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Les principaux théorèmes de l’algèbre commutative sont, comme on le sait, contenus dans la théo-
rie de Galois, elle-même précédée par la théorie des corps de décomposition et de factorisation –
c’est-à-dire les corps suffisants pour qu’un polynôme donné puisse être décomposé en un facteur
linéaire ou se factoriser complètement en facteurs linéaires.

Je développe ici les parties correspondantes de l’algèbre dans le domaine non commutatif, et plus
particulièrement dans le domaine hypercomplexe. Plus précisément, je travaille principalement avec
des méthodes non commutatives, notamment la représentation dans les corps non commutatifs. En-
fin, je montre comment les théorèmes susmentionnés de l’algèbre commutative peuvent être obtenus
parallèlement, à l’aide de la représentation dans les corps commutatifs.

La théorie des représentations sous-jacente – précédée d’une brève théorie des automorphismes (§ 1)
– constitue un développement de la théorie des représentations basée sur la théorie des modules de
représentation (voir E. Noether, “Hypercomplex quantities and representation theory”, Math. Zeit-
schr. 30 (1929), p. 641–692, cité comme Representation theory. Cf. la reproduction de cet article
dans van der Waerden, Moderne Algebra II). En particulier, je considère non seulement la repré-
sentation directe, mais aussi la représentation réciproque – l’une pouvant être réduite à l’autre –
engendrée ici par le module de représentation réciproque. L’avantage est que ce module – qui est
un module double – peut également être vu comme un module unilatéral dans l’anneau d’extension
(§ 2). Ceci ramène la représentation dans les corps non commutatifs à la théorie des idéaux dans
l’anneau d’extension. Les classes de représentation irréductibles correspondent aux classes d’idéaux
irréductibles de l’anneau d’extension, en analogie exacte avec les faits qui s’appliquent au système
lui-même lorsqu’il représente des systèmes hypercomplexes dans leur domaine de coefficients com-
mutatifs (§ 3 et 4).

De là découlent les théorèmes de structure pour les anneaux de matrices sur les corps non commu-
tatifs, à partir de la remarque (§ 5) selon laquelle chaque sous-anneau représente une représentation
par ce corps, ou une représentation réciproque par le corps réciproquement isomorphe. Ce corps
réciproquement isomorphe constitue un premier analogue des corps de décomposition et de scin-
dage minimaux dans l’anneau commutatif, dans la mesure où il assure la médiation de toutes les
représentations réciproques de degré un et, avec un centre de rang fini – ce qui n’était pas supposé
auparavant –, également une décomposition complète en facteurs directs de rang 1. Ceci conduit
à la théorie de Galois pour les corps (§ 6) et exprime simultanément le fait (§ 7) que les algèbres à
division réciproquement isomorphes (corps de centre de rang fini) engendrent des classes inverses
dans le groupe des classes d’algèbres de R. Brauer. Une seconde justification de la théorie galoi-
sienne, qui s’applique plus généralement aux systèmes simples (qui précèdent dans le texte), est une
conséquence presque immédiate d’un théorème sur les sous-anneaux commutatifs, qui est lui-même
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presque directement lié à la considération précédente des automorphismes.

Jusqu’ici, les considérations ont été exclusivement non commutatives. Cependant, la question des
corps de décomposition commutatifs est également traitée de manière non commutative, du fait de
la représentation du corps de décomposition par l’algèbre à division, conformément à la remarque
faite au § 5 (§ 7). La conclusion consiste en le transfert susmentionné au domaine commutatif (§ 8)
et la théorie des corps de décomposition pour des systèmes quelconques (§ 9), établissant simulta-
nément le lien avec la théorie des représentations usuelle dans le domaine commutatif. R. Brauer
a fondé sa théorie des corps de décomposition sur cette théorie de la représentation dans le do-
maine commutatif et sur les systèmes de facteurs “irrationnels” (Voir notre note commune : “Sur
les corps de décomposition minimaux des représentations irréductibles”, Sitz. Ber. d. Preuß. Ak. d.
Wiss, 1927, p. 221-228 (La note p. 222 présente un compte-rendu de ces travaux). Les principaux
théorèmes ont été écrits indépendamment et presque simultanément). Voir aussi R. Brauer, “Sur
les systèmes de nombres hypercomplexes”, S. 3. Math. Zeitschr. 30 (1929), p. 79-107. Albert a redé-
couvert ces théorèmes indépendamment par la suite. Du fait de cette justification commutative, il
dut, comme Albert plus tard, supposer que le centre était un corps parfait, restriction inutile selon
la justification non commutative. Avec la même restriction, et en utilisant également la théorie des
représentations dans le domaine commutatif, R. Brauer et K. Shoda développèrent davantage la
théorie après avoir pris connaissance de ma théorie galoisienne pour les corps non commutatifs : R.
Brauer énonça le théorème susmentionné sur les sous-anneaux commutatifs, et K. Shoda développa
indépendamment la théorie complète, y compris pour les systèmes semi-simples. (Voir : R. Brauer,
Über die algebraische Struktur von Seckfeldern, 2. Journ. f. Math. 166 (1932), p. 241-252. K. Shoda,
Über die galoissche Theorie der halb-einfachen hyperkomplexen Systeme. Math. Ann. 107 (1932),
p. 252-258. Ces résultats avaient également été développés par J. Levitzki).

Enfin, il convient de mentionner qu’une brève présentation du cas des corps se trouve dans van der
Waerden II (p. 128), faisant suite à ma conférence de l’été 1928, où j’ai abordé ces questions pour la
première fois. La présentation de van der Waerden introduit un certain nombre de simplifications
par rapport à cette conférence, dont certaines ont été reprises et développées dans une seconde
conférence (à l’hiver 1929-1930), et d’autres sont seulement reprises ici. En particulier, le transfert
de la méthode de démonstration hypercomplexe de la théorie galoisienne au domaine commutatif
(§ 8) provient de la seconde conférence, où la démonstration non commutative (§ 6.3) a été consi-
dérablement simplifiée par rapport à la première conférence. Le théorème sur les sous-anneaux
commutatifs (§ 5) et la deuxième méthode de preuve de la théorie galoisienne non commutative ba-
sée sur celui-ci (§ 6.1 et 6.2) n’ont été ajoutés qu’après la deuxième conférence, après connaissance
de R. Brauer (cf note de bas de page no 3) et van der Waerden p. 128 ; cependant, dans le § 5.3, il
existe des hypothèses de finitude considérablement moins strictes que là.

Certaines inférences de la première conférence, la méthode d’intersection des idéaux de différence,
bien que plus complexe, ont l’avantage d’être transposables aux systèmes de rang infini et aux sys-
tèmes entiers. Cette méthode est essentiellement reproduite dans G. Köthe, “Skew Fields of Infinite
Rank over the Center ” (§ 5, Math. Ann. 105 (1931), p. 15-39. Voir aussi la note de bas de page
no 10). Cette méthode d’intersection est alors remplacée par le fait presque trivial (§ 4.1), que van
der Waerden a remarqué le premier, que les idéaux bilatères appartiennent aux modules invariants.
Ceci permet de tout justifier par la décomposition en somme directe plus simple, qui, cependant,
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échoue pour le rang infini et dans le cas entier. Pour les systèmes entiers commutatifs, on arrive
ainsi au lien entre la différentiation idéale et les différences. Voir la conférence donnée à Prague,
Jahresber. d. Deutsch. Math. Ver. 39 (1930), p. 17 (pagination oblique) que je discuterai plus en
détail à un moment donné.

La théorie des corps de décomposition trouve son application principale dans la théorie des produits
intriqués et de leurs systèmes de facteurs, qui constituent eux-mêmes le fondement d’applications
en théorie des nombres ; ce sujet ne sera pas approfondi ici. La théorie des produits intriqués a été
développée lors de la deuxième conférence ; elle est reproduite, avec quelques modifications mineures
afin de ne pas présupposer la théorie présentée ici, dans H. Hasse : “Theory of cyclic algebras over
an algebraic numberfield ”, chapitre II, Transactions of the Amer. Math. Soc. 34 (1932), 8, 171-214.
Une présentation plus fidèle à la conférence paraîtra dans un compte rendu de M. Deuring dans les
“Ergebnisse der Mathematik ”.

1. Automorphismes, modules et modules doubles.
La théorie des représentations basée sur les modules de représentation est connue (voir aussi le
§ 2) pour reposer sur la théorie des anneaux d’automorphismes des groupes abéliens, avec ou sans
opérateurs. Afin d’éviter les répétitions, les relations d’inférence sous-jacentes entre les applications
et les lois de calcul seront formulées dans quelques théorèmes simples.

1.1. Application multiplicative, loi associative.

Soit G un groupe sans opérateurs, et A son anneau d’automorphismes absolus, c’est-à-dire le sys-
tème de tous les homomorphismes de G dans lui-même. A est multiplicativement clos, puisque le
produit στ est défini par

(1) g(στ) = (gσ)τ avec g dans G et σ, τ dans A

est défini et vérifie l’associativité.

