
Entropie de Kolmogoroff Sinai et mécanique statistique quantique

Alain Connes

Résumé : Soient M une algèbre de von Neumann, ϕ un état normal sur M et θ ∈ Aut M un
automorphisme de M tel que ϕ ◦ θ = ϕ. Nous montrons comment définir puis calculer l’analogue non
commutatif H(θ, ϕ) de l’entropie de Kolmogoroff et Sinai. Quand ϕ est une trace, notre définition
coïncide avec celle de E. Størmer et de l’auteur.

La notion d’entropie d’une transformation ergodique avec mesure finie invariante, introduite par A.
N. Kolmogoroff et J. Sinai [5] [13] joue un rôle important dans le formalisme de la thermodynamique
classique. L’entropie, par unité de volume, au sens de la mécanique statistique, d’un état invariant
par translations est égale à l’entropie, au sens de la théorie ergodique, du groupe des translations.
([12]).

En mécanique statistique quantique la notion d’entropie par unité de volume d’un état invariant
par translations est bien comprise (cf [6] [8] [7]). Il n’existe cependant aucun analogue de l’entropie
de Kolmogoroff et Sinai, sauf ([3]) dans le cas où l’état invariant est une trace, ce qui correspond à
la valeur T = +∞ pour la température absolue.

Le but de cette note est de montrer comment étendre la théorie élaborée dans [3] au cas géné-
ral où l’état ϕ n’est plus une trace. À la difficulté principale due à la non commutativité : deux
sous-algèbres de dimension finie engendrent en général une sous-algèbre de dimension infinie, se
superpose la difficulté suivante : en général une sous-algèbre de dimension finie n’est pas invariante
par le groupe d’automorphismes modulaires de l’état ϕ. Nous donnerons des exemples d’états d’en-
tropie non nulle dont le groupe d’automorphismes modulaires ne laisse aucune sous-algèbre de
dimension finie (sauf C) globalement invariante.

Le cadre général est le suivant. Tout état invariant par translation d’un système statistique quan-
tique définit :

a) Une algèbre de von Neumann M ;
b) Un état normal sur M ;
c) Une action θ de Zd sur M laissant l’état ϕ invariant.

L’entier d est la dimension de l’espace. Nous traiterons uniquement le cas d = 1.

I. Entropie relative

Dans ce paragraphe, nous rappelons la définition et quelques propriétés de l’entropie relative
S(ϕ2, ϕ1), où ϕ1 et ϕ2 sont des formes linéaires positives sur une algèbre de von Neumann N
de dimension finie. Le lemme 2 est crucial pour la suite. On suppose que le support e1 = s(ϕ1) de
ϕ1 est majoré par e2 = s(ϕ2). On pose

S(ϕ2, ϕ1) = ϕ1(Log ρ1 − Log ρ2)
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où ρj ∈ N+ est déterminé par le choix d’une trace fidèle τ sur N par l’égalité :

τ(ρjx) = ϕj(x) ∀x ∈ N+.

La valeur de S(ϕ2, ϕ1) est indépendante du choix de τ .

Proposition 1 ([7], [1], [2]).
a) S(ϕ2, ϕ1) ≥ 0 si ϕ2(1) = ϕ1(1) ;

b) S(ϕ2, ϕ1) ≤ 0 si ϕ1 ≤ ϕ2 ;
c) S(λ2ϕ2, λ1ϕ1) = λ1(S(ϕ2, ϕ1)) + λ1 Log(λ1/λ2) ϕ1(1) ;

d) S

(
n∑
i=1

ϕi,

n∑
i=1

ψi

)
≤

n∑
i=1

S(ϕi, ψi) ;

e) Soient M ⊂ N une sous-algèbre de von Neumann de N et ϕj/M la restriction de ϕj à M ,
alors

S(ϕ2/M, ϕ1/M) ≤ S(ϕ2, ϕ1).

De la propriété d) nous déduisons le

Lemme 2 : Soient I et J deux ensembles finis et ϕi,j, i ∈ I, j ∈ J des formes linéaires positives
sur N . Soit ϕ =

∑
i,j

ϕi,j. On a

∑
i,j

S(ϕ, ϕi,j) ≥
∑
i

S

(
ϕ,
∑
j

ϕi,j

)
+
∑
j

S

(
ϕ,
∑
i

ϕi,j

)
.

