
ON  THE  METRIC  GEOMETRY   OF  THE PLANE  N-LINE*

BY

F.   MORLEY

The relations which n lines of a plane exhibit, when considered in relation to

the circular points, have not received systematic attention since the important

memoirs by Clifford, On MiqueTs theorem, Works, p. 51, and by Kantor,

Wiener Berichte, vols. 76, 78.

In what follows I shall apply certain notions which are fundamental in the

geometric treatment of the theory of functions, and especially the notion of

mapping. In the rational curves which alone are considered here, in place of

expressing the Cartesian coordinates X and Y as real rational algebraic func-

tions of a real parameter, we express X + i Y or x as a rational algebraic func-

tion of a parameter t, which it is convenient to make move on the unit circle.

Thus uniformly the various numbers t are of absolute value 1 ; for short-

ness they will be called turns. Curves then are here considered as maps of the

unit circle ; and in general one equation, e. g.:

x = a1 — 2a2t + a3t2,

is sufficient.    But of course such an equation carries with it the conjugate equa-

tion, which we write :

y=bi-2bjt+bj?.

The   coordinates  x,y   or   X+ i Y, X—i Y are   called   the   circular   coor-

dinates of the point x .

§1.   The fixing of a line.

To name a line it is enough to name the reflexion of the origin in that line.

Thus by naming a point xx we name at the same time the line whose points are

equidistant from 0 and from xl.

To map the line on the unit circle we may write :
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where tl is an arbitrarily given turn. For in general an equation linear in both

x and t maps the unit circle on another circle ; but here x is oo when t is tx,

and the circle becomes a line.

Replace for a moment t by any complex number z. When z = co , x = 0 ;

and when z = 0 , x = x1. Now 0 and oo are inverse points of the unit circle ;

and it is an elementary theorem—but of considerable use—that inverse points

map into inverse points.    Here then 0 and xx are inverse points of the line.

The turn tL is at our disposal.    We shall fix it by the condition :

(2) xltl = yl,

where yl is the conjugate of xx.

The conjugate of (1) is

y

whence the equation of the line in circular coordinates is

vK + y/y i = 11
or

(3) xtY + y = SBjij.

So when we are considering n lines we take them as given by the reflexions of

the origin xl,X2, ■ ■ ■, xn and take for their equations in circular coordinates :

®ta + y = xja,

where (« = 1, 2, •■• -, »)

xJa = ya-

§ 2.   The center-circle and characteristic constants of an n-line.

The two lines :

3^1 "T y = *^i'i *

xt2 + y = x2t2

meet at the point :

11 *^2 2

Xl3=   t    —  t    +  t    —tli      h      h       li

Consider three lines and let

»!*,(*! — t) a^Ä ~~ t) xt%(% ~¿)
x = (h-h)Jt^h)+ rân)+ (h-ti)(t3-h) '

This is of the form :

JO —— tv, ~~~ (XfJj •,

t — V
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and therefore is a circle whose center is ax and radius is \a2\ . But x = xl2

when t = £3, and similarly the circle passes through the intersection of each

two of the three lines. Thus the circle is the circumcircle of the 3-line, of

which the circumcenter is

arL
and the radius is   \a2\   where

_ v_®£_
a^2-(ti-t^(t1-ts)

Consider 4-lines and let

_ y>_XÁ \h ~ V_
X-^(tl-t.2)(tl-ti)(ty-ti)

Then x moves on a circle ; and, when t = ti, x is the circumcenter just found.

But similarly when t = tl, t2, or i3, a; is a circumcenter of a 3-line selected

from the 4-line. Thus we have Steiner's theorem that the circumcenters of

the four 3-lines selected from a 4-line lie on a circle. The center of Steiner's

circle is

^ = ^Z(tl-t2)(tl-t3)(tl-ty.

the radius is |a2|  where

a2 = ¿Z(tl-t2)(t1-ti)(tl-ti)-

But it is now clear that the reasoning admits of endless repetition. Thus from

a 5-line we have five 4-lihes ; the centers of their Steiner circles lie on a circle,

a result given by Kantor (über das vollständige Fünf seit, Wiener Be-

richte, vol. 78, p. 167). From a 6-line we have six 5-lines: the centers of

their Kantor circles lie on a circle. Call this the center-circle of the 6-line.

