Entropie de Kolmogoroff Sinai et mécanique statistique quantique

Alain Connes

Résumé : Soient M une algébre de von Neumann, ¢ un état normal sur M et § € Aut M un
automorphisme de M tel que ¢ o 8 = ¢. Nous montrons comment définir puis calculer I’analogue non
commutatif H(6,¢) de Pentropie de Kolmogoroff et Sinai. Quand ¢ est une trace, notre définition
coincide avec celle de E. Stgrmer et de l'auteur.

La notion d’entropie d’une transformation ergodique avec mesure finie invariante, introduite par A.
N. Kolmogoroff et J. Sinai [5] [13] joue un réle important dans le formalisme de la thermodynamique
classique. L’entropie, par unité de volume, au sens de la mécanique statistique, d’'un état invariant
par translations est égale a I’entropie, au sens de la théorie ergodique, du groupe des translations.

([12]).

En mécanique statistique quantique la notion d’entropie par unité de volume d’un état invariant
par translations est bien comprise (cf [6] [8] [7]). Il n’existe cependant aucun analogue de I’entropie
de Kolmogoroff et Sinai, sauf ([3]) dans le cas ou I’état invariant est une trace, ce qui correspond a
la valeur T' = +o00 pour la température absolue.

Le but de cette note est de montrer comment étendre la théorie élaborée dans [3| au cas géné-
ral ofl I’état ¢ n’est plus une trace. A la difficulté principale due a la non commutativité : deux
sous-algébres de dimension finie engendrent en général une sous-algébre de dimension infinie, se
superpose la difficulté suivante : en général une sous-algébre de dimension finie n’est pas invariante
par le groupe d’automorphismes modulaires de 1’état ¢. Nous donnerons des exemples d’états d’en-
tropie non nulle dont le groupe d’automorphismes modulaires ne laisse aucune sous-algébre de
dimension finie (sauf C) globalement invariante.

Le cadre général est le suivant. Tout état invariant par translation d’un systéme statistique quan-
tique définit :

a) Une algeébre de von Neumann M ;

b) Un état normal sur M ;

c¢) Une action § de Z? sur M laissant I’état ¢ invariant.

L’entier d est la dimension de ’espace. Nous traiterons uniquement le cas d = 1.
I. Entropie relative

Dans ce paragraphe, nous rappelons la définition et quelques propriétés de l'entropie relative
S(¢2,d1), ou ¢ et ¢y sont des formes linéaires positives sur une algébre de von Neumann N
de dimension finie. Le lemme 2 est crucial pour la suite. On suppose que le support e; = s(¢) de
¢1 est majoré par e; = s(¢2). On pose

S(¢2, ¢1) = ¢1(Log p1 — Log p2)
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ou p; € NT est déterminé par le choix d'une trace fidéle 7 sur N par 1'égaliteé :
T(pjx) = ¢j(x) Vo€ N,

La valeur de S(¢9, ¢1) est indépendante du choix de 7.

Proposition 1 ([7], [1], [2])-
a) S(g2,¢1) >0 si ¢o(1) = ¢1(1) ;
b) S(¢2,¢01) <0 si ¢1 < ¢y ;
c) S(Aa2, Mid1) = Ai(S(¢2, ¢1)) + M1 Log(Ai/A2) ¢1(1) ;

d) S (;@7;%) < ;S(Cbu%) ;

e) Solent M C N une sous-algébre de von Neumann de N et ¢;/M la restriction de ¢; a M,
alors

S(2/M, 1 /M) < S(¢2, ¢1).

De la propriété d) nous déduisons le

Lemme 2 : Soient I et J deux ensembles finis et ¢; ;, ¢ € I, j € J des formes linéaires positives

sur N. Soit ¢ = Z(bm. On a

i7j

Z S(6, ¢ij) > Z S (¢, Z ¢i,j> + Z S <¢, Z ¢i,j> :

Démonstration : Soient T une trace fidele sur N et p;; € N* tel que ¢; j(x) = 7(pijz) Vo € NT.
On a,

>_S(6615) = D86, i)

| =D _ 15 (Log pij —Logp) = 3 (Z b1 <Log (Zk: pr,) — Log p) ))
()
ZZS<¢’Z¢”>' O

II. La fonction Hy(N;, ..., Ny, ..., Ny,)

Soient M une algebre de von Neumann et ¢ un état normal sur M. Soient N;, j = 1,....,n
des sous-algébres de von Neumann de M, de dimension finie. En général, la sous-algébre de M
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engendrée par les N; est de dimension infinie. Nous allons cependant définir un nombre réel fini
Hy(Ny,...,N,) >0 qui, quand M est commutative, coincide avec I'entropie de la restriction de ¢
a l'algebre engendrée par les N;. Soit P,, 'ensemble des applications de N™ dans le prédual de M

telles que, a) ¢; > 0 Vi € N" b) Z ¢i = ¢, ¢) ¢; = 0 sauf pour un nombre fini d’indices i € N™.
Pour tout ¢ € P et k € {1,...,n}, j € N, posons

k
wj = Z (0
IENT /i =j

Pour = € [0, 1] posons n(z) = —x Log x si > 0 et n(0) = 0.