Démonstration : Soient τ une trace fidèle sur N et ρi,j ∈ N+ tel que ϕi,j(x) = τ(ρi,jx) ∀x ∈ N+.
On a, ∑

i,j

S(ϕ, ϕi,j)−
∑
j

S(ϕ,
∑
i

ϕi,j)

=
∑

ϕi,j (Log ρi,j − Log ρ)−
∑
j

(∑
i

ϕi,j

(
Log

(∑
k

ρk,j)− Log ρ

)))

=
∑
i,j

ϕi,j

(
Log ρi,j − Log

(∑
k

ρk,j

))

=
∑
i,j

S

(∑
k

ϕk,j, ϕi,j

)

≥
∑
i

S

(
ϕ,
∑
j

ϕi,j

)
. □

II. La fonction Hϕ(Ni, . . . , Nk, . . . , Nn)

Soient M une algèbre de von Neumann et ϕ un état normal sur M . Soient Nj, j = 1, . . . , n
des sous-algèbres de von Neumann de M , de dimension finie. En général, la sous-algèbre de M
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engendrée par les Nj est de dimension infinie. Nous allons cependant définir un nombre réel fini
Hϕ(N1, . . . , Nn) ≥ 0 qui, quand M est commutative, coïncide avec l’entropie de la restriction de ϕ
à l’algèbre engendrée par les Nj. Soit Pn l’ensemble des applications de Nn dans le prédual de M
telles que, a) ϕi ≥ 0 ∀i ∈ Nn, b)

∑
ϕi = ϕ, c) ϕi = 0 sauf pour un nombre fini d’indices i ∈ Nn.

Pour tout ψ ∈ P et k ∈ {1, . . . , n}, j ∈ N, posons

ψkj =
∑

i∈Nn,ik=j

ψi

Pour x ∈ [0, 1] posons η(x) = −x Log x si x > 0 et η(0) = 0.

Définition 3 :

Hϕ(N1, . . . , Nn) = Sup
Pn

(∑
i

η(ψi(1)) +
n∑
k=1

∑
j

S(ϕ/Nk, ψ
k
j /Nk)

)

Nous appellerons partition de ϕ tout élément de Pn.

Proposition 4 :

a) 0 ≤ Hϕ(N1, . . . , Nn) ≤
n∑
k=1

S(ϕ/Nk) <∞ ;

b) Si M est de type I et si ϕ est un état pur, on a

Hϕ(N1, . . . , Nn) = 0 ∀N1, . . . , Nn.

c) Si ϕ est une trace, Hϕ(N1, . . . , Nn) coïncide avec la fonction définie dans [3].

Démonstration
a) Posons ψ0 = ϕ et ψi = 0 si i ̸= 0 ∈ Nn. On a ψkj = 0 si j ̸= 0 et ψk0 = ϕ. Cela montre que

Hϕ(N1, . . . , Nn) ≥ 0. Soit ψ ∈ Pn. La sous-additivité de l’entropie usuelle montre que,∑
i

η(ψi(1)) ≤
∑

1≤k≤n

∑
j

η(ψkj (1))

Ainsi Hϕ(N1, . . . , Nn) ≤
∑
k

Hϕ(Nk). Montrons que Hϕ(N) ≤ S(ϕ/N). Soit ψ ∈ P1, et soit τ

une trace fidèle sur N . Soient ρi ∈ N+ tels que ψi(x) = τ(ρi x) ∀x ∈ N et ρ =
∑

ρi. On a :∑
i

⟨η(ψi(1)) + S(ϕ/N, ψi/N)⟩ =
∑
i

τ⟨ρi(Log ρi − Log ρ)⟩ − τ(ρi) Log τ(ρi)

=
∑
i

τ⟨ρiLog(ρi/τ(ρi))⟩ − τ(ρ Log ρ).

Choisissons τ telle que τ(e) = 1 pour tout projecteur minimal de N , on a alors ρi ≤ τ(ρi)1N
et −τ(ρ Log ρ) = S(ϕ/N) d’où l’inégalité cherchée.
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b) Si ϕ est un état pur, tout ψ ∈ Pn vérifie ψi = ψi(1)ϕ ∀i.

On a donc S(ϕ/Nk, ψ
k
j /Nk) = −η⟨ψkj (1)⟩ et Hψ(N1, . . . , Nn) = 0.

c) Si ϕ est une trace, toute forme linéaire ψ ∈M+
∗ , ψ ≤ ϕ détermine un unique

x ∈M+, 0 ≤ x ≤ e = Support ϕ ∈ CentreM tel que ψ(y) = ϕ(xy) ∀x ∈M.