On sait que G est un groupe muni d’opérateurs si un ensemble B de symboles Θ, H, . . . est donné,
tel que les opérations gΘ, gH, . . . produisent des éléments uniques de G et engendrent des auto-
morphismes (homomorphismes sur eux-mêmes) de G – (g · h)Θ = gΘ · hΘ ; ainsi, il existe une
application unique (généralement non inversiblement unique) de B vers un sous-ensemble B de
l’anneau des automorphismes absolus A. L’inférence mentionnée ci-dessus est donc :

Si le domaine d’opérateurs B est multiplicativement clos, alors l’application bijective de B vers B
est multiplicativement homomorphe si et seulement si la relation associative correspondant à (1)
est
(1a) g(ΘH) = (gΘ)H pour g dans G et Θ, H dans B est satisfaite.
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Par conséquent, un homomorphisme réciproque est défini lorsque les opérateurs sont des opérateurs
à gauche.

L’application de B vers B est donnée par gΘ = gσ pour tout g dans G, et donc également par
(gΘ)H = (gσ)τ = g(στ), de sorte que (1a) devient une condition nécessaire et suffisante pour
un homomorphisme multiplicatif. Le fait que les opérateurs à gauche engendrent des homomor-
phismes réciproques provient du fait que les automorphismes à gauche σ∗g, τ ∗σ∗g se lisent de droite
à gauche : τ ∗σ∗g = gστ , tandis que les opérateurs se lisent toujours de gauche à droite.

1.2. Homomorphisme d’opérateurs.

Si G est un groupe muni d’opérateurs, alors l’homomorphisme d’opérateurs est défini par

(2) (gΘ)σ = (gσ)Θ ou bien (2∗) (Θg)σ = Θ(gσ),

C’est-à-dire par interconnexion commutative ou par une loi d’associativité continue. De là, en
suivant l’inférence 1 – application sur le domaine des automorphismes – pour deux domaines d’opé-
rateurs différents, on obtient les résultats suivants :

Étant donnés deux domaines d’opérateurs B et C avec respectivement les éléments Θ, H, . . . et
Θ, H, . . ., alors les éléments de C engendrent des automorphismes de B, et simultanément les
éléments de B engendrent des automorphismes de C, si et seulement si les domaines sont commu-
tativement connexes à G, c’est-à-dire si la loi d’associativité continue est satisfaite :

(2a) (gΘ)H = (gH)Θ, (2a∗) (Θg)H = Θ(gH).

1.3. Modules et doubles modules par anneaux.

Un module à droite M par un anneau R est défini comme un groupe abélien additif dont les
éléments de R sont les opérateurs à droite. Outre la relation d’associativité (1a) et la relation dé-
finissant les opérateurs (g + h)Θ = gΘ+ hΘ, la relation de distributivité

(3a) g(Θ +H) = gΘ+ gH

est vérifiée ; il en va de même pour les modules à gauche.

Parmi les modules doubles, on peut distinguer deux types : les modules à droite, selon deux anneaux
R et S, sont appelés modules doubles si, outre les opérations (1a, 3a) qui s’appliquent individuel-
lement à R et S, R et S sont également commutativement liés à M en vertu de (2a) ; Les modules
R-gauche et S-droite sont appelés modules doubles si l’on ajoute (2a∗), la loi d’associativité conti-
nue, aux autres opérations.
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L’importance de ces opérations découle du fait que, dans le cas des groupes abéliens, le domaine des
automorphismes absolus forme un anneau, l’anneau des automorphismes absolus. Pour les groupes
non abéliens, il s’agit d’un anneau “généralisé” ; voir l’article de H. Fitting paru dans les Math.
Annalen [Math. Annalen 107, p. 514-542]. Plus précisément, l’inférence d’applications donne :

Si le domaine d’opérateurs R d’un groupe abélien (écrit de manière additive) M est un anneau,
alors l’application unique de R vers un sous-ensemble R de l’anneau d’automorphismes absolus est
homomorphe à l’anneau si et seulement si M est un sous-module à droite de R – c’est-à-dire si
(1a) et (3a) sont satisfaits – et réciproquement pour “homomorphe à l’anneau sous module à gauche”.

Si M est un module à droite par rapport aux anneaux R et S, alors M devient un double mo-
dule (2a) si et seulement si R est envoyé sur un sous-anneau de l’anneau d’automorphismes de R.
Le double module (2a*) désigne l’application homomorphe de S sur un sous-anneau de l’anneau
d’automorphismes de R et qui, simultanément, envoie S sur un sous-anneau de l’anneau d’automor-
phismes de R de manière homomorphe. Si M est un module à droite par rapport à S et un module
à gauche par rapport à R, alors le double module (2a*) désigne l’application homomorphe de S
vers un sous-anneau de l’anneau d’automorphismes R, et l’application homomorphe réciproque de
R vers un sous-anneau de l’anneau d’automorphismes S.

La dernière affirmation clarifie les conséquences connues : 1) Si R est un anneau possédant un
élément neutre, alors R est non seulement directement isomorphe à son anneau d’automorphismes
en tant que module à gauche de R, mais il est également réciproquement isomorphe à son anneau
d’automorphismes en tant que module à droite de R. Ceci est dû au fait que la loi d’associativité
(2a∗) est satisfaite, et donc à l’énoncé d’homomorphisme. L’existence de l’élément neutre implique
l’existence de tout automorphisme de la forme e → a de R, ce qui garantit l’isomorphisme et im-
plique que R épuise son anneau d’automorphismes.

2) R est-il un anneau de matrices complet sur un corps généralement non commutatif A ?

R =
∑

cik A =
∑

A cik,

Ainsi, A est réciproquement isomorphe au corps des automorphismes des idéaux simples à droite
et directement isomorphe au corps des automorphismes des idéaux simples à gauche.

Puisque tout idéal simple à droite est opérateur-isomorphe à un module à gauche A et à un module
à droite R, A épuise les automorphismes de R ; il en va de même pour les idéaux à gauche.

1.4. Transition d’un module double à droite à un module unilatéral par
un anneau produit.

L’importance du module double à droite repose essentiellement sur cette transition.

Théorème : Si M est un module à droite par un anneau I contenant deux sous-anneaux inter-
changeables élément par élément R et S, alors M peut également être exprimé comme un double
module par R et S. Réciproquement, s’il existe un double module selon R et S, et un anneau
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produit I dans lequel R et S sont commutatifs élément par élément, alors M peut également être
ouvert comme un module à droite selon I tel que l’opération selon I soit une continuation de
l’opération donnée selon R et S.

La première affirmation découle du fait que I peut, par définition, être transformé homomorphi-
quement en un sous-anneau I de l’anneau des automorphismes absolus, où R et S se transforment
élément par élément en sous-anneaux commutatifs R et S. Or, c’est précisément la relation (2a)
qui caractérise le double module.

Réciproquement, si M est défini comme R, un double module (module à droite), alors R et S
peuvent être transformés homomorphiquement en sous-anneaux commutatifs élément par élément
R et S de l’anneau des automorphismes absolus. Dans cet anneau, pour R et S, il existe un an-
neau produit. (Le terme “anneau produit” désigne simplement l’anneau engendré par deux anneaux
ayant un suranneau commun ; le produit n’est pas nécessairement direct). L’exemple suivant montre
qu’un anneau produit n’existe pas toujours lorsqu’une intersection est donnée : soit o l’anneau des
entiers, et soient R = o[x] et S = o[y] avec 2x−1 = 0 et 2y−1 = 0, de sorte que o soit l’intersection
de R et S si aucune opération n’est imposée entre x et y. Cependant, si R et S appartiennent à
un suranneau commun, alors : (2x− 1)y − x(2y − 1) = 0, Donc x = y. Par conséquent, il n’existe
pas d’anneau produit d’intersection o. I, qui, du fait de la commutativité élément par élément, est
constitué de tous les éléments de la forme

∑
risi+ r+ s (si R et S possèdent des éléments neutres,

alors les termes supplémentaires r et s sont omis). S’il existe également un anneau produit I tel
que R et S commutent élément par élément, alors il est constitué de tous les éléments de la forme∑

risi + r + s. Les homomorphismes R → R,S → S peuvent donc être décrits par l’affectation∑
risi + r + s →

∑
risi + r + s

à un homomorphisme I → I ; ainsi, l’opération m(
∑

risi + r + s) =
∑

(mri)si +mr +ms devient
unique et, d’après le § 1.3, définit un I-module qui englobe le R-, S-module donné.

2. Représentation réciproque et directe.

2.1. Modules de formes linéaires.

La transition de la théorie développée dans le § 1 à la théorie des représentations repose sur la spé-
cialisation des modules qui y sont présentés en modules de formes linéaires et sur la considération
de leurs anneaux d’automorphismes.

Un module à droite S, M – où S est un anneau d’élément neutre – est appelé module de formes
linéaires dans S si M est une somme directe de modules S à un terme : M = m1S + . . . +mnS
tels que miS soit isomorphe à S par opérateur, c’est-à-dire s = 0 pour mi = 0. Il s’ensuit que
S peut être appliqué non seulement homomorphiquement, mais aussi isomorphiquement sur un
sous-anneau de l’anneau d’automorphismes absolus,
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Théorème 1. Si M est un module de forme linéaire dans S, alors l’anneau d’automorphismes A
de M dans S est réciproquement isomorphe – et non seulement homomorphe – à l’anneau A de
toutes les matrices à n lignes dans S.

Tout automorphisme α de M dans S est entièrement décrit par l’application mi → mi = miα. Par
définition, il s’ensuit que :∑

misi →
∑

misi =
∑

(miα)si =
∑

(misi)α.

