Extensions of Clifford’s Chain-Theorem.

By F. MorLEY.

I propose to state more fully what is implied in the final section of my
paper “ Metric Geometry of the plane n-line,” Transactions of the American
Mathematical Society, Vol. 1 (1900), p. 115. I refer to this as M. G.
First, let us recall Clifford’s Theorem, Works, p. 51.%

In a plane we take lines, say 1, 2, 3, - - -, n. We complete the figure as
follows: We mark the intersections 12, - - - . We mark the circles 13,
on 12, 23, 31,- - -. There is a point 1234 on the 4 circles 123, 234, 341,
412. There is a circle 12345 on the 5 points 1234,- - -. There is a point
123456 on the 6 circles 12345 - -. And so on. For an even number of
lines the figure ends with a point—the Clifford point; for an odd number
with a circle—the Clifford circle.

Regarding the lines as circles on the point oo, we have a configuration—
the Clifford configuration.

1. The fundamental curves C*. An account of these curves and their
osculant theory is given in my paper on Reflexive Geometry,t to which I
refer as R. G. I shall state a little differently what is needed here. The
aim is to obtain for any given number of lines a curve which plays the part
of the circumecircle for three lines.

We take a base circle | f|=1. An equation # = f({) maps this circle
on some curve. The point z is stationary—that is a cusp—of the curve
when dz/dt = 0.

An especially simple class of curves with n—2 cusps will then be
given by
(1) dz/dt =k (t—1) (E—1t2) - - - (E—tae).

Denote such a curve by C™.

Thus when n =2, dz/dt = x, £ = «t + z,, so that C* is a circle. C®
is a cardioid, and so on.

It is convenient here to mean by C* a point, for which dz/dt =0; and
by C° a line. If dz/dl—=«x/t and {— e, then 2 — z, 4 wd, which denotes
a line. If the equation (1) which gives the cusp-parameters is written

(17) de/dt + (n—1) {@ + (n—2) ast + - - - +&:t"2} =0,

* For exceptional cases, see W. B. Carver, American Journal of Mathematics, Vol.
42 (1920), pp. 137-167.
+ Transactions of the American Mathematical Society, Vol. 8 (1907), pp. 14-24.
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466 MorLEY: Eaztensions of Clifford’s Chain-Theorem.

then the lines of the curve C* are given by

(2) x—a:g—}-nalt-}-(g)azﬁ_}_. o ndgnt - (8 — &) " =0.

We call z, the center of the curve. If conversely we write a self-conjugate
equation in ¢, and regard the end-coefficients as conjugate variables, we have
a curve C* with center 0. R. G. § 3.

The fully polarized form of (2) is

(3) T—To+ 081+ 8282+ * *+ (F—To)sn =0,
where 8, 8, + - - 8, are the product-sums of ¢, %, - - - ¢,. This is the osculant
line of C for the parameters t;, or points ¢; of C*. If we set {,=1,=" - -

= t,, = t we have the osculant '™ for the points tm.; - * - tx. Two osculant
(CnV’g have a common osculant C*2 and conversely two C*1’s with a common
osculant C"-2 are osculants of a C». R. G. § 6.

A curve O™ is defined save as to homologies z —ay -} b by its n—2
cusp-parameters. Suppose n=2m -+ 1. Then there are 2m —1 cusp-
parameters. There is then a canonizant, m parameters apolar (or harmonic)
to the cusp-parameters. These m points give an osculant ™1 which is a
repeated point. This point is the Clifford point of the C?m*!, The reason
for the existence of this point may be stated thus. An osculant (™ is defined
by taking n — m points ¢; on the given C™. These have a polar as to the cusp-
parameters. This polar gives the cusp-parameters of ¢™. Thus when the
polar is arbitrary, the cusp-parameters are arbitrary. And this implies that
in (1) ay=a,=" - -=0. For the curve C?™? with 2m cusps the sim-
plest set apolar to the cusp-parameters is a pencil of sets of m 4 1 points.
Such a set has an osculant C™*1 which again is a repeated point. The locus
of such points is a circle.* This is the Clifford circle of the C2m+2,

To prove this it will suffice to take one case. Suppose we have a (%,
with 2 cusps,

x— 2o -+ 3a,t + 3pt* -} at* = 0.

