The value of errors in proofs

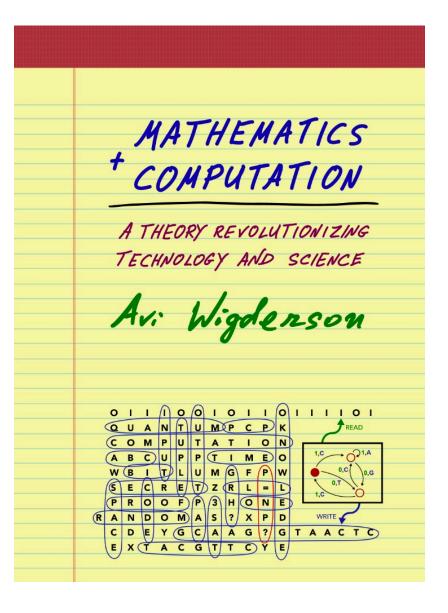
Avi Wigderson
Institute for Advanced Study

Plan

Proofs and computations

The value of errors in computations

The value of errors in proofs


Scientific impact: CS, Math, Physics, Optimization,...

Practical impact: Crypto, Clouds, Blockchains,...

Conceptual impact: Paradoxical properties of proofs

The value of the complexity theory methodology Modelling, classification, completeness, impracticality...

Book ad

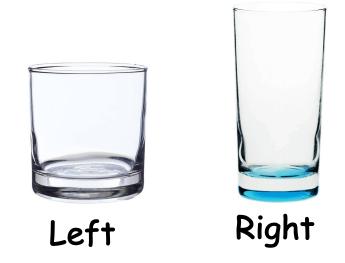
- Published by Princeton
 University Press
 - Free (forever) on my website
 - Comments welcome!

Proofs and Computations Two points in a very long history

[Euclid, 300BC]: The Elements

{Proofs of theorems in Plane Geometry, deducible from 5 simple axioms}

{Constructions of planar point sets using Straightedge and Compass


```
Turn of the 20<sup>th</sup> century
Hilbert's dream: Truth = Provability = Computability
      ...shattered
[Gödel '31] Incompleteness Thm
                                      (= is wrong)
[Turing '36] Undecidability Thm
                                      (= is wrong)
Def: algorithms ↔ Turing Machines
                                                 Corollary:
                                                 Computer
Set S \leftrightarrow Decision Problem \{ "is <math>x \in S ?" \}
                                                 revolution
R = {Sets computable by finite algorithms}
RE = {Sets provable to finite algorithms}
Thm: R \neq RE
Halting = {TMs M which halt on empty input}
                              Polynomial time
P = {Sets computable by efficient algorithms}
NP = {Sets provable to efficient algorithms}
          Otherwise, no cryptography! Open: P \neq NP?
```

Examples: claims, arguments, proofs, proof systems, provers, verifiers...

What is true? In real life? In math? What is a convincing argument?

Claim: "x ∈ 5"

Volume comparison

Claim: Left > Right

Verification:

Fill Left with water (to the rim) and pour to Right [if spills, ACCEPT, else, REJECT]

Sudoku

Claim: This puzzle is solvable

		8	6					
							6	
			4	8			2	3
		5		9				8
	4	9				2 7	1	
2				4		7		
3	6			2	9			
	1							
					5	1		

Argument:

9	2	8	6	1	3	4	5	7
4	7	3	9	5	2	8	6	1
1	5	6	4	8	7	9	2	3
7	3	5	2	9	1	6	4	8
6	4	9	7	3	8	2	1	5
2	8	1	5	4	6	7	3	9
3	6	7	1	2	9	5	8	4
5	1	2	8	7	4	3	9	6
8	9	4	3	6	5	1	7	2

Verification: Check each row, column, square, AND that consistent with input. ACCEPT/REJECT

Composite numbers

Claim: 147573952588676412927 composite

Argument: 193707721, 761838257287

Verification: Check if 193707721 x 761838257287 = 147573952588676412927

Again....