Définition 3 :
n 7 k=1 3

Nous appellerons partition de ¢ tout élément de P,,.

Proposition 4 :

n

a)OSHQb(NlaaNn)S S(¢/Nk><ooa
k=1
b) Si M est de type I et si ¢ est un état pur, on a

Hy(Ny,...,N,) =0 VNi,...,N,.

c) Si ¢ est une trace, Hy(Ny, ..., N,) coincide avec la fonction définie dans [3].

Démonstration

a) Posons g = ¢ et ¢, =0sii#0 € N OnazD;?:Osij#Oetzb(’f:gb. Cela montre que
Hy(Ny, ..., N,) > 0. Soit ¢ € P,. La sous-additivité de I’entropie usuelle montre que,

Zn(z/zi(l)) < D) k)

1<k<n j
Ainsi Hy(Ny, ..., Ny,) <> Hy(Ng). Montrons que Hy(N) < S(¢/N). Soit ¢ € Py, et soit 7
k

une trace fidéle sur N. Soient p; € N7 tels que ¢;(x) = 7(p; x) Vo € N et p= Z pi- On a :

2

Z(U(%’(l)) + S(¢/N,¥i/N)) = Z 7(pi(Log p; — Log p)) — 7(p;) Log 7(pi)

- Z m(p;Log(pi/7(pi))) — 7(p Log p).

Choisissons 7 telle que 7(e) = 1 pour tout projecteur minimal de N, on a alors p; < 7(p;)1n
et —7(p Log p) = S(¢/N) d’ou I'inégalité cherchée.
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b) Si ¢ est un état pur, tout ¥ € P, vérifie 1o, = 1;(1)p Vi.
On a donc S(¢/Ny, ¥ /Ny,) = —n(¢F(1)) et Hy(Ny,...,N,) = 0.

¢) Si ¢ est une trace, toute forme linéaire ¢ € M 1) < ¢ détermine un unique
r € M 0<z<e=Support ¢ € Centre M tel que ¢(y) = ¢(zy) Vo € M.

Comme la restriction de ¢ a M;_. est nulle, on peut supposer que e = 1. On peut alors
identifier P,, & 'ensemble des partitions de I'unité utilisé dans [3|. De plus, si N est une sous-
algeébre de von Neumann de dimension finie de M et Ey(z) est 'espérance conditionnelle de
M dans N associée a x, on a :

S(¢/N,¥/N) = ¢(En(z) Log En(z)).

La conclusion est alors immeédiate. O

Les propriétés fondamentales de la fonction H, sont les suivantes :

Théoréme 5 : Soient N;, Pj,j7 = 1,...,n des sous-algebres de von Neumann de dimension finie de
M.

a) Si Nj CPJ V], onaH¢(N1,...,Nn)§H¢(P1,...,Pn);

b) Hy(Ny,...,Ny) < Hy(Ny, oo Ny + Hy(Npsrso o No) ¥p=1,....0;
C) Si NjCPl,j:]_,...,k’, OD&H¢(N1,...,Nn)§H¢(P1,Nk+1,...,Nn);
)

d) Posons dn, (¢) = S(¢/N1)—Hy(Ny). Alors o, est une fonction positive, convexe, de la variable
¢, et s’annule si ¢ = 1) o I/ ot ) € N, est une projection de norme 1 de M sur Ny ;

e) Si ¢ est fidele et si algeébre de von Neumann P engendrée par Ny, ..., N, est engendrée par
P; C N, ot xy = yx V:BGPi,yGPj,i#jeth(Pj):Pj Vj,Vt € R, on a
Hy(Ni,...,N;) = S(¢/P).

(Ici o est le groupe d’automorphismes modulaires de ¢).