The osculant of £,, £, is the circle
2:'_".,!1”0 + 05131 +P52 +|§33= {)-
If ¢, and £, are apolar or harmonie to

a4y 1 2pt -t =0
ﬂlen al-!—p(fl—}—ﬁz) +C—Et1t2=0

* Strictly, we should speak of the Clifford circle or are, for the circle may or may
not be complete.
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MogrLEY: Eztensions of Clifford’s Chain-Theorem. 467

and the circle became the point
z—xo + al(fl -I— tz) + ptltg.
If we eliminate #; -} £, from these two equationg we have

T—%y My G:P]

aq ap

== iltz

p a
which is a circle (or the arc of a circle). The argument is general—see M. G.
§ 4, p. 103. We are here restating that § 4 in geometrical language.

Given a C?™2, each osculant (21 has a Clifford point. The locus of
these is the Clifford circle. The reason is that if we have m 4 1 points #;
apolar to 2m points ; the polar of #; has as canonizant the points ¢, - - - fm.1-
The algebraic argument is in M. G. § 4.

Given a C2m*1 each osculant C2™ has a Clifford circle. These are all on
the Clifford point. The reason is that if we have m points #; apolar to 2m — 1
points, =; the polar of #, has an apolar set the m points. The algebraic
argument is again in M. G. § 4. The gist is that we regard the Clifford chain
as a property of a curve C" and its osculants. The lines come in by taking
n 4 1 points #; on C*. Each n of these points has an osculant line, so that
we have a set of n + 1 osculant lines. These are any lines and they determine
the C™ uniquely (M. G. §1). This O is the fundamental covariant, under
the group x=ay 4+ b of homologies, of the » 4 1 lines. The fundamental
covariant (" of any m 4 1 of the lines is an osculant of C"—in fact the
osculant for the unused ¢;. Thus for two lines the C* is the intersection. For
three lines the 3 intersections are on the C? which is the circumcircle. For
four lines, the 4 circumcircles are osculants of the C®, and meet at the cusp
(the Clifford point). TFor five lines the 5 C¥s are osculants of C%. The
five cusps are on its Clifford circle. And so on.

2. The incenters of an (n -4 1)-line. A three-line has four inscribed
circles. Their centers are the incenters of the three-line. We ask then for
the curves €™ which touch n 4 1 given lines, and more particularly for their
centers. These centers we call the incenters of the (n -4 1)-line.

A line is given most simply by the image in it of the base point 0. Let

the images be #;,@; * * *© @n:. We have then from (2) n 4 1 equations
— 2o+ art; - - - ddivt - (88— )it = 0.
Eliminating @, a,~ - - @; we have a determinant
| Ltst? - - - (&i—Zo)tin | =0,

and therefore

(4) G0 S [Et/ (h—ta) -+ * (1— tua) ]-
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468 Morrey: Extensions of Clifford’s Chain-Theorem.

But the clinant of the line given by z; is — /% and is from (2) — t:".
Thus we have
(5) Ty = :f}?,ti“,

so that (4) takes the form, the equation of incenters,

n+l
(4) To=2 [2/(t —1:) - (l—1na)].
These incenters can be constructed, if we can solve (5) for #;, that is if we
assume that we can divide an angle into » equal parts. This operation is all
we need, in addition to Euclid’s, in this paper. For any ¢; we may substitute
el; where ¢ = 1. The set #; and the set ef; give the same value of z,. Hence
there are n® incenters, and n® inseribed C"’s.

Each can be named 1, €, * *,€;, where =1, and repetitions are
allowed.

3. The azes of an n-line. The conjugate of (4) is
(5) To= 3 [@1ts - - ~tua/(Fa— 1) - - - (tnu—*tz)]n

Eliminating z.,, from (4") and (5) we have

(6) ot Boily * b= [mals * “buf(ta—1) " * (ta—1)]

the sign being 4 for n odd, — for n even. This is a self-conjugate equa-
tion, denoting a line. There are n*! such lines. We call them the azes of
the n-lines. They constitute the locus of the centers of inscribed C™s. The
clinant of an axis is a geometric mean of the clinants of the » lines; in
other words if a line makes with a base line an angle 6; (to the modulus =)

an axis makes an angle  where

'Hﬁ = 2 3¢.
Therefore the n"1 axes fall into n sets of parallel lines, inclined successively
at angles =/n. In each set are n™2 parallel lines.