Volume comparison

Claim: Left > Right

Verification: General Procedure Fill Left with water (to the rim) and pour to Right [if spills, ACCEPT, else, REJECT]

Sudoku

Claim: This puzzle is solvable

		8	6					
							6	
			4	8			2	3
		5		9				8
	4	9				2 7	1	
2				4		7		
3	6			2	9			
	1							
					5	1		

Argument:

9 2 8 6 1 3 4 5 7 4 7 3 9 5 2 8 6 1 1 5 6 4 8 7 9 2 3 7 3 5 2 9 1 6 4 8 6 4 9 7 3 8 2 1 5 2 8 1 5 4 6 7 3 9 3 6 7 1 2 9 5 8 4 5 1 2 8 7 4 3 9 6 8 9 4 3 6 5 1 7 2

General

Verification: Check each row, column, square, AND that consistent with input. ACCEPT/REJECT

Efficient algorithm: simple pattern matching

1			2	3	4			12		6				7	
		8				7			3			9	10	6	11
	12			10			1		13		11			14	
3			15	2			14				9			12	
13				8			10		12	2		1	15		
	11	7	6				16				15			5	13
			10		5	15			4		8			11	
16			5	9	12			1						8	
	2						13			12	5	8			3
	13			15		3			14	8		16			
5	8			1				2				13	9	15	
		12	4		6	16		13			7				5
	3			12				6			4	11			16
	7			16		5		14			1			2	
11	1	15	9			13			2				14		
	14				11		2			13	3	5			12

Composite numbers

Claim: 147573952588676412927 composite

Argument: 193707721, 761838257287
Crypto rests on the difficulty of finding such

Verification: Check if General 193707721 x 761838257287 = 147573952588676412927 Efficient algorithm: simple arithmetic

Deductive proof systems e.g. Peano Arithmetic

Numerous others

Objects: Formulas/expressions over integers (A,B,...)

Axioms: E.g.

- x+y = y+x
- -x+1>x
- (x+y)z = xz+yz

You've got to believe/trust something!

Proofs are reductions of complex statements to simple truths via simple local sound steps

- Induction Principle

Deduction rules: E.g. if A, $A \rightarrow B$ true, then B is true.

Argument: A₁, A₂,..., A_m

Verification: Check that each A_i is an axiom, or follows from previous ones by a deduction rule.

Theorems:

- There are infinitely many primes
- Fermat's last theorem: no solution to $x^n+y^n=z^n$, n>2

Essentials of proof systems

Completeness: True claims have proofs

Soundness: False claims don't

Easy to check: Distinguishing convincing and faulty arguments by an efficient Verifier algorithm

A complexity theoretic view

Proof System [Cook-Reckhow '79]

An efficient Verifier V(claim, argument) satisfies:

```
Completeness: If claim is true then, for some argument 
V(claim, argument) = ACCEPT 
(in which case claim=theorem, argument=proof)
```

Soundness: If claim is false then, for every argument V(claim, argument) = REJECT

 T_V : the set of theorems in this system.

[CR'79] $NP = \{T_V : V \text{ deterministic}\}$

Probabilistic computation & error

"Axiom": Nature provides free access to randomness (so, let algorithms make random choices!)

Def: A deterministic algorithm A computes a function f if for all x, A(x) = f(x) always

Def: A probabilistic algorithm B computes a function f if for all x, B(x) = f(x) WHP (eg > 2/3) errors in algs

Error can be efficiently reduced arbitrarily! $Pr[B(x) \neq f(x)] < 1/3 \implies \forall k, Pr[B_k(x) \neq f(x)] < exp(-k)$

Rationale for allowing errors: (1) "Axiom" reasonable, and (2) We tolerate uncertainty in life, why not in algs?

Value of allowing errors: Solve many more problems, ++

Probabilistic Proof System [Babai '85, Goldwasser-Micali-Rackoff '85]

probabilistic

An efficient Verifier V(claim, argument) satisfies:

```
Completeness: If claim is true then, for some argument

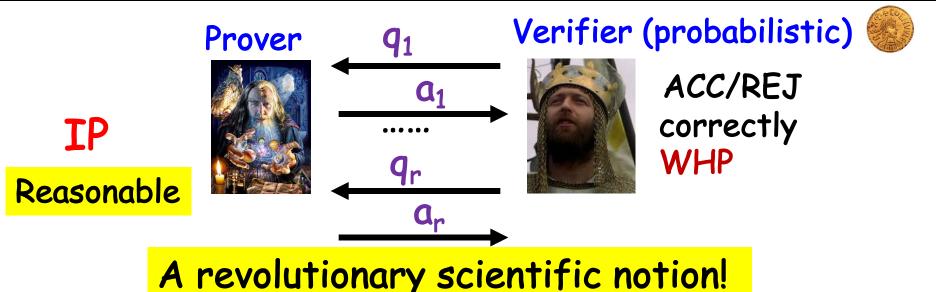
V(claim, argument) = ACCEPT always

(in which case claim=theorem, argument=proof)
```

```
Soundness: If claim is false then, for every argument

V(claim, argument) = REJECT WHP errors in proofs
```

 T_V : the set of theorems in this system.