Maintenant, en notation matricielle

(m1α, . . . ,mnα) = (m1, . . . ,mn)A,

Ainsi, si α parcourt tous les automorphismes, l’application α → A établit une relation biuni-
voque entre A et A. Puisque M est supposé être un module de forme linéaire, A est déter-
miné de manière unique par α, et chaque matrice A de degré n dans S génère un automor-
phisme ; Il en découle également : α + β → A + B,αβ → BA, cette dernière étant due à
(m1αβ, . . .mnαβ) = (m1, . . . ,mn)Aβ = (m1, . . . ,mn)βA [car msβ = mβs] = (m1, . . . ,mn)BA.

2.2. Représentation et module de représentation.

Si l’on entend par représentation réciproque ou directe du n-ième degré de l’anneau R dans S un
homomorphisme d’anneaux réciproque ou direct de R vers un sous-anneau de l’anneau de toutes
les matrices à n lignes dans S, alors le théorème 1 permet également la formulation :

Théorème 1’. L’anneau d’automorphismes A d’un module de forme linéaire de degré n dans S
admet une représentation réciproque isomorphe (fidèle) par l’anneau de matrices plein A de toutes
les matrices à n lignes dans S.

De ce fait, les théorèmes usuels pour les représentations directes s’appliquent également aux repré-
sentations réciproques.

Définition. Un module de forme linéaire M dans S est appelé module de représentation réciproque
de R dans S si M est un double module par rapport à R ou S et simultanément un module à
droite de R et de S. Un module de représentation directe est appelé module de représentation
directe si M est un double module et en même temps un module à gauche de R et à droite de S.

Théorème 2. Tout module de représentation réciproque ou directe engendre une classe de représen-
tations réciproques ou directes équivalentes de R dans S, et toutes les représentations réciproques
ou directes sont engendrées de cette manière.

Soit M un module de représentation réciproque. D’après le § 1.3, R peut alors être directement
transformé par homomorphisme en un sous-anneau R de l’anneau d’automorphismes de S de M ;
d’après le § 2, Théorème 1’, R admet une représentation réciproque (fidèle), qui est aussi la re-
présentation réciproque de R. Réciproquement, s’il existe une représentation réciproque R → R∗,
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alors par composition avec l’isomorphisme réciproque de R∗ vers un sous-anneau R de l’anneau
d’automorphismes S, on obtient un homomorphisme direct de R vers R ; ainsi, M devient un
module R, plus précisément un double module, c’est-à-dire un module de représentation selon le
§ 1.3. La transition vers d’autres bases S donne la classe des représentations équivalentes.

Remarque. Bien entendu, les deux types de représentations sont réductibles l’un à l’autre : une
représentation directe de R est l’inverse de l’anneau réciproque de R, et réciproquement. Une autre
réduction consiste à passer de S à un anneau réciproque et à remplacer les matrices par leurs trans-
posées. Ceci correspond au passage d’un module R-gauche, S-droite à un module R- et S-gauche.

2.3. Transition du module de représentation réciproque au module selon
l’anneau d’extension.

L’avantage du module de représentation réciproque réside principalement dans la transition vers
l’anneau d’extension possible selon le § 1.4.

Dans le cas particulier présenté ici – module de forme linéaire M vers S – voici donc le théorème
de transition pour les modules de représentation :

Si M est un module à droite par rapport à un anneau I contenant deux sous-anneaux commutatifs
élément par élément R et S tel que M soit un module linéaire par rapport à S, alors M peut
également être vu comme le module de représentation réciproque de R par rapport à S.

Réciproquement, si R est un module de représentation réciproque par rapport à S, et s’il existe
un anneau produit I tel que R et S soient commutatifs élément par élément, alors M peut égale-
ment être vu comme un module de représentation réciproque de R par rapport à S. Le module I
peut être interprété de telle sorte que l’opération I soit le prolongement de l’opération R, S donnée.

La conséquence du théorème de transition pour les modules de représentation est largement utilisée
en théorie des représentations.

Si M est un module de représentation réciproque de R dans S et simultanément un module I dont
l’anneau produit est I, alors l’isomorphisme R-, S- de M vers un module N est équivalent à l’iso-
morphisme I-. Chaque classe de modules I isomorphes correspond à une classe de représentation
réciproque de R dans S et réciproquement.

La combinaison de ces théorèmes avec les assertions des § 1.2 et 1.3 établit le lien fondamental entre
les matrices échangeables avec une représentation et les automorphismes de R et S.

Théorème sur les matrices échangeables.

Si R → R∗ est une représentation réciproque de R de degré S dans S, et si B∗ désigne l’an-
neau de toutes les matrices (de degré S) commutativement interchangeables avec R∗, alors B∗

fournit une représentation réciproque isomorphe des R-, S-automorphismes – c’est-à-dire les S-
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automorphismes qui sont aussi des R-automorphismes – du module de représentation générateur,
ou, si l’anneau produit I existe, des I-automorphismes.

Soit B l’anneau de tous les R- et S-automorphismes de M. En tant que sous-anneau de l’anneau
des S-automorphismes A, B admet une représentation réciproquement isomorphe dans S. D’après
les § 1.2 et 1.3, B est constitué de tous les automorphismes de A commutativement connexes à
R, c’est-à-dire qui satisfont la relation (2a). L’ensemble B est donc constitué de l’ensemble des
automorphismes qui commutent élément par élément avec ceux de R, où R désigne l’image de R
dans A. Puisque la représentation de B et de R est un isomorphisme réciproque, et non un simple
homomorphisme, c’est ce fait qu’il convient de démontrer.

Remarque. Les automorphismes R et S représentent une application mi → m′
i telle que la même

représentation R∗ soit obtenue grâce aux mi. Les mi ne fournissent pas nécessairement une base
S de M, ce qui correspond au fait que les matrices de B∗ ne sont pas nécessairement inversibles
par indentation. Le terme “représentation” doit être compris métaphoriquement lorsque la somme∑

m′
iS n’est plus directe :

(m′
1,m

′
2, . . . ,m

′
n)a = (m′

1, . . . ,m
′
n)A

L’équation reste vraie, mais A n’est plus uniquement déterminé par a.

Une autre remarque concernant le théorème de transition est la suivante : les matrices diagonales
E ·s fournissent une représentation directement isomorphe de S, la représentation “identique” de S.
Le fait qu’il s’agisse d’un isomorphisme direct découle du fait que l’anneau d’automorphismes de M
par S possède un sous-anneau réciproquement isomorphe à S, qui est sa représentation réciproque.
Pour tout terme unique miS de M, S est opérateur-isomorphe à S en tant que module à droite,
et donc son anneau d’automorphismes S est réciproquement isomorphe à S (§ 1.3, Corollaire 1).

L’application de I aux matrices de S définies de manière unique par R et S n’est donc pas une
représentation de l’anneau I, mais plutôt le prolongement de la représentation réciproque de R
en une représentation homomorphe par opérateurs de S :

∑
risi →

∑
Risi. En particulier, la

représentation réciproque de R est simultanément homomorphe par opérateurs par rapport à l’in-
tersection [R,S] de R et S, qui se trouve au centre de R.

3. Modules par rapport à un corps.
Dans ce qui suit, nous ne traiterons que des représentations dans des corps généralement non com-
mutatifs ; par conséquent, nous présenterons quelques théorèmes simples concernant les modules de
formes linéaires par rapport à un corps.
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3.1. Base normale d’un sous-module par rapport à une base donnée du
module plein.

Soit A un corps et N = x1 A+...+xn A un module de forme linéaire de rang n ; soit L = z1 A+...+zl A
un sous-module de rang l ≤ n. Les zi sont appelés bases normales par rapport à x s’ils sont de la
forme :

zi = xi − (xl+1αi,l+1 + . . .+ xnαi,n) (i = 1, . . . , l).

Tout module L possède une base normale après une numérotation appropriée des x.

En effet, après une numérotation appropriée, on obtient :

N = L+ xl+1 A+ . . .+ xn A

et donc :
xi ≡ xl+1αi,l+1 + . . .+ xnαi,n (L) (i = 1, . . . , l).

Les l éléments zi = xi − (xi+1αi,l+1 + . . .) appartiennent donc à L et épuisent L, puisqu’ensemble,
xl+1, . . . , xn forment une base de N.

3.2. Module d’extension.

Soit A un corps et P un sous-corps. Un A-module N de rang n est appelé module d’extension d’un
P-module M ; N = MA si M est un sous-module de même rang que N. Si M = y1 P+ . . . + yn P,
alors N = MA = y1 A+ . . . + yn A. Réciproquement, pour tout P-module M = y1 P+ . . . + yn P, le
module d’extension MA existe de manière unique à isomorphisme de modules près. Parce que le
module y1 A+ . . .+ yn A contient un sous-module M isomorphe à M, qui peut être identifié à M.

Conclusion a) Si z1, . . . , zt sont des éléments linéairement indépendants de M par rapport à P,
alors ils sont également linéairement indépendants par rapport à A dans N = MA (car ils peuvent
être étendus à une base de M et donc de N). Tout P-module I = z1 P+ . . . + zt P de M produit
ainsi un module d’expansion IA = z1 A+ . . .+ zt A dans MA.

Conclusion b) Tout P-module I = z1 P+ . . .+zt P de M est un module de contraction. c’est-à-dire
l’intersection de son module d’extension IA avec M ; I =IA ∩M. Parce que I ≤ IA ∩M ; récipro-
quement, si a appartient à IA ∩M, alors a =

∑
ziαi, donc les éléments M a, z1, . . . , zt dépendent

de A, et par conséquent [conclusion a)] dépendent également de P ; Ainsi, a appartient à I.