Bach axis can be named 1, ¢, * *, e.. If in two axes so named we have
the same e in the same place, the axes are parallel.

Two curves C'* touching n lines may or may not have their centers on
an axis. Then the common lines of two curves C” fall into sets. To verify
this directly we compare with (2) a second equation
(%) t—yo+bir -+ (E—Fo)r" =10
and we see at once that if these are to be the same equation we must have
= i", 7=¢t. For a selected root of unity ¢, we have on subtraction an
equation of degree n in ¢ giving what we call a tied set of n common tangents.

This equation is
Yo— o+ -+ (Yo — o) t*
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MorLeY : Euxtensions of Clifford’s Chain-Theorem. 469

so that

(4 — @)/ (Jo— To) = (—) "~ ~ tu
Accordingly, when the centers of two curves on n lines are on an axis, the
n lines are a tied set.

The curves C™ which touch n lines fall then into n*! discrete systems.
The transition from one system to another is when the center falls on two
axes, One of the n lines is then a double line of C™.

It follows that when n is not a prime number the double lines of C»
will fall into sets. - For example if n==4, the center may be where axes
meet at right angles, or where axes meet at =/4.

If we apply the theory of this section to a triangle abe, we obtain as
the locus of centers of inscribed cardioids three sets of three parallel lines,
forming equilateral triangles. The vertices of the triangles are the centers
of the cardioids which touch a side (say bc) of the given triangle twice. If
x, be such a center, then the angle z,bc is a third of the angle abc. For
Tob 1s an axis of the 3 lines ab and bc twice. Thus if we take the interior
trisectors of the angles of a triangle, the points where those adjacent to a
side meet form an equilateral triangle.,

4. The chain for an incenter. Taking the equation of an incenter,
(4’) we interpolate, as in M. G. § 2,

_ n+2 o (tl — 'T)

(11) = 2 (tl tz)' s (tl—tmz)

this becomes (4') when r = eq,.. It is a circle on selected incenters of any
n -+ 1 lines out of n 4 2.

There are then for n -+ 2 lines n™2 circles, each on n -4 2 incenters.
For a second interpolation we write
_ o '-31(51“—71) (tL—Tz)

{1%) = R Gi—h) (b —tan)

This becomes (11) when 7, = #,.;. It is an osculant of the curve

i— 3

$1(t1—-f)2

("51‘—"32) T (tl‘_'tﬂh'})

And the point is that this curve is a ¢° For differentiating we get as
cusp-condition

o (t,—7)
(13) 2 (51'—'1['2)l st (tl——tms) =0,

* Morley, Mathematical Association of Japan for Secondary Mathematics, Vol. 6,
Dec. 1924. This theorem, which I obtained in this way long ago, has excited much

interest.
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470 MorLEy: Ezxtensions of Clifford’s Chain-Theorem.

whose conjugate is
z,(r—1)
2 (tz—"t1) T (fn+3—"f1)
The equation (13) is then self-conjugate.
Thus the circles attached to n + 2 out of n 4 3 lines are osculants of
a C?, and therefore meet at its cusp. There are then for n -} 3 lines n**3
cardioids. For n + 4 lines, the cardioids are osculants of

_ xl(t—-—T)a
(14) W 2 (tl-—tz) et (51—51“4).

X tltz e tﬂ=0-

Writing dZ/dt, and forming its conjugate we see again that (14) has 2
cusps, and is a C*. And so on.

We have then the table:
number of lines 1 2 3 4 5 6
axes (C° 1 2 32 43 hE 6°
incenters C* 1 22 33 4+ 55
circles (2 1 23 3¢ 45
cardioids C® 1 2 3s
ct 1 25

c° 1

The table is read diagonally; each C* is a first osculant of some C**! in the
next column,

The first column says that a line is its own axis.

The second column says that a two-line has two axes and an intersection.

The third column says that a three-line has 3% axes; that it has 22
incenters, the intersection of the axes of the two-lines contained in it; and
that it has one circumcircle, on the intersection of the two-lines.