Démonstration

a) Soit ¢ € P,. La proposition 1 e) montre que S(¢/Ny, V5 /Ny) < S(¢/Pe, 05/ Pr), dou le
résultat.

b) Soient ¢ € P, ¢ € Py, ¢" € P, tels que

P o= Z Visipjroinp Vi = (11...1p) € NP
J1

7777 jﬂ/—P

Z wil...ipjl...jnfp vj = (]1 t ‘jn—p) S Nn_p

11 5eenylp
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La sous-additivité de ’entropie usuelle montre que,

D n(i(1) < nin) + > (1)

Nr—P
De plus, pour 1 < k < p, onawf:w;k Vi e Net pour k >p,k<n,ona
1#;? = 1/)3-”“_” Vj e N.
En utilisant a), on peut supposer que N; = P;,j =1,2,..., k. Montrons que

Hy(Py,...,P1, Ngya, .o, Ny) < Hy(Pr, Nigsa, - .., Ny).

Soient ¢ € P, et ' € Py, tels que ¢ = Z wll iritdgn Vi=(iy,... 1) € NF,

.....

Le lemme 2 montre que,

ZZ /Pl,wg/ﬂ)SZS(¢/P1,¢§/P1)-

On obtient I'inégalité cherchée en remplagant ¢ € P, par ¢" € P,,_j1 défini en utilisant une
bijection 7 de N dans N¥ par I’égalité,

1/ . . . .
1 n—k+1 = 1/17r(¢1),i2,...,z‘n_k+1 avec i1, ..., in—gy1 € N.

La proposition 4 montre que dy(¢) > 0. Soit 7 la trace sur N telle que 7(e) = 1 pour tout
projecteur minimal de N. Avec les notations de la proposition 4 a) on a :

On(®) =Inf > _(n(vi(1) = S(Wi/N)) =Tnf > (1) S(vi/N)
ol ¢ = vy/i(1) i ¥i(1) # 0 et v = 0 si v3(1) = 0.

Cette expression montre que dy est une fonction convexe de ¢. Soit F une projection de norme

1 de M sur N et supposons que ¢ = ¢g.E ot ¢g = ¢/N. Toute partition ¢;, i € N de ¢y définit

alors par composition avec E une partition de ¢. Cela montre que pour calculer Hy(N), on

peut remplacer M par N et ¢ par ¢g. Soit alors p € N tel que ¢o(z) = 7(px) Vo € N. Soit
q

p= Z A;e; la décomposition spectrale de p, ot \; > 0 et ol e¢; est un projecteur minimal de

=1
N pour tout i. L’égalité
vi(r) = T7(Nejz) Vo € N

définit une partition (¢;) de ¢o qui montre que Hy(NN) = S(¢/N) d’ou le résultat.
La propriété a) et la proposition 4 a) montrent que Hy(Ny,...,N,) < S(¢/P).

Il suffit, en utilisant a), de montrer que S(¢/P) < Hy(Py, ..., P,).



Par hypothése Jf(Pk) =P, VteR k=1,...,n. Soient ef,j € N, des projecteurs minimaux
de P;, deux a deux orthogonaux, de somme 1, et invariants par af’ pour tout t € R. Posons,

Viyin () = Blej el .. el x) Va € M.

On vérifie que ¥ € P,. On a wf(x) = ¢(e§x) Vo € M, d’ou l'égalité S(¢/Pk,wf/Pk) = 0. Ainsi,
Hy(Pr,.. P 2 Sn(0(el, . e)) = S(6/P). .

I11. Entropie d’un automorphisme

Soient M une algebre de von Neumann, ¢ un état normal sur M et # un automorphisme de M tel
que ¢ o 0 = ¢.

Lemme 6 : Soit NV une sous-algebre de von Neumann de dimension finie de M.

1
La suite u, = ] o(IN,O(N),...,0"(N)) est convergente et sa limite hgy (V) vérifie
n

0 < hyo(N) < S(3/N).

a

Démonstration : Par construction u,, = 7:11 ou la suite a,, vérifie a, ., < a,+ a,, (théoréme 5 b))
n

Vn,m € N. La convergence de la suite u, est donc immédiate. De plus la proposition 4 a) montre

que hgp(N) < S(¢/N). 0

Définition 7 : L’entropie du couple (0, ¢) est définie par H (6, ¢) = Sup hyg(N) ot § est 'ensemble
Neg§

des sous-algebres de von Neumann de dimension finie de M. Pour pouvoir calculer H (0, ¢), il est
crucial de pouvoir remplacer I’ensemble §.