From a 7-line we have seven 6-lines ; the centers of their center-circles lie on

a circle.    And so on ad infinitum.

For an n-line, when n > 2 , the center-circle is given by

x = al — a2t,

where

xjf-1
«1 = z

(*!-**)• ••(<1-Ü'

2 *-(<!- **)--'(*l-0

Generally * we take, as characteristic constants of an n-line,

* For these characteristic constants of an m-line a douhle notation might be used, such as a£,

but it seems better in practice mentally to supply the number of lines we wish to consider, and

to write merely aa.
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The conjugate of aa is 6a where

*A"-&« = Ztt
U    J"U    *J

= {-)   *A • • -?.2-(ir_^...ft_0
= (~)"     *A ' ' ' '„ ' a«+l-« '

that is, if one sets

S,i = *A '"*>•>

(5) 6.-(-rw •

The « equations (4) can be solved at once for x1 ■ ■ ■ xn.    Thus

xi = «i - «2*1 + Vi + • • • + (-)""'«,,0-,,-! .

where am is the sum of products m at a time ol t2, ts, ■ ■ ■, tn.

§ 3.   7%e «o<7e of an n-line.

When we omit the line xY from the »i-line we have an (n — l)-line whose con-

stants are

«i - <Vi,    a2 - Ogij, • • •, «„_! - <*„«,.

When we omit two lines xx, x., from the «-line we have an (n — 2)-line whose

constants are

ai — alK + t2) + a3¿,¿2,    a2 — œ^ij + t2) + œ/jij, ■ • •.

And so on. • "A '    "^

We consider now the uu nation :
1

x = al — a2(tx + f2) -)- oSj&ij.

When we replace £2 by a variable £ we have the center-circle of the (n — l)-line

obtained by omitting tx. Thus if tx denote any assigned turn all the center-

circles of the (n — l)-lines formed from an n-line are included in

(6) x = a,x — a., (tx + t) + a.¿txt.

We now prove that all these circles meet at a point. For the case a2 = 0 , the

circles are all the same circle.
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For the case a2 =j= 0 suppose x given.    The equation

ax — x — a2 (a, + z) + a3zxz = 0

is that of a complex involution I'\, wherein to the unit circle on which t moves

corresponds another circle. The involution pairs off the circles in the plane and

it is convenient to speak of the paired circles as partners. But circles can be

their own partners, when, namely, they go either through the double points or

about the double points (i. e., when the double points are inverse points of

the circle). It is convenient to speak of these as circles of the involution, or

as double circles.

When the unit circle is not a circle of the involution there are two cases :

either the unit circle cuts its partner and then the intersections are a pair of

points of the I'\, and the only pair on the unit circle, or the unit circle does

not cut its partner and then the commoii inverse points of the two belong to I\.

But when the unit circle is a circle of If, then there are oo pairs of F j on it

forming a common projective involution.

All this is verified at once by means of the canonical form of I\ :

z + z = 0 .

When a relation involving turns, say

j\tx, t3■■• |Cj, at,•••) = °>

is the same, save as to a factor, as the conjugate relation :

./ri/^i/t,,... |0l,62,...) = o,

we shall say that the relation is self-conjugate.