3.3. Théorème sur les modules invariants.

Soit N = MA un module d’extension d’un module P M de rang n, et soit de plus P un corps plein
d’invariants pour un groupe G d’automorphismes d’anneaux de A. Le groupe G est défini comme
le domaine d’opérateurs de N = MA par les assertions suivantes :
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G ·m = m pour m de M et G de G,

G ·
∑

miαi =
∑

miG(αi) pour m de M et α de A .

Théorème auxiliaire. Selon ces assertions, M est constitué de la totalité des éléments de N qui
restent inchangés lorsque G est présent. En effet, si x1, . . . , xn est une base P de M, c’est-à-dire
w = x1α1 + . . . + sxnαn, alors G(w) = w pour tout vecteur de Gauss G dans G, il s’ensuit que
G(αi) = αi, et donc, par hypothèse, αi dans P.

Théorème. Seuls les modules d’extension LA des sous-modules L de M sont admissibles par rapport
à G, considéré comme le domaine des opérateurs. La première partie est claire. Réciproquement,
supposons que L soit admissible par rapport à G, et soit z1, . . . , zl une base normale de L (voir 1)
par rapport à x, où x est choisi comme la base P de M, c’est-à-dire que G est autorisé élément par
élément. Par hypothèse,

G(zi) = xi − (xl+1G(αi,l+1) + . . .+ xnG(αi,n))

est élément de L pour chaque G de G, donc, pour un G fixé, linéairement exprimable en fonction
de z et donc, comme on peut le voir en comparant les coefficients dans x1, . . . , xl : G(zi) = zi pour
chaque G de G. Ainsi, d’après le lemme, les z appartiennent à M, et L devient une extension du
P-module I = z1 P+ . . .+ zl P de M, où I = L ∩M (par 2) 1.

4. Systèmes hypercomplexes et leurs classes de représentation.

4.1. Théorème d’extension.

Nous combinons maintenant les théorèmes de représentation du § 2 avec les théorèmes de module du
§ 3. Au lieu des anneaux généraux R, nous considérons des systèmes hypercomplexes avec éléments
neutres - S, T, . . . - sur un corps commutatif P, c’est-à-dire

S = x1 P+ . . .+ xn P .

Au lieu d’anneaux de représentation arbitraires S, il n’existe que des corps A, . . . et, sauf indication
contraire, des corps de centre P. Dans ce cas, l’anneau produit dans lequel S et A sont interchan-
geables élément par élément existe toujours, avec une intersection P ; il s’agit du produit direct
S × A, qui est simultanément le module d’extension SA de S au sens de §.

SA = x1 A+ . . .+ xn A

et est donc également appelé anneau d’extension. Dans cette spécialisation, le théorème sur les
modules invariants (§ 3.3) devient le suivant :

1. Les propositions de ce paragraphe restent valides en vertu d’inférences simples de bon ordre, même si le
rang de M devient infini par rapport à P (cf. G. Köthe : Ein Beitrag zur Theorie der kommutativen Ringe ohne
Finlichkeits-voraussetzung, § 1, Gött. Nachr. 1931, p. 195-207).
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Théorème d’extension : Tout idéal bilatère de SA est un idéal d’extension d’un idéal de S, plus
précisément une extension de son intersection avec S.

Si le groupe sous-jacent G est celui des automorphismes intérieurs, alors P, en tant que centre de A,
devient un corps invariant complet. L’interchangeabilité élément par élément de A avec S implique
que G est prolongé à SA par le § 3.3, de sorte que S devienne un anneau invariant complet. Tout
idéal bilatère a de SA est un sous-groupe admissible car α−1aα ≤ a – c’est-à-dire, par le § 3, le
troisième prolongement de son mode d’intersection a ∩ S, qui devient un idéal de S.

Remarque complémentaire : Si S est commutatif, alors S est le centre de SA. En effet, S est inclus
dans le centre et constitue un anneau complet d’invariants par les automorphismes intérieurs en-
gendrés par A. Plus généralement, le centre de S est également le centre de SA.

Notation : Ar,Bn, . . . désignent toujours des anneaux de matrices du degré spécifié sur A,B, . . .

Ar =
∑

A cik =
∑

cik A .

Dans ce qui suit, on utilise un corollaire, le théorème d’extension pour les systèmes simples : si
S est un système simple, alors SA l’est aussi : SA =

∑
B cik =

∑
cik B, avec un corps associé

B dont le centre est P. Ici, A, et donc B également, peuvent être de rang infini sur P ; seul S est
supposé hypercomplexe. Si S et A ont le centre commun P, alors P devient également le centre de SA.

Plus généralement, si S est un système hypercomplexe simple, alors le produit direct S × Ar est
également simple. En effet, S × Ar est égal à SA × Pr, et donc égal à Bir si SA = Bi.

4.2. Classes de représentations.

Comme d’habitude, une représentation réciproque ou directe d’un système hypercomplexe est une
représentation homomorphe aux opérateurs par rapport au domaine des coefficients P (§ 2, conclu-
sion) et différente de la représentation nulle. La combinaison du théorème de transition et de son
corollaire (§ 2.3) avec le théorème d’extension de 1 donne le

Théorème sur les classes de représentation : Si S est un hypercomplexe d’élément neutre,
dont l’anneau des coefficients est P, et si A est un corps de centre P, alors S possède dans A autant
de classes de représentations réciproques irréductibles distinctes de S qu’il y a de classes d’idéaux à
droite simples dans l’anneau des classes résiduelles de S relativement à son radical. Si S est un sys-
tème simple, alors il possède exactement une classe de représentation réciproque irréductible et une
classe de représentation directe irréductible dans A. 2 En effet, d’après le corollaire du théorème de
transition (§ 2.3), les classes de représentations réciproques simples et les classes de modules simples
sont bijectives par rapport à SA. Puisque SA est de rang fini par rapport au corps A, il satisfait les
conditions de maximum et de minimum pour les idéaux unilatéraux, Ainsi, la première partie de
l’énoncé découle directement de la théorie des représentations, § 19. Si S est simple, alors SA l’est
aussi d’après le théorème d’extension. Du fait des conditions de maximum et de minimum, S est

2. Voir la théorie des représentations, et notamment la note de bas de page no 20, pour le cas où A est le corps
d’automorphismes associé à S.
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également complètement réductible, c’est-à-dire qu’il ne possède qu’une classe d’idéaux unilatérale
simple, ce qui signifie que S n’a qu’une classe de représentations réciproques irréductibles dans
A. Avec S, le système réciproquement isomorphe à S est également simple, ne possédant qu’une
classe de représentations réciproques irréductibles ; par conséquent, S n’a également qu’une classe
de représentations directes simples.

4.3. Relation de rang.

Le fait que, si S est simple, SA =
∑

Bcik soit de rang fini à la fois par rapport à A et à B, donne
la relation de rang :

(1) n = rt avec n = (S : P), t2 = (SA : B),
r = degre de representation reciproque irreductible

Puisque SA est lui-même le module de représentation réciproque de S dans A (la représentation
étant déjà dans P), SA, en tant qu’anneau de matrices sur B, se décompose en t idéaux à droite
simples, il s’agit de SA modules, dont le rang par rapport à A est égal au degré r de la représentation
réciproque irréductible. Comme n est également le rang de SA par rapport à A, la relation de rang
s’ensuit.

4.4. Renforcement de la relation de rang.

Lorsque A est de rang fini par rapport à P, les trois relations sont vérifiées.

(1) (S : P) = n = rt,

(2) (B : P) · t = (A : P) · r,
(3) (S : P) · (B : P) = (A :) · r2.

Ici, (2) désigne le rang sous P d’un idéal à droite simple de SA, exprimé selon (3) par le rang sous
B ou A, tandis que (3) désigne le rang d’un idéal à droite simple dans un anneau de matrices Bn et
est obtenu à partir de (2) par multiplication par r selon (1).

5. Application des théorèmes de représentation aux anneaux
de matrices.
La représentation réciproque de S dans A considérée dans le § 4 peut également être vue comme
un homomorphisme direct de S dans un sous-anneau de Ar, où A désigne le corps réciproquement
isomorphe à A. Le principe des paragraphes suivants est, inversement, de réduire l’étude des an-
neaux de matrices Ar à la théorie des représentations dans le corps réciproque isomorphe A.
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5.1. Plongement réductible et irréductible dans Ar.

Soient A et A deux corps isomorphes réciproques de rang fini ou infini sur leur centre P. En général,
les corps ou systèmes réciproques seront notés par les lettres grecques et latines correspondantes.
Le système simple S sur P est dit irréductible ou réductible dans A, et plongeable, si S admet une
représentation réciproque irréductible ou réductible de degré f dans A. Si S est irréductiblement
plongeable dans Ar, alors il est réductiblement plongeable dans tous les anneaux de matrices Ars

avec s > 1, puisqu’il admet des représentations réductibles de ces degrés et seulement de ces degrés
(§ 4.2). S est donc directement isomorphe à certains sous-anneaux de Ar et Ars. Cet isomorphisme
devient un prolongement de l’identité de P. Comme pour les représentations déjà mentionnées, les
isomorphismes qui apparaissent ci-dessous sont toujours des prolongements de l’identité de P –
isomorphes à P – sans que cela soit explicitement indiqué à chaque fois ; d’après le § 4.3, r est un
diviseur de rang n de S par P.