Comme la restriction de ϕ à M1−e est nulle, on peut supposer que e = 1. On peut alors
identifier Pn à l’ensemble des partitions de l’unité utilisé dans [3]. De plus, si N est une sous-
algèbre de von Neumann de dimension finie de M et EN(x) est l’espérance conditionnelle de
M dans N associée à x, on a :

S(ϕ/N, ψ/N) = ϕ(EN(x) Log EN(x)).

La conclusion est alors immédiate. □

Les propriétés fondamentales de la fonction Hϕ sont les suivantes :

Théorème 5 : Soient Nj, Pj, j = 1, . . . , n des sous-algèbres de von Neumann de dimension finie de
M .

a) Si Nj ⊂ Pj ∀j, on a Hϕ(N1, . . . , Nn) ≤ Hϕ(P1, . . . , Pn) ;
b) Hϕ(N1, . . . , Nn) ≤ Hϕ(N1, . . . , Np) +Hϕ(Np+1, . . . , Nn) ∀p = 1, . . . , n ;
c) Si Nj ⊂ P1, j = 1, . . . , k, on a Hϕ(N1, . . . , Nn) ≤ Hϕ(P1, Nk+1, . . . , Nn) ;
d) Posons δN1(ϕ) = S(ϕ/N1)−Hϕ(N1). Alors δN1 est une fonction positive, convexe, de la variable

ϕ, et s’annule si ϕ = ψ ◦ E où ψ ∈ N∗
1+ est une projection de norme 1 de M sur N1 ;

e) Si ϕ est fidèle et si l’algèbre de von Neumann P engendrée par N1, . . . , Nn est engendrée par
Pj ⊂ Nj, où xy = yx ∀x ∈ Pi, y ∈ Pj, i ̸= j et σϕt (Pj) = Pj ∀j,∀t ∈ R, on a

Hϕ(N1, . . . , Nn) = S(ϕ/P ).

(Ici σϕy est le groupe d’automorphismes modulaires de ϕ).

Démonstration
a) Soit ψ ∈ Pn. La proposition 1 e) montre que S(ϕ/Nk, ψ

k
j /Nk) ≤ S(ϕ/Pk, ψ

k
j /Pk), d’où le

résultat.
b) Soient ψ ∈ Pn, ψ′ ∈ Pp, ψ′′ ∈ Pn−p tels que

ψ′
i =

∑
j1,...,jn−p

ψi,...,ipj1...jn−p ∀i = (i1 . . . ip) ∈ Np

ψ′′
j =

∑
i1,...,ip

ψi1...ipj1...jn−p ∀j = (j1 . . . jn−p) ∈ Nn−p
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La sous-additivité de l’entropie usuelle montre que,∑
Nn

η(ψi(1)) ≤
∑
Np

η(ψ′
i(1)) +

∑
Nn−p

η(ψ′′
j (1))

De plus, pour 1 ≤ k ≤ p, on a ψkj = ψ′
j
k ∀j ∈ N et pour k > p, k ≤ n, on a

ψkj = ψ′′
j
k−p ∀j ∈ N.

c) En utilisant a), on peut supposer que Nj = P1, j = 1, 2, . . . , k. Montrons que

Hϕ(P1, . . . , P1, Nk+1, . . . , Nn) ≤ Hϕ(P1, Nk+1, . . . , Nn).

Soient ψ ∈ Pn et ψ′ ∈ Pk tels que ψ′
i =

∑
j1,...,jn−k

ψi1...ikj1...jn−k
∀i = (i1, . . . , ik) ∈ Nk.

Le lemme 2 montre que,

k∑
q=1

∑
j

S(ϕ/P1, ψ
q
j/P1) ≤

∑
Nk

S(ϕ/P1, ψ
′
i/P1).

On obtient l’inégalité cherchée en remplaçant ψ ∈ Pn par ψ′′ ∈ Pn−k+1 défini en utilisant une
bijection π de N dans Nk par l’égalité,

ψ′′
1 . . . , in−k+1 = ψπ(i1),i2,...,in−k+1

avec i1, . . . , in−k+1 ∈ N.

d) La proposition 4 montre que δN(ϕ) ≥ 0. Soit τ la trace sur N telle que τ(e) = 1 pour tout
projecteur minimal de N . Avec les notations de la proposition 4 a) on a :

δN(ϕ) = Inf
P1

∑
(η(ψi(1))− S(ψi/N)) = Inf

P1

∑
ψi(1)S(ψ

′
i/N)

où ψ′
1 = ψi/ψi(1) si ψi(1) ̸= 0 et ψ′

i = 0 si ψi(1) = 0.