Now in our case in order that when zx is any point tx on the unit circle the

partner z shall also be on the unit circle we require that the above equation (6)

shall be self-conjugate.    That is

x = «j — a2 (tx + i) + a.¿txt

and

y=bl-b., (1/íj + 1/Í) + b.Jtxt

are to be not two equations determining tx and t but merely one equation. And

this is the case when

x = a, - a2bjb2 ;

for then the equation (6) is

r-(<i + 0 + «3V = 0'°2 a2
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which is manifestly self-conjugate. Whatever turn £, may be, a turn t can be

found satisfying this equation, and the corresponding value of x ,

CO x=ar- a2b.Jb2,

is thus common to all the circles.    Hence the theorem :

All the center-circles of the (n — l)-lines formed from an n-line meet at a

point.

It is natural to consider the equation (6) in connection with the equation :

(8) x = al — 2a2t + af2,

from which (6) is deduced by polarizing. This is the map-equation of a lima-

çon, the limaçon of the n-line.

What is the relation of the circles to the limaçon ?

First. The ij-circle and the limaçon have in common the point for which t = ty

Second. They touch at that point.    For at tl one has

Dp = — a2 + aîtl for the circle,

Dtx = — 2a2 + 2a.jtl for the limaçon ;

whence the direction at the point is the same in both cases.

Third. The point where all the circles meet is the node of the limaçon. For

when x = ax — a2bjb2 we have

h _ 2i + ^ ? = 0 ;
K a2

so that we have the same point of the limaçon for two different values of t ■

We may speak of this point as the node of the n-line.

A name is necessary for the system of circles, given by (6) ; that is, for the

general system of circles passing through a point and having their centers on a

circle.

I shall call them penosculants * of the limaçon :

x = al — 2a2t + a3t2.

Generally when x is a rational integral algebraic function of t, and the poly-

nomial is polarized once, or more, the resulting curves may be termed penos-

culants.

Thus the limaçons of the (n — l)-lines formed from an n-line are included in

x=a1 — ajij, + 2t) + afflj + f) — a^t2 ;

* The name may serve to suggest the analogy as to formation with the theory of osculants of

rational curves developed primarily by Study, Leipziger Berichte, 1886. The name oscu-

ant was introduced by Jollks in his Habilitationsschrift, Aachen, 3886.
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and these are first penosculants of the curve :

x — ax — 3a2t + 3a3t2 — af*.

So the center-circles of all (n — 2)-lines formed from the ?¿-line are included in

x = ay — a2sl + a3s2 — ais3,

where sa is a sum of products of three turns, and these are second penosculants

of the same curve.

We shall not examine this curve now, but shall rather seek to show by taking

more familiar curves that there is a place for the theory of penosculants. But

before leaving the method of the a's, we shall apply it to Clifford's theorem.

§ 4.   Clifford's chain. *

From the point  of view of this method Clifford's chainwise extension of

Miquel's theorem is as follows :

The circumcircle of a three-line is :

x = al — a2t.

The four such circles of a 4-line are included in

x = ai — a2(tl + t) + ajt^t ;

and meet at the point (7),

x=al-a2bjb2,

that is, since from (5) bjb2 = a.Ja3 for a 4-line, at the point

JU-    Cl.     -   LI,-.     Lin   }

the two turns tl, t for this x being the one aja, and the other arbitrary.

The five such points of a 5-line are included in

where  s,, s2, s3 are the sums of products (one, two, three at a time) of three

turns.

Now consider this complex involution, regarding x as given. There is in an

involution 1^ a neutral pair, that is a pair whose third element is arbitrary.

Here the neutral pair is given by

x = al — a2(tx -f t) + a3txt,

0 = a2 — a3(tl + t) + afat.

*Clifford's memoir (loc. cit. ) was published in 1870; Kantor proved the same theorem in

1876, and subsequently published a second proof which is practically the same as Clifford's.

(9)
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But for five lines the last equation is self-conjugate. Thus for any x the

neutral pair is on the unit circle ; whatever turn £, may be, the turn t can be

found to satisfy the last equation ; and the point x is then on the circle :

a, — x    a., t\a2    a3

found by eliminating tx + t and writing t for tf.    This then is Miquel's circle.