Ainsi, tous les sous-anneaux simples de rang fini englobant P sont obtenus dans P à partir des
différents Af (f = 1, 2, . . .) ; car chaque sous-anneau de ce type est réciproquement isomorphe à un
sous-anneau de Af , admettant ainsi une représentation réciproque réductible ou irréductible dans A.

5.2. Théorème sur les automorphismes intérieurs.

Si S(1) et S(2) sont deux sous-anneaux simples de P englobants les Af de rang fini dans P, et si
S(1) et S(2) sont isomorphes dans P, alors cet isomorphisme est engendré par un automorphisme
intérieur de Af .

Les systèmes S(1) et S(2) représentent, en général, des éléments de fondation réductibles d’un sys-
tème simple S dans Af , donc des représentations directes de degré f dans A. Ils appartiennent
par conséquent à la même classe de représentations directes réductibles dans A. La matrice de
transformation engendre l’automorphisme.

Si A est de rang fini pour P, c’est-à-dire s’il est hypercomplexe, le théorème se réduit au théorème
bien connu suivant :

Deux sous-systèmes simples de Af contenant le centre P et isomorphes à P sont transformés en
eux-mêmes par un automorphisme interne de Af . En particulier, tout automorphisme de Af est
intérieur 3.

5.3. Théorème sur les sous-anneaux commutant élément par élément.

Ce théorème découle du théorème sur les matrices commutatives du § 2.3, selon le principe énoncé
au début du paragraphe :

3. Ceci n’est plus vrai si A est de rang infini selon P (cf. Köthe, dans le travail cité dans la note de bas de page
no 5).
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Si S est un système simple de Af englobant P, et si R désigne l’ensemble des éléments de Af

commutant élément par élément avec S, alors R est également un anneau de matrices : R = Bs.
Les corps correspondants B de SA et B de R sont réciproquement isomorphes. L’intersection de R
et S est le centre de S. R est un corps si et seulement si S est irréductiblement plongé dans Af .

Car selon le § 2.3, R devient directement isomorphe à l’anneau d’automorphismes du module de
représentation réciproque M de S dans A ; mais il s’agit de l’anneau d’automorphismes de M,
considéré comme le module SA. Si M se décompose en s modules simples SA, et si SA =

∑
B cik est

défini comme dans le § 4.1, alors R est isomorphe à
∑

B cik, où
∑

B cik et R sont réciproquement
isomorphes (car B et B sont réciproques isomorphes au corps des automorphismes des idéaux à
droite simples de SA, c’est-à-dire les modules simples SA, d’après le § 1.3). R est un corps – R = B
– si et seulement si s vaut un, c’est-à-dire si S est irréductiblement plongé. Le fait que l’intersection
de R et S soit le centre de S découle directement de la définition de R.

5.4. Théorème de commutation amélioré pour les anneaux de matrices
hypercomplexes.

Dans ce cas, les relations de rang du § 4.4 permettent d’obtenir l’amélioration suivante :

Les sous-systèmes simples de Af constituant P (où A est de rang fini par rapport à son centre P) se
décomposent en paires S et S telles que S soit l’ensemble des éléments commutativement interchan-
geables avec S, et réciproquement. Les corps associés à SA et S sont réciproquement isomorphes,
de même que ceux de S et SA. L’intersection de S et S est le centre commun. Un sous-anneau est
un corps si et seulement si l’anneau est irréductiblement plongé dans le sous-anneau. Le produit
des rangs de P de S et S est égal au rang de Af . Si f = rs = rs (où S est irréductiblement
plongeable dans Ar et S est irréductiblement plongeable dans Ar), alors les corps associés à S et S
sont isomorphes à une paire de sous-anneaux commutatifs de Ag tels que f = gss.

En substance, il suffit de démontrer l’énoncé concernant le produit des rangs. Si S est initialement
plongé de manière irréductible, c’est-à-dire si S est un corps et réciproquement isomorphe à B (où
SA = Bt), alors la relation de rang (3) issue du § 4.4 permet d’obtenir l’énoncé du produit, puisque
f = r et que le rang de S est égal à celui de B. Si S est plongé de manière réductible, c’est-à-dire
si S = Bs, alors f = rs, et la multiplication de (3) par s2 donne l’énoncé. Il en découle directement
que S est constitué de l’ensemble des éléments qui sont commutativement interchangeables avec S,
et donc tout le reste de 3, découle, à l’exception de la dernière affirmation. Il découle directement de
ce qui précède que S est constitué de l’ensemble des éléments commutativement interchangeables
avec S, et par conséquent, tout ce qui suit dans la section 3 s’ensuit, à l’exception de la dernière
affirmation. Cette dernière affirmation est obtenue par deux transitions vers un plongement irré-
ductible. Dans Ar – avec f = rs – S est irréductiblement plongé ; S et R deviennent des systèmes
commutatifs deux à deux, où R est isomorphe au corps B. De plus, du fait de la réciprocité entre
S et S, S est égal à Bs – où B a la même signification pour S que B pour S – donc R est ré-
ductiblement plongé dans Ar et irréductiblement plongé dans Ag avec r = gs. Ici, les systèmes
interchangeables deux à deux sont B et B qui sont isomorphes.
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6. Théorie de Galois des systèmes simples.
Le théorème de commutation intensifié du § 5.4 exprime la théorie de Galois des systèmes simples
par rapport au centre, qui est l’anneau de référence. Nous considérons d’abord les corps, puis les
systèmes simples en général.

6.1. Théorie de Galois des corps de rang fini par rapport au centre.

Le groupe de Galois G de A est défini comme le groupe de tous les automorphismes qui sont
des extensions de l’identité du centre P, c’est-à-dire (§ 5.2) comme le groupe de tous les automor-
phismes intérieurs. Ainsi, G est isomorphe à A∗ et P∗, où A∗ et P∗ sont les groupes multiplicatifs
des éléments non nuls de A et P , respectivement. Les sous-groupes H de G correspondent donc
biunivoquement aux sous-groupes englobants H∗ de A∗, du fait que H ≃ H∗/P∗. Un sous-groupe
H de G est dit fermé si H∗ devient un corps H après l’ajout de zéro. Le fait que C admette le
groupe H est équivalent au fait que C commute élément par élément avec H. Ainsi, le théorème de
commutativité (§ 5.4) devient le

Théorème fondamental de la théorie de Galois des corps non commutatifs :

Les corps C compris entre P et A et les sous-groupes fermés H de G peuvent être envoyés l’un sur
l’autre de manière unique de sorte que C soit le corps invariant complet de H et H soit le groupe
invariant complet de C.

6.2. Théorie de Galois des systèmes simples.

Si Af est un système simple de centre P, alors le groupe de Galois G devient le groupe des automor-
phismes intérieurs, c’est-à-dire isomorphe à A∗

f P
∗, où A∗

f désigne maintenant le groupe multiplicatif
des éléments réguliers de Af . Un sous-groupe H ≃ H∗ P∗ de G est dit simplement clos si le sous-
anneau H engendré par H∗ est un système simple et si H∗ est constitué de l’ensemble des éléments
réguliers de H. La transition du théorème de commutation à la théorie galoisienne est donnée ici
par le théorème suivant :

Lemme : Tout système simple Af contenant P est engendré par le groupe H∗ de ses éléments
réguliers. Ceci est évident si P possède une infinité d’éléments ; car l’élément général formé avec les
indéterminées est régulier ; par une spécialisation appropriée, on peut former des éléments de base
réguliers conformément à P. Cependant, selon Shoda, le lemme est valable en général 4.

En vertu du lemme, la commutativité de S avec un système simple S est à nouveau équivalente
à ce que S admette les automorphismes induits par les éléments réguliers de S. Ainsi, ici aussi, le
théorème de commutativité (§ 5.4) se réduit au :

4. Shoda, voir l’ouvrage cité en note de bas de page no 3. Dans ce cas, l’introduction des indéterminées est évitée.
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Théorème fondamental de la théorie de Galois des systèmes simples : Les systèmes simples
P-composants S de Af et les sous-groupes simplement clos H de G peuvent être associés de manière
unique de sorte que S devienne le domaine invariant complet de H et que H devienne le groupe
invariant complet de S.

6.3. Démonstration par le principe de continuation.

Dans le cas d’un corps, je propose une seconde démonstration du théorème principal, fondée sur le
principe de continuation des isomorphismes (représentations de degré un) et qui, par conséquent,
s’affranchit du dénombrement des rangs et fait moins d’hypothèses de finitude. Elle montre notam-
ment dans quelle direction un transfert vers des corps S de rang infini est possible. La démonstration
n’utilise pas non plus le fait qu’il n’existe qu’une seule classe de représentations réciproques irré-
ductibles et reste donc valable dans le cas commutatif (§ 8.2). Je présente d’abord quelques lemmes.

Lemmes : Le système simple S sur P admet une représentation réciproque de degré un dans A, et
est donc un corps ; A peut être de rang fini ou infini sur son centre P. Une décomposition de SA en
idéaux à droite simples (isomorphes par opérateurs) (§ 4.3) est donnée par :

SA = r1 + . . .+ rn = e1SA + . . .+ enSA = e1 A+ . . .+ en A :

La représentation réciproque engendrée par ei est ainsi définie par eis = eiσ.

Théorème 1 : Les n représentations engendrées par e1, . . . , en sont distinctes, c’est-à-dire que ce
sont des représentations distinctes d’une même classe de représentations. Par conséquent, S possède
au moins autant de représentations distinctes que son rang.