Cette expression montre que δN est une fonction convexe de ϕ. Soit E une projection de norme
1 de M sur N et supposons que ϕ = ϕ0.E où ϕ0 = ϕ/N . Toute partition ψi, i ∈ N de ϕ0 définit
alors par composition avec E une partition de ϕ. Cela montre que pour calculer Hϕ(N), on
peut remplacer M par N et ϕ par ϕ0. Soit alors ρ ∈ N tel que ϕ0(x) = τ(ρx) ∀x ∈ N . Soit

ρ =

q∑
i=1

λiei la décomposition spectrale de ρ, où λi ≥ 0 et où ei est un projecteur minimal de

N pour tout i. L’égalité
ψi(x) = τ(λieix) ∀x ∈ N

définit une partition (ψi) de ϕ0 qui montre que Hϕ(N) = S(ϕ/N) d’où le résultat.
e) La propriété a) et la proposition 4 a) montrent que Hϕ(N1, . . . , Nn) ≤ S(ϕ/P ).

Il suffit, en utilisant a), de montrer que S(ϕ/P ) ≤ Hϕ(P1, . . . , Pn).
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Par hypothèse σϕt (Pk) = Pk ∀t ∈ R, k = 1, . . . , n. Soient ekj , j ∈ N, des projecteurs minimaux
de Pj, deux à deux orthogonaux, de somme 1, et invariants par σϕt pour tout t ∈ R. Posons,

ψi1...in(x) = ϕ(e1i1e
2
i2
. . . eninx) ∀x ∈M.

On vérifie que ψ ∈ Pn. On a ψkj (x) = ϕ(ekjx) ∀x ∈ M , d’où l’égalité S(ϕ/Pk, ψkj /Pk) = 0. Ainsi,
Hϕ(P1, . . . , Pn) ≥

∑
η(ϕ(e1i1 . . . e

n
in)) = S(ϕ/P ). □

III. Entropie d’un automorphisme

Soient M une algèbre de von Neumann, ϕ un état normal sur M et θ un automorphisme de M tel
que ϕ ◦ θ = ϕ.

Lemme 6 : Soit N une sous-algèbre de von Neumann de dimension finie de M .

La suite un =
1

n+ 1
Hϕ(N, θ(N), . . . , θn(N)) est convergente et sa limite hϕ,θ(N) vérifie

0 ≤ hϕ,θ(N) ≤ S(ϕ/N).

Démonstration : Par construction un =
an+1

n+ 1
où la suite an vérifie an+m ≤ an+am (théorème 5 b))

∀n,m ∈ N. La convergence de la suite un est donc immédiate. De plus la proposition 4 a) montre
que hϕ,θ(N) ≤ S(ϕ/N). □

Définition 7 : L’entropie du couple (θ, ϕ) est définie par H(θ, ϕ) = Sup
N∈F

hϕ,θ(N) où F est l’ensemble

des sous-algèbres de von Neumann de dimension finie de M . Pour pouvoir calculer H(θ, ϕ), il est
crucial de pouvoir remplacer l’ensemble F.

Nous supposerons désormais que l’algèbre de von Neumann M est hyperfinie, c’est-à-dire qu’il
existe une suite croissante (Nk)k∈N d’éléments de F, Nk ⊂ Nk+1, ∀k ∈ N, telle que M soit engendrée
par la réunion

⋃
Nk. Le résultat principal est le suivant :

Théorème 8 : On a H(θ, ϕ) = Lim
k→∞

hϕ,θ(Nk).

L’existence de la limite de la suite hϕ,θ(Nk) est assurée par le théorème 5 a) qui montre que cette
suite est croissante.

Corollaire 9 : Si M est hyperfinie, on a H(θq, ϕ) = |q| H(θ, ϕ) pour tout q ∈ Z.

Corollaire 10 : Soient N0 un facteur de dimension finie, ϕ0 un état fidèle sur N0 et (M,ϕ) le
produit tensoriel infini,

(M,ϕ) = ⊗
ν∈Z

(Nν , ϕν) avec (Nν , ϕν) = (N0, ϕ0) ∀ν ∈ Z.