For six lines the two equations (9) become :

(10)
Ix = a, — a2sx -f a3s2 — ais3,

0 = «2 - assi + aA - a5S3 '

where the sx, s2, s3 are for three turns. Now for six lines the last equation is

self-conjugate. The equations determining the neutral pair of this involution

J\ are conjugate, namely :

a2 — a.isl + a4s2 = 0 ,    a3 — ais1 + abs2 = 0 ,

where sa is a sum of products of two turns. Hence the neutral pair is on the

unit circle.    The equations of all MiQUEL circles hold when

x = ax — a2sx -f a3s2,

0 = a2 — «jSj + a4s2,

0 aisl + a^s., ;

that is, all Miquel circles meet at the Clifford ¡joint

= 0

For seven lines the equations (10) determining the Clifford point become :

x = ax — a2sx + a3s2 — a4s3,

(11) < 0 = a2 — a3sx + a4s2 — a5ss,

0 = a3 - ais1 + a5s2 - a6s3 ;

where the last two are conjugate.    Eliminating s, and s, we see that the seven

Clifford points lie on the Clifford circle :

t

a,    a«
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It is now clear that the argument is general and we can  say :  the Clifford

point for 2p lines is given by

= 0;

* 2>+l

p "jj+1 "SjJ-l I

and the equation of the Clifford circle for 2p + 1 lines is given by

p+i

= t a.,

p "p+l "V-ll I"j>+1       "j>+2

We have thus the coordinates of Clifford's chain.

The Clifford circle ceases to exist if

VH

Mp+1

¡¡P

"4

a.

a ,,     a , „
j'+i      p+2

p+i

p+2

üp-i

= 0,

and

or

since then s   is a constant.    But if no further conditions are imposed, we can

solve the equations of the type (9) or (11) in the form :

x = -A0 -(- _í4j Sj,

x=Ap+ Ap_x sp_x

y=J3p+Bp_lSl/sp,

whence on eliminating sx we have a line.

We turn now to the consideration of some penosculants.

§ 5.  Penosculants of the limaçon.

The theory of five lines appears in its simplest form when considered in con-

nection with the limaçon.    Starting with this curve we write it

x = 2at -{- ßt2,

where a and ß are real.

Here the center is the origin, the node is — ß, the focus is — a2/ß.    A pen-

osculant (say Px) is

x = a(tx + t) + ßtxt.
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It appears from the (9) of the last section that the involution :

a + AA + t) + atjt = 0
is of importance.*

Eliminating tx + t we have

x        a

a   - ß

= tjt a   -ß   ,

ß       a

a circle with center at the focus, and passing through the node.    We can call

this the circle of inversion of the limaçon, since by an  inversion in this circle

the limaçon passes into itself.

Hence the point :

x = a(ij + t) + ßtj,

0 = a + ß(tl + t) + atf,

is the point where Px meets the circle of inversion (apart from the node).

Two penosculants Px and P2 meet at

x12 = a(tx + t2) + ßtxt2 .

Consider now the expression :

(12) x = a(\ + t2 + t) + ß(t^t + txt + t2t) + at&t.

It is a circle with center xv, and it passes through the points where Px and P2

meet the circle of inversion.    That is :

If two penosculants Px, P2 meet at xl2 and meet the circle of inversion at

mx, m2, the node where all penosculants meet being disregarded, then a circle

with center xl2 will pass through mx and m2.

From the symmetry of (12) the three such circles for three penosculants meet

at a point, namely :

x = a(t, + t2 + t.3) + ß (í¿ + t¿3 + t2t3) + atf2t3 ,

or say

x= asx + ßs2 + as3 , (« for 3 turns).

The conjugate equation is

ys3 = as2 + ßSl + a.

Multiply by ¿4 and add.    Then

(13) x -f ys^ = asL -f ßs2 + as3 , (s for 4 turns).

Hence : Por four penosculants the foibr points lie on a line.

Naturally then five penosculants will give five lines and thus we get the

Miquel figure as completed by Kantor.