Pour le démontrer, nous étendons les représentations de S du § 2 aux applications de SA qui de-
viennent homomorphes à A par opérateur. Ces applications sont définies ici par eiw = eiω avec ω
dans A pour tout w dans SA. Si la même représentation était engendrée par ei et ej (i ̸= j), alors
eiw = ejw serait obtenu pour tout w dans SA. Ceci est impossible car eiei = ei, ejei = 0.

Théorème 2 : Si T est un corps compris entre P et S, et si s est le rang de S par rapport à T ,
alors tout isomorphisme réciproque de T vers A admet au moins s extensions différentes.

L’isomorphisme réciproque, c’est-à-dire la représentation réciproque de T dans A, est obtenu par
une décomposition :

TA = E1TA + . . .+ EhTA = E1 A+ . . .+ Eh A ; Eιt = Eιτ,

où les Ei sont des idempotents (ceci n’est pas une restriction de généralité, puisqu’une représenta-
tion engendrée par un élément de base Eiα est également engendrée par α−1 ·Eiα, c’est-à-dire que
c’est un idempotent). La multiplication à droite par S donne SA = E1SA+ . . .+EhSA. Ici, les EiSA

sont tous de rang s par rapport à A ; car le rang de EiSA est au plus égal à s, comme le montre la
substitution d’une base T dans S en vertu de la commutativité de S et A : S = Tw1 + . . .+ Tws.
EiSA = EiTAw1 + . . .+ EiTAws = Eiw1 A+ . . .+ Eiws A .
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Puisque la somme SA est de rang n = hs, chaque EiSA est exactement de rang s. Ainsi,

EiSA = ri1 + . . .+ ris = ei1 A+ . . .+ eis A,

où, d’après le lemme 1, les s engendrés par ei1, . . . , eis sont tous distincts. Ce sont tous des pro-
longements de la représentation de T engendrée par les Ei. Comme Eit = Eiτ , il découle que
(ei1 + . . .+ eist = (ei1 + . . .+is)τ et donc ei1t = eilτ du fait de la décomposition en somme directe.

Définition. La division de classes IT induite par T des isomorphismes réciproques I de S vers A
est définie comme suit : seuls les isomorphismes de I qui induisent le même isomorphisme sur T
sont considérés comme équivalents.

Théorème fondamental : Si IT est la division de classes induite par T , alors T est sous-corps
maximal en contraste avec cette division de classes.

Si L est un corps intermédiaire de T et S de degré l à T , alors, d’après le lemme 2, toute classe de
IT se partitionne en au moins l classes de IL.

La transition de cette version du théorème principal à la version usuelle provient du fait que l’en-
semble d’isomorphismes I est transformé en groupe d’automorphismes par multiplication de ses
éléments par l’inverse d’un ensemble fixé, ce qui transforme une classe de IT en groupe invariant de
T . L’affirmation que les sous-groupes fermés sont des groupes invariants complets est implicitement
contenue dans ce résultat. Il suffit de substituer le corps H au corps intermédiaire T dans H = H∗ P∗.

7. La classe des algèbres semblables. Corps de décomposition.
Désormais, nous ne considérerons que les corps A et A, ainsi que les anneaux de matrices Ar de
rang fini par rapport à leur centre P ; c’est-à-dire les algèbres simples et ordinaires sur P, que nous
appellerons simplement algèbres sur P ou algèbres ; A et A sont alors des algèbres à division.

Tous les Ar ayant le même A associé sont regroupés dans une classe d’algèbres semblables : Ar ∼ As.
Les A isomorphes sont identifiés au cours de ce processus.

7.1. Le groupe des classes d’algèbres.

Si Ar et Bs sont des algèbres sur P, alors il en va de même pour leur produit (produit direct sur P) ;
car, d’après la conclusion du § 3, on obtient : Ar×Bs = Ct, où C est une algèbre à division de centre
P, unique à isomorphisme près. La multiplication de Ar et Bs par des anneaux de matrices sur P
montre que cette multiplication est unique pour les classes, qui forment ainsi un système multipli-
cativement clos et commutatif. De plus, le théorème de R. Brauer est vérifié : les classes d’algèbres
semblables forment un groupe abélien pour le produit direct. Ceci est dû au fait que le système
possède une classe unité constituée des anneaux de matrices sur P, c’est-à-dire des algèbres de type
P. De plus, pour toute classe A, elle possède l’inverse (A)−1, constitué des algèbres semblables à A,
où A est réciproquement isomorphe à A. Ceci découle du théorème de commutation du § 5.3, grâce
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à la spécialisation S = A. En effet, A peut être irréductiblement plongé dans A lui-même ; ainsi,
B = P et AA = Pt en découle 5.

7.2. Corps de décomposition d’une classe d’algèbres.

La théorie des corps de décomposition repose entièrement sur le principe énoncé au début de la
section 5 ; les corps d’extension commutatifs sont respectivement représentés dans A et A. Précisons
ce qui suit :

Assertion : Si A est un corps de centre P, et Z un corps d’extension commutatif fini de P, alors
AZ se réduit à Z de centre Z.

En effet, d’après la section 4.1, cela est vrai pour le système ZA, qui est réciproquement isomorphe
à AZ. Pour toute classe (A) d’algèbres semblables à A sur P, Z engendre une classe d’extension
(A)Z d’algèbres simples semblables à AZ sur Z.

L’algèbre de division associée D d’une classe d’extension découle immédiatement du théorème de
commutation dans le § 5.3 :

Théorème sur l’algèbre de division associée à une classe d’extension : Soit (A)Z une classe
d’extension, et Z une injection irréductible (représentation) de Z dans Ar. Alors (A)Z = (D), où D
est l’ensemble des éléments de Ar commutativement interchangeables avec Z.

Dans le § 5.3, on remplace simplement le système existant S par Z, en tenant compte du fait que
ZA et AZ sont réciproquement isomorphes. Si Z est une injection réductible, alors l’ensemble des
éléments commutativement interchangeables avec Z forme un anneau de matrices sur D.

Un corps d’extension commutatif Z de P est connu pour être un corps de partition de classes (A)
si la classe d’extension (A)Z partitionne complètement, c’est-à-dire devient égale à la classe d’unité
sur Z, qui est la classe de tous les anneaux de matrices sur Z.

Théorème sur la caractérisation des corps de décomposition. Un corps d’extension com-
mutatif fini Z de P est un corps de décomposition de classes (A) si et seulement si son plongement
irréductible dans Ar induit un sous-corps commutatif maximal de Ar.

Pour que Z soit un corps de décomposition de (A), il faut que (D) = (Z). Par conséquent, d’après
le théorème sur l’algèbre de division associée, le plongement irréductible Z est nécessairement un
sous-corps commutatif maximal. Si cette condition est satisfaite, alors D = Z s’ensuit nécessaire-
ment, puisque tout a de D engendre un corps d’extension commutatif par adjonction avec Z.

5. Les théorèmes plus détaillés concernant le groupe des classes d’algèbre font appel à la théorie des systèmes
de facteurs ; ils ne seront pas abordés ici. Il convient de noter que, jusqu’à présent, aucune considération relative
aux corps commutatifs n’a été faite ; par exemple, le fait que le rang de (A : P) soit un carré n’a été ni utilisé ni
démontré.
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Remarques.
1. Il s’ensuit qu’un sous-corps commutatif maximal Z, s’il est plongé de manière irréductible, en-
gendre un sous-anneau commutatif maximal. En effet, l’ensemble des éléments commutatifs avec Z
terme à terme forme un corps.

2. Ce théorème implique également l’existence de corps de décomposition, puisque l’algèbre à divi-
sion associée A possède nécessairement des sous-corps maximalement commutatifs.

7.3. Relations de rang, indice, extensions commutatives infinies.

L’énoncé du rang du § 5.4 conduit initialement au fait bien connu que le rang d’une algèbre simple
par rapport au centre est un carré parfait ; car si Z est maximalement commutative dans A,
alors, puisque tout plongement dans A est irréductible : (Z : P) · (Z : P) = (A : P), donc
(A : P)m2; (Z : P) = m, où m est l’indice de Schur, qui désigne donc également le degré de
tous les corps de décomposition plongeables dans l’algèbre à division A elle-même. De plus, pour le
degré n d’un corps de décomposition général : n = m · r 6, par exemple à cause de (Ar : P) = m2 · r2
Ou encore, d’après la relation de rang du § 4.3, puisque l’indice m est également égal au nombre
de composantes simples de AZ, l’anneau de matrices sur Z est de rang m2. Plus généralement, si
AA ∼ D, alors L est l’injection irréductible de Λ dans Ar et d2 est le rang (D : L) de l’algèbre à
division D sur son centre L. Ainsi, l · d = m · r, car d’après le § 5.4. Le théorème relatif à l’algèbre
de division associée, présenté dans la section 4, conduit à : (Ar : P) = (L : P)·(D : P) ou m2r2 = l2d2.

De l’existence des corps de décomposition découle les propriétés suivantes pour les corps d’extension
commutatifs (algébriques ou transcendants) infinis Ω de P :

La classe d’extension (A)Ω est une classe d’algèbres simples de centre Ω. En particulier, si Ω est
algébriquement clos, alors AΩ est un anneau de matrices de degré m. L’indice m est donc égal au
nombre absolu de composantes.

En effet, si Z est le corps de décomposition de A et de Ω, composé de Ω et de Z, alors AΩ est un
anneau de matrices sur Ω, c’est-à-dire sans radical et de centre Ω. Ainsi, AΩ est également sans
radical, et son centre Ω (puisqu’un élément de AΩ autre que Ω serait également au centre de AΩ)
est donc un corps. AΩ est donc une algèbre simple sur Ω, et assurément un anneau de matrices sur
Ω si Ω est algébriquement clos.

