set theory (for example, the Bernays-
Godel system of sets and classes). According to Gadel, it follows from
the result (i), or (=), that in order to solve problems of Goldbach type
which can be formulated in a few pages, the axioms of 5; “will have to be
supplemented by a great number of new ones or by axioms of great com-
plication.” Naturally, one would be led to accept as axioms only those
statements that are recognized to be evident, though not necessarily
immediately so for the intended interpretation (that being, in the case
of BG, sets in the cumulative hierarchy together with arbitrary classes
of sets). Thus Godel says that one may be led to doubt “whether evident

IGodel's own numbering of expressions in 1931 is rather incfficient and gives a
comparatively large value for ¢;. The proof that ¢; = [logg m)] + 1 suffices relies
particularly on the more efficent coding of vanables meatoned io footnote m.
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axioms in such great numbers (or of such great complexity) can exist at
all, and therefore the theorem mentioned might be taken as an indica-
tion for the existence of mathematical yes or no questions undecidable
for the human mind.”

In response to such doubts, Godel points out “the fact that there do
exist unexplored series of axioms which are analytic in the sense that
they only explicate the content of the concepts oceuring in them”. As his
main example, he cites the axioms of infinity in set theory, “which assert
the existence of sets of greater and greater cardinality or of higher and
higher transfinite types” and “which only explicate the content of the
general concept of set.” Here Godel repeats ideas broached in 1947 and
more fully in its revised version 1964." There he said that the axioms for
set theory “can be supplemented without arbitrariness by new axioms
which only unfold the concept of set ..." (1964, page 264). Moreover,
the axioms of set theory are recognized to be correct by a faculty of
mathematical intuition, which Godel says is analogous to that of sense
perception of physical objects: “. .. we do have something like a percep-
tion also of the objects of set theory, as is seen from the fact that the
axioms force themselves upon us as being true™ (1964, page 271). He
goes on to note there that “mathematical intuition need not be conceived
of as a faculty giving an immediate knowledge of the objects concerned.”
In 1964 that point is elaborated by reference to Kantian philosophy. But
at the end of the present remark, Godel puls the matter in a way that
is supported by the working experience of set theorists who have been
led to accept axioms of infinity, namely: “These principles show that
ever more (and ever more complicated) axioms appear during the de-
velopment of mathematics. For, in order only to understand the axioms
of infinity, one must first have developed set theory to a considerable
extent.” The implicit but unstated conclusion of all this is that such
axioms of increasing complexity can be used to settle more and more
complicated problems of “Goldbach type”. In other words, despite re-
sults such as () (or even (1), if true) “mathematical yes or no questions
undecidable for the human mind” need not exist, in principle.

There is one essential difference of aim in the discussions of 1964 and
of the present remark, concerning the possible utility of axioms of infin-
ity. In 1964, Gadel thought that such axioms could be used to decide
CH, whereas here he aims to use thein to solve number-theoretic prob-
lems. The study of the so-called axioms of infinity goes back to Hausdorfl
(1908), followed by several publications by Mahlo (19171, 1912, 1913).
After that, there was only scattered work in the subject until the late

“See particulacly 1964, pp. 264-265 and 271272, Godel first ouched on axioms
of infinity in footnote 48a of his 1931 and in 1932,




Some remarks on the undecidability results
(1972a)

1. The best and most general version of the unprovability of consistency
in the same system.! Under the sole hypothesis that Z (number theory) is
recursively one-to-one translatable into S, with demonstrability preserved
in this direction, the consistency (in the sense of non-demonstrability of
both a proposition and its negation), even of very strong systems S5, may
be provable in S, and even in primitive recursive number theory. However,
what can be shown to be unprovable in S is the fact that the rules of
the equational caleulus applied to equations demonstrable in § between
primitive recursive terms yield only correct numerical equations (provided
that S possesses the property which is asserted to be unprovable). Note
that it is necessary to prove this “outer” consistency of S (which for the
usual systems is trivially equivalent with consistency) in order to “justify”
the transfinite axioms of a system S in the sense of Hilbert's program.
(“Rules of the equational calculus™ in the foregoing means the two rules of
substituting primitive recursive terms for variables and of substituting one
such term for another one to which it has been proved equal.)

This theorem remains valid for much weaker systems than Z. With
insignificant changes in the wording it even holds for any recursive trans-
lation of the primitive recursive equations into S.

2. Another version of the first undecidability theoremn. The situation
may be characterized by the following theorem: In order to solve all prob-
lems of Goldbach type of a certain degree of complication k one needs a
system of axioms whose degree of complication, up to a minor correction,
i5s > k (where the degree of complication is measured by the number of
symbols necessary to formulate the problem (or the system of axioms),
of course with inclusion of the symbols occurring in the definitions of the
non-primitive. terms used). Now all of present day mathematics can be
derived from a handful of rather simple axioms about a very few primitive
terms. Therefore, even if only those problems are to be solvable which can
be formulated in a few pages, the few simple axioms being used today will
have to be supplemented by a great number of new ones or by axioms of
great complication. It may be doubted whether evident axioms in such
great numbers (or of such great complexity) can exist at all, and therefore
the theorem mentioned might be taken as an indication for the existence
of mathematical ves or no questions undecidable for the human mind. But

YThis has already been published as a remark to footnote 1 of the translation (1967,
p. 616) of my 1931, but perhaps it has not received sufficient notice,
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Letters by others written on Godel’s behalf 567

Vienna, 19 October 1930
Dear Mr. Behmann,

Dr. Godel is right now with me and he raises the following objections
against my constructivity claim and your proof of it:

He claims to be able to construct examples where clearly an existential
claim is proved although one cannot give a construction. The simplest
example mentioned by Gédel—which also serves in principle as represen-
tative for all the remaining examples—is the following:

Let there be given a one-to-one mapping between the natural numbers
and certain rational numbers from the interval (0,1). Then one can prove
in the usual fashion that the given sequence of rational numbers has an
accumulation point, although it would not in general be possible to give
it explicitly. Let us consider an example where one certainly cannot give
an accumulation point explicitly. A number is called Goldbachian if all
smaller even numbers are sums of two prime numbers. The sequence of
rational numbers i1s now defined as follows: if n is Goldbachian the num-
ber 1/n is associated to it; if n is not Goldbachian the number 1 - 1/n is
associated to it. Then one can prove that this sequence has an accumu-
lation point {and indeed a rational one), that is, either 0 or 1. However,
without a solution of Goldbach’s problem no accumulation point can be
given explicitly.

Gidel has also discussed the issue with Carnap who finds the objec-
tion made by Gaidel very plausible.

I would be very grateful if you could let me know your reaction to this
objection, and in the meantime I will also rack my brains over it.

Gaodel also adds that although in this case it is a question of a disjunc-
tion between two possibilities, this is not essential; the disjunction be-
tween infinitely many cases could also remain undecided.

With most cordial greetings,

Yours,
Felix Kaufmann

Vienna, 19 October 1930

Postscript

Despite the objections presented, I do not doubt at all the correctness
of the constructivity theorem. It seems to me that the way to invalidate
the objections made lies in the direction that one shows that, in the case
where the existential claim resolves into a disjunction of claims, there is
no longer an existential claim at all after terminological abbreviations



Introductory note to 1932

In this short note on intuitionistic propositional logic (H),* Gadel
shows that

(1) H cannot be viewed as a system of many-valued logic®

(that is to say, we cannot find a finite set M of truth values, with a
subset D C M of designated values, plus an interpretation of —, A,
V by binary operations on M and an mterpretation of — by a unary
operation on M, such that H + A if and only if, for all valuations ¢ in
M, #(A) ¢ D) and that

(2) there is an infinite descending chain of logics intermediate in
strength between A (classical propositional logic) and H.

From Godel's argument one sees that one can take for this chain
A=L; DL3DLyD...,
where L,, s the set of propositional formulas identically valid on the

2For the formal systems designated by A and H in Gidel's text we use bold face
A and H, respectively, for greater typographical clarity.
PFor an introduction to many-valued logics, see, ¢.g., Routenbery 1879, Chapter 111,

Zum intuitionistischen Aussagenkalkiil
(1932)

(In Beantwortung einer von Hahn aufgeworfenen Frage] fiir das von
A. Heyting' aufgestellte System H des intuitionistischen Aussagenkalkiils
gelten folgende Satze:

! Heyteng 10590,
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n-clement linearly ordered Heyting algebra (pseudo-Boolean algebra).
A finite axiomatization of L,, (n > 2) was first given by . Thomas
(1962)., based on Dummett’s (1059) axiomatization of the logic LC
of tautologies on the linear Heyting algebra of order type w. LC can
be axiomatized by adding to H the axiom (P — Q) v (Q — P), or,
equivalently, the following characterization of v:

(AV B) = {((A = B) = B)A((B — 4) — A)}.

L, is then axiomatizable as LC + F, 41, where F,, is as defined in
Gaodel’s note.

[t is to be noted that (1) is in fact a consequence of (2), since it is not
difficult to show that any propositional logie characterized by a finite
set of truth values (in the sense indicated above) and containing H has
only finitely many proper strengthenings.

Gidel's second result may be regarded as the first contribution to the
topic of intermediate propositional logic.

In the last line of his note Godel stated the disjunction property for
H: a proof was given by Gentzen in his 1955

A. S. Troelstra

There is now an extensive literature on the subject. A survey of the literature
up till 1970 may be found in Hosoi and Ono 1975, Mwman (889 presents an extensive
bibliography with historical comments. The reasons for studying intermediate logles
are mainly technical; for example, intermediate logics give rise to interesting algebraic
theories.

On the intuitionistic propositional calculus
(1932)

[Answer to a question posed by Hahn:] For the system H, set up by

Heyting.! of the intuitionistie propositional ealeulus the following theorems

hold:

! Heyting 1950,
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I. There 18 no realization uath finitely many elements (truth values) for
which the formulas provable in H, and only those, are satisfied (that 1s,
wield designated values for an arbitrary assignment).

II. Infinitely many systems lie between H and the system A of the or-
dinary propositional calculus, that s, there is a monotonsically decreasing
sequence of systems all of which include H as a subset and are included in
A as subsets,

The proof results from the following facts: Let K, be the formula

Y (@i OC ax),

I<i<k<n

where £ denotes the iterated V-connective and the a, are propositional
variables. F,, is satisfied in every realization with fewer than n elements
in which all formulas provable in H are satisfied. For, with every assign-
ment, a; and ag are replaced by the same element ¢ in at least one of the
summands of F,, and € DC e.V b yields a designated value for arbitrary
b, since the formula a DC a.Vv b is provable in H. Further, let S, be the
following realization:

Elements: {1,2,...,n}; designated element: 1,
aVh=minla,b); aAb=max(a,b);
adb=1for az2b; adDb=b for a<bh;

“a=n for a¥¢n, =-n=|

Then, for S,,, all formulas of H and the formula F,,.;, as well as all
F, with greater subscript, are satisfied, while F,, as well as all F, with
smaller subscript, are not satisfied. In particular, it follows that no F,, is
provable in H. Besides, the following holds with full generality: a formula
of the form AV B can only be provable in I if either A or B is provable
in H.