*It is verified at once that points of the limaçon whose parameters are pairs of the involution

are the ends of a focal chord.
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But, in fact, the theorem proved for four penosculants is the key to the theory

of five lines.

From the standpoint of geometric drawing also this reverse view is the sim-

plest. For the tedious determination of circles from three points is altogether

avoided ; the centers are given.

Still considering the limaçon :

x = 2at + ßt2,

we determine as follows the circle through the intersections (other than the node)

of three penosculants.

We have for the intersection of two penosculants ,

or
,2

a,12 = a (*1 +   h) +  &!% '

ßxX2 + a2 = (a + ßtx) (a + ßt2) = zxz2 say.

Hence the three points x12, xX3, x23 lie on the circle :

ßx+ a2 = zfczjz,
where

z = a + ßt.

In this mapping the focus — a2Iß corresponds to t = oo , the point x = oo to

t = — a/ß. The center of the circle or inverse of x = oo corresponds to the

inverse of — a/ß as to the unit circle, or to — ß/a, and is therefore

ßx + a = at_^e1z^3.

The centers of the four such circles, for four penosculants taken by threes, lie

on the circle :

ßx + a2 =
a2 -ß2       z      '

and the center of this circle is as before

ßx + a2 = ^2  "i ß2) «i W< ■

We have then again a geometric chain proceeding ad infinitum. Thus the

center-circle theorem proved in § 2 for lines is true also for penosculants of a

limaçon ; or explicitly :

Consider the circles whose centers lie on a given circle and which pass

through a given point. Three of the circles have a circumcircle, or circle

through their free intersections.

Pour circles have four circumcircles ; their centers lie on a circle. Call

this the center-circle of the four.
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Five circles have five center-circles ; their centers lie on a circle.   And so on.

This theorem is the direct continuation of the theory of § 3, and is parallel to

that of § 2.    But there is also a parallel of § 3.

For the center-circle of n — 1 penosculant circles is

/   a   y-3v
ßx

\a' — py        2

Now

■»„ = (a + ßt) (a + ßtn) .

Hence if
2 ¿T52

zzn = a- — ß-,

then

/3 + a (í + íj + ßttn = 0 ,

a self-con jugate equation.    Hence the center-circle passes through the point :

a'-3
(14) ßx + a2=    2 _ 0-_, Sj»2. •. aB.

That is, iü/¿era we Aare «, circles whose centers lie on a circle and which pass

through a point, if we take the center-circle of each set of n — 1 circles, these

n center-circles meet at a point.

That Clifford's chain exists also for the penosculants of a limaçon is evi-

dent, for Clifford's theorem is by inversion true when the system of lines is

replaced by any system of circles through a point.

§ 6.   The quadratic involution arising from 2p lines of a conic.

When we invert the limaçon whose penosculants we have been considering

into a conic the penosculants become the lines of the conic. We have theorems,

which it is superfluous to state, in which the inverse of a focus of the conic as

to a circle replaces the center of the circle. But some geometric statements will

be facilitated by turning now to the conic, which we take to be an ellipse.

We write the ellipse

2x = t -f fj?/t,
where ¡i is real.

The center is the origin, the foci are ± u, the axes are |1 ± /ti2|.

The tangent at tx, i. e., the line tx of the ellipse, is

For this is a line since x = oc when t = — tl; the line passes through the

point t} of the ellipse ; and it touches the ellipse at this point since when t = tt
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t2 —ll2
Dx =  l , ,„— for the line,

1 4t2x '

Dx =  l „ 2— for the ellipse ;
Mx

whence the direction of motion is the same in both cases.

From the mode of formation we may call this line a first penosculant of the

ellipse.

The intersection of two such lines is the second penosculant, or penosculant.

point :

*A + ̂

We write (15) in the form :

x + fx _ tx + jx t + /x

x — fx~~ tx — ¡Jit — /x '

or

as + M
-= z z,
X — pi '

where

t + fi
z =-.

t —   /Li

Then

x + ¡x _ zxz2z3

^     ' X — ix z

is a circle ; and, when t = t3, x = xx.,.   Thus the circle is the circumcircle of the

three lines of the ellipse.