7.4. Existence de corps de décomposition séparables.

Chaque classe (A) possède des champs asymétriques séparables, même ceux qui sont intégrables
dans A lui-même 7.

6. En général, il existe aussi des corps de décomposition “minimaux”, c’est-à-dire ceux pour lesquels aucun sous-
corps vrai n’est un corps de décroissance de tous les degrés. (Cf. Brauer-Noether, op. cit.

7. Cf. G. Köthe, Über Schieffelder mit Unterfeldern zweiter Art über dem Centre, Jour. f. Mathématiques. 166
(1932), 8. 182-184. La présente preuve, beaucoup plus simple, est basée sur une remarque de M. Zorn.
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Soit P le corps de base de caractéristique p ; l’indice m = s · pg avec s et p premiers entre eux. Si
Z est un corps de décomposition de A de degré m et si Z0 contient l’extension de première espèce
dans A – c’est-à-dire (Z : Z0) = pf –, alors l’indice de AZ0 ∼ D vaut pf (d’après 3). Nous voulons
démontrer l’existence d’un corps d’extension séparable Z1 de Z0 tel que l’indice de DZ1 soit un divi-
seur propre de pf . Or, DΩ, avec Ω algébriquement clos, est, d’après 3, sans radical ; par conséquent,
le discriminant réduit de D n’est pas nul. Il existe donc au moins un élément d de D dont la trace
est réduite ; d ne peut appartenir au corps de base Z0, puisque la trace de tout élément α de Z0

devient pfα, c’est-à-dire qu’elle s’annule. Z1 = Z0(d) devient ainsi un corps d’extension propre, et
de fait séparable ; l’indice de DZ1 devient un diviseur propre de pf . La répétition finie conduit donc
à un corps de décomposition séparable de (A), dont le degré m coïncide avec l’indice de A.

8. Corps de décomposition, et théorie de Galois dans le do-
maine commutatif.
Pour passer des corps de décomposition des systèmes simples sur leur centre à ceux des systèmes
simples quelconques, il faut d’abord développer la théorie de décomposition du centre, à laquelle
s’ajoutera une théorie de Galois parallèle à celle du § 6.3. (Tous les corps et systèmes mentionnés
dans ce paragraphe sont commutatifs).

8.1. Décomposition et corps de décomposition des systèmes simples com-
mutatifs.

Soit Z un système commutatif simplement défini sur P, c’est-à-dire un corps, et Ω un corps d’ex-
tension algébriquement clos de P. Alors, comme on le sait (§ 21 de Representation theory) :

Si Z est séparable (extension de première espèce) sur P, alors et seulement alors ZΩ reste un sys-
tème sans radicaux.

Car alors, et alors seulement, il possède autant d’applications isomorphes de degré un dans Ω que
son rang dans Ω, et donc aussi autant de représentations différentes, qui correspondent ici à des
classes de représentation.

Le fait qu’un radical puisse apparaître dans ZΩ, ce qui signifie que la décomposition en sommes
directes en composantes absolument simples n’a pas nécessairement lieu, conduit à ce qui suit :

Définitions : Un corps d’extension Λ de P est appelé un corps de scindage si ZA se décompose
en facteurs de composition de degré un ; autrement dit, si toutes les représentations absolument
irréductibles sont déjà dans Λ. Un corps d’extension T de P est appelé un corps de scindage si ZT

décompose au moins un facteur de composition de degré un ; autrement dit, s’il existe au moins
une représentation absolument irréductible de Z dans T.
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Les champs de décroissance et de dédoublement peuvent être caractérisés selon le

Théorème : Un corps T est un corps de décomposition si et seulement s’il contient un sous-corps
Z isomorphe à Z ; un corps Λ est un corps de division si et seulement s’il contient un sous-corps Γ
qui devient isomorphe au corps de Galois appartenant à Z.

Ceci découle directement de la définition des corps de décomposition et des corps de division, en
vertu des représentations absolument irréductibles. En particulier, par analogie avec le corps non
commutatif, on aboutit à la :

Conclusion : Un corps Z est un corps de division minimal, c’est-à-dire qu’il n’est pas un corps de
division propre, si et seulement s’il est isomorphe à Z (c’est-à-dire si son plongement commutatif
irréductible dans Z représente un sous-corps commutatif maximal de Z). Un corps de décomposi-
tion minimal est un corps de décomposition si et seulement si Z est normal, c’est-à-dire un corps
de Galois sur P.

C’est pourquoi on dit qu’une algèbre simple est normale sur son centre. Le fait que, dans un corps Ω
fixé et algébriquement clos sur P, il n’existe qu’un seul corps de décomposition minimal, le corps de
Galois appartenant à Z, contrairement à l’infinité générale de décompositions non isomorphes dans
le corps non commutatif (voir R. Brauer-E. Noether, op. cit.), est dû à l’unique décomposition en
somme directe dans le corps commutatif, par opposition à l’unique décomposition à isomorphisme
d’opérateurs près dans le corps non commutatif. Autrement dit, il existe un nombre fini de repré-
sentations absolument irréductibles différentes, au lieu de l’infinité de représentations différentes
dans le corps non commutatif, qui appartiennent cependant à la même classe (cf. 2).

8.2. Justification de la théorie galoisienne hypercomplexe dans le cas des
corps séparables Z/P.

Par analogie exacte avec le § 6.3. la théorie des isomorphismes s’applique ici pour tout Z séparable
sur P ; dans le cas d’un Z galoisien, la transition vers le groupe d’automorphismes usuel peut alors
être effectuée.

Hypothèses : Soit Z, un corps d’extension fini et séparable sur P, Ω un corps de décomposition
fini ou infini sur P, Z = Z(1) un sous-corps isomorphe à Z, et Γ le corps de Galois correspondant.
Par conséquent, d’après la propriété 1 (Z est séparable !), la décomposition en somme directe est
vérifiée :

r(1) + . . .+ r(n) = e(1)ZΩ + . . .+ e(n)ZΩ = e(1)Ω + . . .+ e(n)Ω.

La représentation Z → Z(i) engendrée par e(1) avec Z(i) ≤ Γ est donc définie par e(i)z = e(i)ζ(i).

Leçon 1 : Les représentations engendrées par e(1), . . . , e(n) sont toutes distinctes.

Démonstration : comme dans le § 6.3. ou bien également selon 1 ; car elles appartiennent à des
classes de représentations différentes.
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Leçon 2 : Si T est un corps intermédiaire entre P et Z, et s le rang de Z par rapport à T , alors
tout isomorphisme de T vers Ω admet au moins s extensions, et donc exactement s extensions.

Démonstration : identique à celle du § 6.3. Le fait que la condition “au moins” soit ici trop restrictive
découle de l’unique partition de ZΩ, selon laquelle Z possède non pas au moins, mais exactement
n isomorphismes dans Ω (voir les remarques à la fin de la section 1).

Comme dans le § 6.3, on définit maintenant la division de classes IT de l’ensemble (fini) I des iso-
morphismes de Z induits par T – seuls les isomorphismes de I qui induisent le même isomorphisme
sur T sont considérés comme équivalents dans IT – et l’on démontre le théorème fondamental sui-
vant :

Si IT est la division de classes induite par T , alors T est un sous-corps maximal par rapport à cette
division de classes.

À partir de là, dans le cas d’un Z galoisien, on peut passer au groupe d’automorphismes et à la for-
mulation usuelle par composition avec l’inverse d’un isomorphisme, comme dans le § 6.3. L’énoncé
correspondant pour les sous-groupes découle de la considération des idempotents, qui présentent
un intérêt en soi.

8.3. Les idempotents de ZΩ.

Soit S soumis aux n substitutions qui transforment Z en chaque Z(i), c’est-à-dire la composition
des isomorphismes : Z → Z et Z → Z(i), où le premier est donc l’inverse de Z → Z. Z n’est pas
nécessairement galoisien. Pour les éléments a de ZZ, les substitutions S sont définies comme des
opérateurs par la condition qu’elles induisent l’identité sur Z ; ainsi, pour chaque a, le conjugué aS

appartenant à ZZ(i) est défini. Sous ces conditions, on a :

Théorème : Les n idempotents e(i) de ZΩ sont conjugués : e(i) = eS avec e = e(1). Ils appartiennent
aux systèmes d’extension conjugués ZZ(i) .

L’application de S transforme les relations de définition ez = eζ(1) ; e2 = e en
eSz = eSζ(i); (eS)2 = eS. Du fait de l’unicité de la décomposition, les idempotents sont égale-
ment déterminés de manière unique ; ainsi, e(i) = eS. Puisque Z est un corps de scindage, et donc
la représentation ez = eζ est déjà médiatisée, e est déjà dans ZZ et donc e(i) est dans ZZ(i) .

Si Z est spécifiquement galoisien, alors la partie du théorème fondamental de la théorie de Galois
relative aux sous-groupes s’ensuit directement ; en effet, si H est un sous-groupe du groupe galoisien
G, alors – du fait de la détermination unique des composantes d’une somme directe – l’élément∑

eH avec H dans H admet toutes les substitutions de H, mais aucune autre. Puisque le groupe G
a été défini pour Z, il s’agit de la théorie galoisienne de Z ; grâce à l’isomorphisme, la théorie de Z
est ainsi complète.
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8.4. Lien des idempotents avec les bases complémentaires.