 $IP \triangleq \{T_V : V \text{ probabilistic} + \underline{interactive}\}$

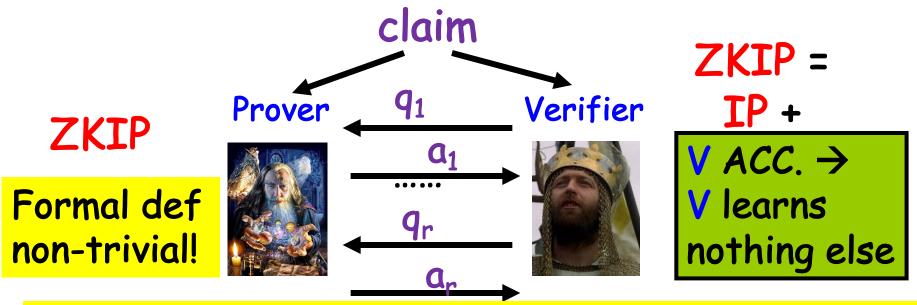
IP = (Probabilistic) Interactive Proofs

[Babai'85, Goldwasser-Micali-Rackoff'85]

NP

Value of errors in proofs: Impact of interactive proofs

Conceptual
Scientific
Mathematical
Technological


Proof with paradoxical properties

ZK: Convincing proofs need not convey information

PCP: Convincing proofs need not be read

The amazing journey from ZK to PCP

ZKIP: Zero-Knowledge Interactive Proofs [Goldwasser-Micali-Rackoff '85]

Possible? Can a convincing proof be uninformative?

[Goldreich-Micali-Wigderson '86]

1-way functions exist \rightarrow NP \subseteq ZKIP

Every proof can be made into a ZK proof!

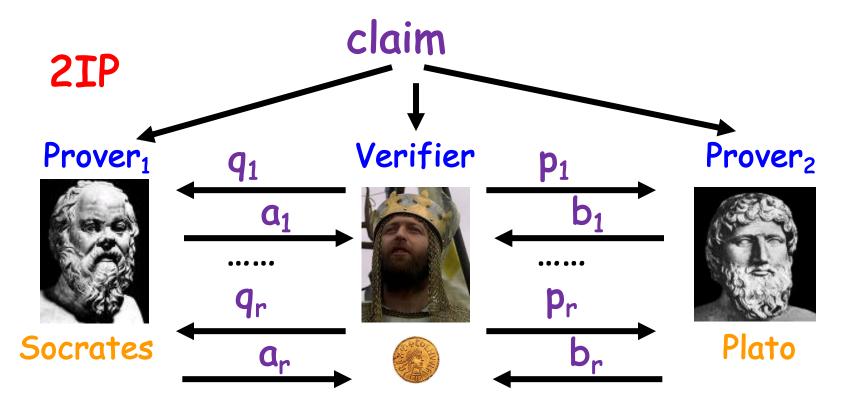
Crypto is used! Is it necessary?

ZK impacts

Crypto: [Goldreich-Micali-Wigderson '87, ...]
Cryptographic protocol design, completeness thm

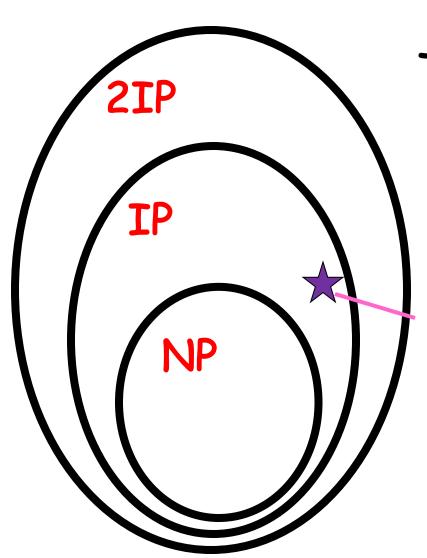
Practical applications:

Anonymous cash, Blockchains, Public ledgers ...


Physical ZK proofs:

[Barak-Glaser-Goldstone'14] Nuclear disarmament [Fisch-Freund-Naor '14] Anonymous DNA testing,...

New proof systems:


MIP: allowing multiple provers

2IP: 2-Prover Interactive Proofs [BenOr-Goldwasser-Kilian-Wigderson '89]

[BGKW '89] NP ⊆ ZK 2IP
Physical separation replaces
computational assumptions

What is the power of Randomness and Interaction in Proofs?