When t = —tt, then

- h - /*      h '

Hence the four circumcircles of four lines of the ellipse meet at the point :

x + fi
■- sas  Z Z Z Z   .
x _ /j,      *iBfr*

For five lines the five such points lie on the circle :

x + fx _ zxz2z3z4z5

x — fi z      '

the Miquel circle of the five lines.    Evidently then :

The Clifford point of 2p lines of an ellipse is

ihe Clifford circle of2p — 1 lines is obtained by writing 1/a for z2 .
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The inverse of the focus it as to the circumcircle (16) is found as  follows :

One has the corresponding values :

x=u,    z = 0,    t=—u.

The inverse of — p as to the unit circle is — 1/fi ; therefore the inverse of /x as

to the circumcircle is given by :

x + fi _ 1 + y?

x — fi ~ 1 — (I2   i"2"3 '

For four lines the four such points lie on the circle :

^Jlm _ 1 +^2 grW4
X — fl~   1 — fJ? z       '

and the inverse of the focus ii as to this is as before

x J_   „ /I    _1_   „2\2

x

Thus working with the one focus we have (for the first chain of § 5 transferred

to the ellipse) the series of points

x + fi     /l + ^y-2
-= (- )  ■  z z
X — il       \1 — u2 J      'l '■

and in the same way for the other focus we have

,2\   11-2X  + u _/i^y

X — p

The inverse of the focus /j. as to a Clifford circle is similarly, from (17),

x + \t.      1 + u2

X- ft—    1 _ y?   "A • • • V-l :

that of the other focus — n is

2
X + fi 1 — fi'
x~^p = T+V ** " 'z2"~l '

If in the preceding process we take the foci alternately it is clear that, for any

2p lines of the conic, we arrive at the Clifford point (17) :

x — /x
zz   • • • z   .

inasmuch as each factor (1 -j- /¿2)/(l — ¿t2) introduced by using the positive focus

ii is cancelled by the factor (1 — /¿3)/(l + z"-2) introduced by the other focus.

It is clear also that we have entirely commutative geometric constructions ; we
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arrive at this same point in whatever order we employ the foci, provided we use

each p — 1 times.

Thus for 6 lines we may take the inverses of fx as to all circumcircles ; we

get twenty points lying by fours on 15 circles—one for each 4-line ; then the

inverses of — ¿i as to these 15 circles, getting 15 points lying on 6 circles, 5 on

each circle ; then the inverses of ¡x as to these 6 circles, getting 6 points on a

circle ; and finally the inverse of — fx as to this circle. But the order in which

the foci are taken is indifferent ;   the point arrived at is always :

x + fx _

X  —  fl 1   2  3  4  o  6

Consider the complex involution I2 defined by

/-.on X + fX    X    + fl
(lo) -,-= z,z„ ■ ■ ■ z„ .
x/ x — fx  x — fi       l ¿ *

This involution has the following properties :

(i) Its center is the Clifford point of the 2p lines.

(ii)  The foci are a pair of the involution I\.

(iii) The Clifford point of 2q lines and that of the remaining 2(p — q)

lines are a pair of I\. The Clifford point of two lines means merely their

intersection.

(iv)   The Clifford circle of 2q — 1 lines and that of the remaining lines

are partners.    The Clifford circle of a line is merely the line itself.

As to proof, (iii) is obtained by breaking up (18) into

x + fx

X — fX

X    + fX _

x — fx

2l '

^2q+ 1 2p '■

and (iv) follows from (iii) by considering that Clifford points lie on Clifford

circles.

The circle of similitude of two circles is the locus of centers of involutions in

which the two are partners. For any line through the center of an I2 passes

into a line through the center ; hence the tangents from the center to a circle

pass into the tangents from the center to the partner circle ; whence by the prin-

ciple of isogonality the partner circles subtend equal angles at the center.