On ne suppose pas nécessairement que Z soit galoisien.

Théorème : Si a1, . . . , an est une base de Z sur P, alors l’idempotent e = a1β1+ . . .+anβn est posé
– c’est-à-dire eS = a1β

S
1 +. . .+anβ

S
n – alors βS

1 , . . . , β
S
n représente l’image de la base complémentaire

b1, . . . , bn par a1, . . . , an dans l’application médiée par eS.

Dans l’application eSz = eSζS médiée par eSai = eSαS
i , puisque eS · eS = eS et eS · eR = 0(S ̸= R),

les affectations suivantes sont vérifiées : eS → 1; eR → 0. Par conséquent :

1 = αS
1β

S
1 + . . .+ αS

nβ
S
n 0 = αS

1β
R
1 + . . .+ αS

nβ
R
n (S ̸= R),

ou écrite sous forme de matrices, l’équation définissant les bases complémentaires
α1 . . . αn

. . . . . . . . .
αS
1 . . . αS

n

. . . . . . . . .



β1 . . . βR

1 . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
βn . . . βR

n . . .

 = E.

La transition vers la définition de trace découle du fait que pour ai =
∑
S

eSαS
i et bi =

∑
S

eSβS
i la

relation matricielle, après avoir interverti les matrices, devient 8

Sp(aibi) = 1 ; Sp(aibk) = 0 pour i ̸= k.

Les ai et bi appartiennent à Z, puisqu’ils admettent toutes les substitutions S (Théorème de Lesson
§ 3.3) 9.

La contraréciprocité des bases complémentaires découle du fait que les idempotents eS sont des
invariants de Z, quelle que soit la base sous-jacente. Autrement dit, tous les a1β

S
1 + . . . + anβ

S
n se

transforment en eux-mêmes lors du passage à une autre base a1, . . . , an de Z. Z/P.

9. Corps de décomposition et corps de décomposition de sys-
tèmes arbitraires.

9.1. Définitions et réduction au cas simple.

Les définitions données au § 8 correspondent dans le cas général à

8. Cf. Representation Theory § 25.
9. Les relations entre bases complémentaires et idempotents apparaissent pour la première fois chez Dedekind,

dans son ouvrage “Sur la théorie des quantités complexes formées à partir d’unités principales” (cf. vol. II des Œuvres
complètes, p. 4-5).
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Définitions : Soit S un hypercomplexe sur P. Un corps d’extension (commutatif) Λ de P est
appelé corps de scindage de S si SΛ se décompose en facteurs de composition absolument simples
pour une série de composition d’idéaux unilatéraux ; autrement dit, si toutes les représentations ir-
réductibles de S dans Λ sont déjà absolument irréductibles. Un corps d’extension T de P est appelé
corps de scindage si ST scinde au moins un facteur de composition absolument simple, c’est-à-dire
si au moins une représentation irréductible dans T est déjà absolument irréductible.

Ces définitions contiennent manifestement celles données dans le § 8 pour les algèbres commutatives
et dans le § 7 pour les algèbres simples ; notamment pour ces dernières du fait que AΛ est alors
complètement réductible par toute extension commutative du centre, et que donc les facteurs de
composition et les composantes de la décomposition en somme directe coïncident. Cependant, seuls
les anneaux de matrices complets sur le centre produisent des composantes absolument simples,
et donc également des représentations absolument irréductibles. De plus, puisque AΛ est simple
à deux côtés, c’est-à-dire qu’il se décompose en composantes isomorphes à des opérateurs, l’ex-
traction d’une composante absolument simple conduit à la décomposition complète : le corps de
décomposition et le corps de scindage de décomposition coïncident.

Les faits suivants découlent directement des définitions :

Les corps de décomposition de S sont donnés comme unions des corps de décomposition des repré-
sentations irréductibles dans P ; le corps de décomposition de S est tout corps de décomposition
d’une représentation irréductible dans P.

Comme les systèmes simples correspondent biunivoquement au radical et aux représentations ir-
réductibles dans P, il suffit de considérer les systèmes simples. Les résultats seront obtenus en
combinant les résultats du § 7 et ceux du § 8.

9.2. Corps de décomposition et corps de décomposition plus simples.

Cas des systèmes. Nous considérons d’abord le cas d’un système simple A à centre séparable Z
sur P. À partir des § 8.1 et § 8.3, nous obtenons :

La décomposition bilatérale de AΩ, correspondant à la décomposition en somme directe de ZΩ (où
Ω désigne un corps de décomposition de Z), donne n composantes conjuguées e(i)A de A isomorphes
à A. Ces composantes deviennent des algèbres simples sur leur centre e(i) Z(i) = e(i)Z. Les substitu-
tions S sont définies comme opérateurs sur AZ en stipulant qu’elles induisent l’identité sur A (Voir
§ 8.3).

Puisque, d’après le § 8.3, les idempotents sont conjugués, il en va de même pour les composantes
e(i)A par définition des substitutions de A. Comme A est simple des deux côtés, e(i)A est isomorphe
à A par l’anneau. Cela signifie que e(i)A = e(i)AZ(i) car e(i)Z = e(i) Z(i) = ei)ZZ(i) ; ainsi, le centre
coïncide avec le domaine des coefficients.

Composantes autour des algèbres normales. Les résultats du § 7.2 impliquent maintenant
que :
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Si A est un système simple sur P avec un centre séparable Z sur P, alors AΩ est également com-
plètement réductible sans radical ; Ω peut désigner n’importe quel corps d’extension fini ou infini.

Puisque, d’après le § 7.2, e(i)AZ(i) reste simplement inchangé par toute extension de coefficients,
c’est-à-dire sans radical. Ainsi, il en va de même pour la somme directe ; cependant, celle-ci est AΩ

ou provient — si Ω n’est pas un corps de décomposition de Z — de AΩ par extension de coefficients.
De plus, du § 7.2, découle la :

Caractérisation des corps de détachement et des corps de désintégration : Si A est une
algèbre à division de centre séparable Z, alors les plongements irréductibles des corps de décompo-
sition sont donnés par tous les sous-corps commutatifs maximaux de Ar entourant Z, et seulement
ceux-ci ; les corps de décomposition sont tous les corps d’union d’un corps de décomposition avec un
corps de décomposition du centre, en particulier avec le corps de Galois appartenant au centre, et
seulement ceux-ci. Un corps de décomposition minimal peut être un corps de décomposition même
si son centre n’est pas galoisien.

Pour qu’un corps de décomposition contienne un corps isomorphe à Z, l’énoncé d’immersion concer-
nant les corps de décomposition découle des faits précédents et du § 7.2. De plus, un corps de décom-
position contient nécessairement un corps de décomposition Ω sur Z. Tout corps de décomposition
sur Ω est également un corps de décomposition, puisque ses composantes e(i)AΩ sont simples et ont
un centre isomorphe à Ω. Si Z est galoisien, alors les corps de décomposition minimaux et les corps
de décomposition coïncident. Mais même dans le cas non galoisien, contrairement au cas commuta-
tif, il peut exister des corps de décomposition minimaux qui sont aussi des corps de décomposition,
c’est-à-dire dès qu’un tel corps de décomposition minimal contient le corps de Galois appartenant à
Z [Exemple : le corps des quaternions dont le centre est isomorphe à P

(
3
√
2
)
, le corps des nombres

rationnels P ; le corps de Galois appartenant à P
(

3
√
2
)

est un corps de décomposition minimal et
un corps de décomposition].

Si le centre est inséparable, alors ZΩ et donc AΩ forment un système muni d’un radical. Soit C le ra-
dical de ZΩ et c l’idéal d’extension dans AΩ. Alors ZΩ/C admet une décomposition en somme directe
de composantes conjuguées, par analogie exacte avec le § 8.2 ; ceci induit, comme précédemment, la
décomposition en somme directe de AΩ/c, de sorte que les composantes e(i)A sont isomorphes à A
de centre e(i) Z(i). Ainsi, les théorèmes sur les corps de décomposition et de division restent valides.
De plus, l’énumération des rangs montre que les facteurs de composition correspondant à une série
de composition de C deviennent des opérateurs isomorphes à AΩ/c, et non seulement homomorphes.

Exprimé pour les représentations irréductibles, cela se traduit par le résumé suivant : si une repré-
sentation irréductible d’un système hypercomplexe existe dans P, alors cette représentation devient
absolument complètement réductible si et seulement si le centre correspondant est séparable sur
P. Dans tous les cas, les corps de scindage et de décomposition de la représentation peuvent être
caractérisés en les plongeant dans le système simple correspondant, comme indiqué précédemment.
En particulier, le degré le plus adverse d’un corps de décomposition est égal au produit du degré
du centre et de l’indice de la classe d’algèbre correspondante sur le centre, et le degré de chaque
corps de décomposition est un multiple de ce produit. La représentation se scinde, au sens des séries
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de composition, en autant de classes de représentations absolument irréductibles, différentes mais
conjuguées, en autant de classes, donc, que le degré du plus grand corps séparable contenu dans le
centre. Chaque classe apparaît autant de fois que le produit de l’indice et du degré du centre après
cette extension séparable.

Pour un corps de base parfait, où il n’existe que des corps d’extension séparables, nous revenons
ainsi aux résultats connus de I. Schur ; avec l’ajout de la caractérisation d’immersion, que l’on
trouve déjà dans R. Brauer.
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