Soit θ ∈ AutM le shift bilatéral, alors :

H(θ, ϕ) = S(ϕ0).
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Corollaire 11 : Soient A la C∗-algèbre A = ⊗
ν∈Z

Aν où Aν = Mn(C) pour tout ν ∈ Z, et θ le shift

bilatéral, θ ∈ Aut A. Pour tout I ⊂ Z, soit A1 = ⊗
ν∈I
Aν ⊂ A. Soit ϕ un état θ-invariant sur A.

Soient M,ϕ, θ l’algèbre de von Neumann, l’état normal et l’automorphisme construit à partir de
A, ϕ, θ, alors,

H(θ, ϕ) ≤ Lim
m→∞

1

m
S(ϕ/AIm) avec Im = {1, 2, . . . ,m}.

L’outil principal dans la démonstration du théorème 8 est le lemme suivant que nous ne démons-
trerons pas ici,

Lemme 12 : a) Pour N,P ∈ F, posons

Hϕ(N/P ) = Sup
P1

∑
(S(ϕ/N, ψj/N)− S(ϕ/P, ψj/P ))

alors

Hϕ(N1, . . . , Nn) ≤ Hϕ(P1, . . . , Pn) +
n∑
k=1

Hϕ(Nj/Pj)

pour tous Nj, Pj ∈ F.

b) Soient N ∈ F et Nk ∈ F avec Nk ⊂ Nk+1 ∀k et
⋃
Nk dense donc Hϕ(N,Nk) → 0 quand

k → ∞.

Le corollaire 11 montre que l’entropie H(θ, ϕ) que nous construisons est toujours majorée par l’en-
tropie de la mécanique statistique quantique lorsque celle-ci a un sens. Nous n’avons pas de résultat
général quant à l’inégalité inverse autre que l’estimation suivante.

Théorème 13 : Soient A la C∗-algèbre A = ⊗
ν∈Z

Aν , où Aν =Mn(C) pour tout ν ∈ Z, et θ ∈ Aut A

le shift bilatéral. Soient V ∈
⋃

I fini ⊂ Z
Ai, V = V ∗ et σt ∈ Aut A le groupe à un paramètre d’auto-

morphismes de A engendré par la dérivation D(x) =
∑
ν∈Z

[θν(V ), x] (cf [11]).

Pour tout β > 0, soit ϕβ l’unique état θ-invariant sur A qui vérifie la condition k.m.s. par rapport
à σt à température inverse β.

On a H(θ, ϕβ) ≤ S(ϕβ) et S(ϕβ)−H(θ, ϕβ) → 0 quand β → 0.

Ici S(ϕβ) désigne l’entropie de la mécanique statistique quantique, c’est une fonction croissante de la
température absolue et donc décroissante de β. Il est facile de donner, en utilisant [9], un exemple où
Lim
β→0

S(ϕβ) > 0 et où le groupe d’automorphismes σt est asymptotiquement abélien. On en déduit le

Corollaire 14 : Soit M le facteur hyperfini de type III1 ([4]). Il existe un état normal fidèle ϕ sur
M de centralisateur Mϕ = C et un automorphisme θ ∈ AutM,ϕ ◦ θ = ϕ tels que H(θ, ϕ) > 0.

Ceci montre bien queH(θ, ϕ) ne peut se calculer à partir de la restriction de θ au centralisateur de ϕ.
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Remarques 15 a) Grâce à la définition de H. Araki [1] de l’entropie relative de deux états normaux
sur une algèbre de von Neumann, on peut définir Hϕ(N1, N2) lorsque N1 et N2 sont des sous-
algèbres de von Neumann de M qui ne sont pas nécessairement de dimension finie. On obtient alors
l’analogue de la propriété fondamentale de [10], sous la forme :
Si N1 =M et ϕ = ϕ/N2.E où E est une projection de norme 1 de M sur N2, on a

Hϕ(M,N2) ≤ Log (λ−1) avec λ ≥ 0, E(x) ≥ λx ∀x ∈M+.

b) On a bien entendu H(θ, ϕ) = 0 dès que ϕ est un état pur. En utilisant la construction de
Gelfand-Naimark-Segal, il en résulte que tout triplet (M, θ, ϕ) se prolonge en un triplet (α(k), θ̃, ϕ̃)
d’entropie nulle.
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