Hence :

Given 2p lines of cm ellipse, the circle of similitude of the Clifford circles

of any 2q — 1 lines and of the remaining lines passes through the Clifford

point of all the lines.
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We might also consider higher involutions, for instance the I\ :

X + fl   x   + it   x" + it
(19) -•-• ~r,-= z,z, ■ ■ ■ z :
v/ x — fi   x  — fi   x    — it        i2 "

Thus for 6 lines of an ellipse we infer that all the triads of points obtained by

dividing the 6 lines into three pairs belong to an I2 of which the foci are the

neutral pair.

§ 7. Penosculants of a hypocycloid.

The penosculants were defined in § 3 for integral algebraic functions.     But,

as we have seen in the case of the ellipse, the notion may be advantageously used

also when x is a rational fractional algebraic function of t.    We shall take an

example of this, which is the key to an interesting generalization.

We consider the hypocycloid

(n — 1) x = nt — 1/tr .
The equation

(n —l)x = t1 + (n — 1) t — 1/ijf*-1

defines a first penosculant P. It is a hypocycloid touching the given one at t{ .

It has cusps when

Dtx = 0,
or when

tf + 1 = 0,
or when

(n — l)x = nt — l/l".

Thus the cusps of a first penosculant are on the given hypocycloid. *

A second penosculant is defined by

(n — l)x = tt + t2 + (n -2) t — 1/y/-2.

It is the first penosculant at ft of the first penosculant at t2 ; or it is the first

penosculant at t2 of the first penosculant at tx.

And so on till we reach the completely polarized equation :

(20) (n — 1)85=» S1 — l/s„»- (s for « turns) ;

when one of the n i's is variable this equation is the equation of a segment of a

line or penosculant line, and when all i's are fixed it defines a penosculant point,

in which meet all the penosculant lines formed from n — 1 of the n ¿'s.

An independent meaning of this point will be proved later. First we develop

its more obvious properties.

(i) Take 2« points of the curve ; divide them into any two sets of n

each ; all the centroids of the penosculant points of such two complementary sets

lie on a line.    For if

* See a memoir in the American Journal of Mathematics,  vol. 16, p. 196.
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(n - l)x= tx+ ■ ■ ■ + tn-l¡tx- ■ -tn,

and

(n-l)x' = tn+x + ■■■+ t2n - l/tn+x ■ ■ ■ t2li,

then

(n — 1) (x + x') = Sx + t + lftSfr , (s for 2» turns),

where —1/t = txt2 ■ ■ -tn.    But this is the map-equation of a segment of a line ;

hence all the points (x + x')/2 lie on a line.    The line is a penosculant line of

2(n - 1) x = (2n + 1) t + l/£2"+1.

(ii) Take n + 1 points of the curve ; the penosculant points of the various

n points are included in

(21) (n — 1) X = Sx — t — t/sn+x , (s for n + 1 turns).

That is, the n + 1 penosculant points lie on a circle.

(iii) Taking n 4- 2 points of the curve we have n -\- 2 such circles ;  writing

t=— txt2 • • • tll+2,

we see that

x = tx + t2 + • • • + i„+2 + txt2 • ■ • tn+2.

Hence ¿Ae n -\- 2 circles meet in the point :

(22) x = Sx + Sn+2 , (s for n + 2 turns),

(iv) Taking ?i + 3 points of the curve we have n + 3 such points, included in

(23) X = Sx — t + Sn+.Jt , (« for n + 3 turns).

This last is the map-equation of a segment ; hence the n + 3 points lie on a

line.

Take n + 4 points of the curve ; the n + 4 lines are included in

(24) ¡B = 81 — Í — t' + 8n+t/íí' , (* for « + 4 turns),

and are therefore tangents of a hypocycloid of the third class.