Trivial inclusions

 $IP \subseteq PSPACE$ $2IP \subseteq NEXP$

Polynomial Space

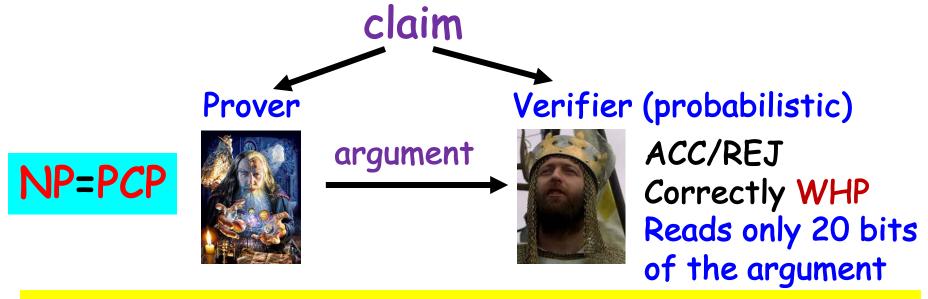
Nondeterministic Exponential Time

Few nontrivial examples Graph non-isomorphism

•••••

Few years of stalemate wonders of polynomials

Avalanche of Characterizations


+ Conceptual meaning

[Lund-Fortnow-Karloff-Nisan, Shamir '90] IP = PSPACE Winning strategies are efficiently verifiable!

[Babai-Fortnow-Lund '91] 2IP = NEXP Intractable problems are efficiently verifiable!

[Arora-Lund-Motwani-Safra-Sudan-Szegedy'92] PCP = NP Written proofs verifiable from constant-size snapshots! Same for transcripts of program execution No crypto!

PCP (Probabilistically Checkable Proofs)

Possible? Finding a single bug in a 100-page proof? Yes!! Every proof can be turned into a PCP!

Optimization Hardness of approximation!
Coding theory
Complexity theory,...

Technology cloud computing, blockchains,...

Quantum computation

"Axiom": Nature provides access to quantum phenomena

[Manin '80, Feynman '82] Suggest building computers, that manipulate quantum superpositions with unitary operations.

```
[..., Deutsch '85, Bernstein-Vazirani '97,...] Formalize it. BQP: efficient quantum algorithms (> probabilistic ones)
```

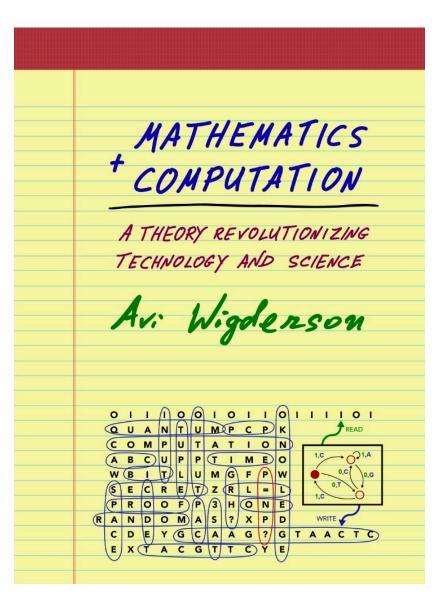
[Shor '94] Factoring, Discrete Log ∈ BQP

Frenzy attempts to develop:

- Supporting technology (billions invested)
- "Post-quantum" cryptography (e.g. harness assumptions)
- New quantum algorithms (not so much...)
- New models (plenty)

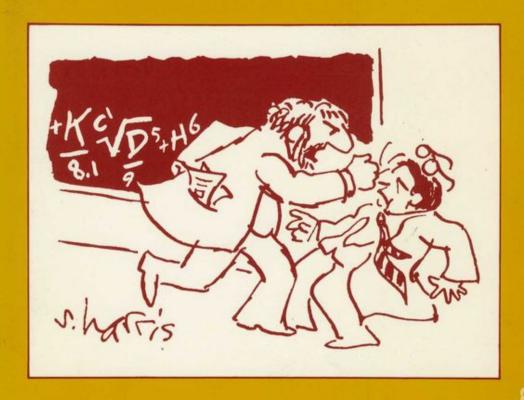
Quantum proof systems

Verifier is an efficient quantum algorithm


One prover: IP*, Many provers: MIP*

[Jain-Ji-Updahyay-Watrous'09] IP* = PSPACE

[...,Ji-Natarajan-Vidick-Wright-Yuen'20] MIP* = RE Quantum Information theory: power of entanglement Halting \equiv approx. the value of a non-local game!


Math → Connes' embedding conjecture in von-Neumann algebras is false!

Book ad

- Published by Princeton
 University Press
 - Free (forever) on my website
 - Comments welcome!

"You want proof? I'LL GIVE YOU PROOF!"

More cartoons from SIDNEY HARRIS

mycomicsho