Nous supposerons désormais que l’algébre de von Neumann M est hyperfinie, c’est-a-dire qu’il
existe une suite croissante (Ng)ren d’éléments de §, Ny C Nii1, Vk € N, telle que M soit engendrée
par la réunion |J Ni. Le résultat principal est le suivant :

Théoréme 8 : On a H(6,¢) = %im ho(Ni).
—00

L’existence de la limite de la suite hy (Vi) est assurée par le théoréme 5 a) qui montre que cette
suite est croissante.

Corollaire 9 : Si M est hyperfinie, on a H(64, ¢) = |q| H(0, ¢) pour tout ¢ € Z.

Corollaire 10 : Soient Ny un facteur de dimension finie, ¢y un état fidéle sur Ny et (M, ) le
produit tensoriel infini,

(M, ¢) = GEK)Z(NV’ ¢V) avec (Nw ¢l/) = (N07 ¢0) Vv € Z.
Soit 6 € Aut M le shift bilatéral, alors :

H(0,¢) = S(¢o)-
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Corollaire 11 : Soient A la C*-algébre A = ® A, ou A, = M,(C) pour tout v € Z, et 6 le shift
vEZL

bilatéral, 6 € Aut A. Pour tout I C Z, soit Ay = ® A, C A. Soit ¢ un état f-invariant sur A.
vel
Soient M, ¢, 0 1'algébre de von Neumann, 1’état normal et ’automorphisme construit a partir de
A, 0,0, alors,
H(9,9¢) < le —S(p/A;,) avec I, ={1,2,...,m}.

L’outil principal dans la demonstratlon du théoreme 8 est le lemme suivant que nous ne démons-
trerons pas ici,

Lemme 12 : a) Pour N, P € §, posons
Hy(N/P) = Sup 3 (S(6/N,v;/N) = S(6/P. 5/ P))

alors
Hy(Ny,...,N,) < Hy(Py,...,P) + Hy(N,;/P))
k=1
pour tous NV, P; € §.

b) Soient N € § et N € § avec Ny C Niy1 Vk et |J Ny dense donc Hy(N, N;) — 0 quand
k — oo.

Le corollaire 11 montre que Ientropie H (6, ¢) que nous construisons est toujours majorée par l’en-
tropie de la mécanique statistique quantique lorsque celle-ci a un sens. Nous n’avons pas de résultat
général quant a l'inégalité inverse autre que ’estimation suivante.

Théoréme 13 : Soient A la C*-algébre A = ® A,,, ou A, = M, (C) pour tout v € Z, et § € Aut A

le shift bilatéral. Soient V€ |J A;,V = V* et o0, € Aut A le groupe a un paramétre d’auto-
IfiniCZ

morphismes de A engendré par la dérivation D(z) = Z[G”(V}, x] (cf [11]).

VEZ
Pour tout 8 > 0, soit ¢3 I'unique état f-invariant sur A qui vérifie la condition K.M.S. par rapport
a oy 4 température inverse 3.

On a H(0,¢p) < S(¢pp) et S(¢pg) — H(0,¢p3) — 0 quand § — 0.
Ici S(¢p) désigne 'entropie de la mécanique statistique quantique, ¢’est une fonction croissante de la
température absolue et donc décroissante de 3. Il est facile de donner, en utilisant [9], un exemple o

%ir% S(¢z) > 0 et ou le groupe d’automorphismes o; est asymptotiquement abélien. On en déduit le
_>

Corollaire 14 : Soit M le facteur hyperfini de type III; ([4]). Il existe un état normal fidéle ¢ sur
M de centralisateur My = C et un automorphisme 6 € Aut M, ¢ o § = ¢ tels que H(0, ¢) > 0.

Ceci montre bien que H (6, ¢) ne peut se calculer a partir de la restriction de 6 au centralisateur de ¢.



Remarques 15 a) Gréace a la définition de H. Araki [1] de I'entropie relative de deux états normaux
sur une algébre de von Neumann, on peut définir H,(Ny, N2) lorsque Ny et Ny sont des sous-
algébres de von Neumann de M qui ne sont pas nécessairement de dimension finie. On obtient alors
I'analogue de la propriété fondamentale de [10], sous la forme :

Si Ny =M et ¢ = ¢/Ny.E ou E est une projection de norme 1 de M sur Ny, on a

Hy(M,Ny) < Log (A™!) avec A >0, E(x) > Xz VYxe M.

b) On a bien entendu H(#,¢) = 0 dés que ¢ est un état pur. En utilisant la construction de
Gelfand-Naimark-Segal, il en résulte que tout triplet (M, 6, ¢) se prolonge en un triplet (a(k), 6, ¢)
d’entropie nulle.
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