For n + 5 points of the curve the hypocycloids are penosculants of an asteroid,

or hypocycloid of the fourth class.    And so on.

When we come to 2n + 2 points of the curve, say tx, t2, • • •, £2>l+2, we have

again a hypocycloid which is merely the original one displaced. And there is

this remarkable reciprocity, that if we take any n of the points tx, t2, ■ ■ ■ , £2n+2

of this second curve and repeat the process, selecting always from the remaining

points, we recover the original curve. This reciprocity, for the case n = 2, was

found in another way by Kantor.*

* Die Tangentengeometrie an der Steiner'sehen  Hypocycloiäe,   Wiener Berichte, vol.   78,

p. 232.

Trans. Am. Math. Soc. 8
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In this case of n = 2 the meaning of the penosculant ¡joint is evident. The

equation (20) is

x = tY -+- t2 — 1-jtlt2.

For a variable t2 this is the tangent at tx (or rather that segment of the tangent

which is within the curve).    Hence the point is the intersection of the tangents

at     t.    ,       Tn   .

How to attach a meaning to the penosculant point (20) in general may be in-

ferred from the case n = 4.

The line-equation of the hypocycloid

2.x = it - 1/t*
is

xt* + yt = ? + 1.

Consider also the curve whose line-equation is

(25) xt3 + y = x/ + y0+ at2 + bt.

The lines for which
f + 1 = x/ + y0t + at3 + bt2

are common tangents to the two curves.    Hence for five turns with sB = — 1 if

xo = si >    Vo = — si '    a = — s2,    b = s3,

these being pairs of conjugates by virtue of the relation s. = — 1, a curve (25)

is determined which touches the 4 lines tx, t2, t3, i4 of the hypocycloid.

The line-equation of the curve is

(x — s^t3 + y + si = — sf + s3t ;

and its point-equation is

3(x - aj = - 2sjt + ssff.

The curve is therefore a cardioid, and its center is

x = *i = h + *2 + h + h - VWsh '
the point sought.

Thus the penosculant point of 4 points of the curve

Sx = it - 1/i4

is the center of the (unique) cardioid which touches the 4 tangents.

It will be noticed that we are dealing with curves of direction* The hypo-

cycloid assigns a definite direction to its tangents, and these four directed lines

determine the cardioid. There would be 23 cardioids touching four lines not

directed.

*Laguerre, Comptes R endus, 1865.
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The use of this determination of the penosculant point lies in the following

parallel. This memoir handles mainly the intersections of n lines, that is, the

lines are primarily taken 2 at a time. There is a specially simple case, namely,

when the lines all touch a hypocycloid of class three. From this case we have

passed now to other simple cases : when all the lines touch other hypocycloids.

But this gives the key to the general case of any n lines ; if we (continuing our

example) group the lines 4 at a time we are to consider the cardioids which

touch the lines by fours. To the centers of these cardioids the general theorems

of the present memoir will equally apply ; thus for 5 directed lines the centers

of the cardioids will lie on a circle, and so on. In fact the algebra will be the

same, the meaning of certain constants alone being altered.

To see this, we observe that a tangent of a cardioid whose center is ce0 is

xfi+y— xf + y0 + af + bt,

or, if p be the distance from the origin to this line,

«/ + % + «¿2 + u = 2p*1 •

Hence for four given tangents

x„ = 2 j p,t\    t\    t,    11 +-

pa  *l  h 1

If then we write xt for 2pxt\ we have

(*i - Oft - 0(<i - O '
an expression of the form used in  § 2 and in fact that there denoted, for a 4-

line, by a3.

Evidently then in the argument based on the constants a we can substitute the

center of the cardioid touching four directed lines for the intersection of two

lines. And so in general for the intersection of two lines we may substitute the

center x0 of a curve touching n + 1 directed lines, the line-equation of this

curve being

xtn + y = xütn + y0 + at"-1 + bt + atn~2 +b'f -\-.

Haverford College,

January, 1900.