For the nth column, the axes are new; the incenters arise from the
axes of the preceding column, that is the n(n —1)"2 axes of the component
(n—1)-lines meet in the (n—1)*1 incenters, there being n axes on a
point-and »—1 points on an axis. The circles arise from the incenters
of the preceding column. That is the n(n—=®2)"2 incenters are on the
(n—2)"1 circles, there being n points on each circle, n —2 circles on
each point. These n — 2 circles cut at the angle =/(n —2). The (n— 3)»1
cardioids arise from the n(n—3)"2 circles; the circles are osculants of
the cardioids, each C° having n osculant C%¥s; and each C? osculating
n—3 C¥s. And so on.

The leading diagonal indicates Clifford’s chain. We notice that the
n-line has a unique C"-1.
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MorLeY: Eztensions of Clifford’s Chain-Theorem. 471

The second diagonal indicates the chain discussed by F. H. Loud, Trans-
actions of the American Mathematical Society.* The ambiguities which enter
from (5) are there cleared up by regarding lines as directed. This makes
the incenter of a 3-line unique. In general the ambiguities disappear if we
recall that two osculants of C" have a common osculant. Consider the R*
C®s for 5 lines. These for 5/6 lines are osculants of C¥s. The 6 X 2*(C®s
are osculants of the R° C*¥s; 6C*s on each (% 2C*%s on each (¢° The (®
taken from lines 12345 and that taken from 23456 must have a common
osculant C? (taken from 2345).

The ambiguity is explained in another specific case involving axes by
P. S. Wagner in the article following this one.

There is in fact no ambiguity where we name the C™s by the roots of
unity. The naming is carried on from one column to the next.

This completes the object of this paper, but it is convenient to add a
canonical equation of the curve O™

4. Canonical equation of a C". The curve O™ is defined save as to
homologies by the n—2 cusp-parameters. It is proper to give these in-
trinsically, so far as possible. When n is odd, say n =2m -+ 1, Sylvester
pointed out the proper intrinsic or canonical form for an equation, here

4+ (n—2) art 4+ - - 4 GE21 =0
namely the equation
(15) > Ai(t—7i)T™1=0.
Here the m numbers +; give the canonizant, the unique equation of degree
m apolar to the given equation. Accordingly the canonical form for a
02m+1 i8

(1/2m) (do/dt) =3 Ai(t—ri)2m2
or
m
(16) =72 Ai(t—7i)2m.
The equation (15) must be self-conjugate, that is the same as

E A’i(t -—Ti) 2m—1/752m-1 —_
This is secured by

(17) 4{@= A;T;2m1,

The base-point in this canonical form (8) is the Clifford point of any
2m -+ 2 lines which are an osculant set of the C?m*1. It is in fact the
osculant of the canonizant. The simplest case, m = 1, is the cardioid, with

*Vol. 1 (1900), pp. 323-338.
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472 Morrey: Extensions of Clifford’s Chain-Theorem.

the canonical equation
z= (1—1)2
An osculant point is here
z=(1—1t)(1—1)

and 3 such points are on the line
e=(1—1%)/(1—1).

Four such lines are given by

s=T1I [(1—&)/(1—£)(1— )]

and are tangents of the parabola

s=[TI/(1—t)].

And so in general the C2"*1 can be immediately connected with

z=23 [Bi/(t—ri)7]
which is Clifford’s m-fold parabola (loc. ¢if.). The case of 0%, with 3 cusps,
was analysed, with figures, by Father E. C. Phillips (American Journal,
Vol. 31, 1909). It may be remarked that if the cusps ¢; are given there are
four curves, for the Clifford point is given by ¥ [1/(z— ¢;)*] = 0, which
rationalized is a quartic for which g, = 0.

When = is 2m, we have for C2m a cusp form of degree 2(m —1). The
lowest apolar forms are of degree m, and therefore as in Sylvester’s theory
we take

mn
TT G2 Ast—mroe
whence the canonical form is

=3 Ai(t—r:),
This may be regarded as a first osculant of (8), namely

s=3 A(to—mi) (£ — 75)2L,
There is no advantage for small values of m. The circle C? is naturally best
as z =1 and the C* as © = 3{ — 3uf® | %

The canonical form might have been used throughout, but it would not
have been possible to use the references.

It is to be remarked that in the form used the coefficients a,, a, - - - of
the "1 of an n-line are invariants of the n-line. They form with the
parameters ¢; a complete set of rational invariants (under homologies). The
parameters are by (3) inversely proportional to the clinants of the lines.

TrE Jorns HopPrINs UNIVERSITY.
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