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OK, so let me start by saying that I am really grateful for this occasion to talk about noncommutative

geometry. And I will concentrate on the spectral aspect of the subject. So somehow, I will start by

explaining the origin.

They are spectra, how it leds Heisenberg to matrix mechanics, and emergence of time, as I will

explain, which is related to the ideas of von Neumann. Now, the next point will be the spectral

paradigm, the new paradigm that comes from dealing with noncommutative spaces, which is spec-

tral. And this will be analysed and explained at two levels.

First at the microscopic level, it will give the fine structure of space-time at the euclidean level. And

at the astronomic level, it will reveal the music of shapes. And I will end by exhibiting a mysterious

shape which is related to recent work with Katia Consani.
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So let me start with the old times. This picture represents what happened for instance when Newton

was decomposing a straight ray of light coming from the sun by letting it go through a prism.

And one obtains the rainbow. What is really interesting about this rainbow is that when you look

at it very carefully, you find out that there are some missing lines,

there are some dark lines. At first, one was discovered for sodium. The real discovery was made

by Fraunhofer at the beginning of the 19th century. He exhibited about five hundred of these dark

lines which are understood now as the absorption lines, in the sense of what happens is that when

the light goes through some chemical like in the neighborhood of the sun, then the presence of these

chemicals has a consequence which is that the sort of signature of the chemicals appears in negative,

through these dark lines. Somehow, few years later
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around 1860, what was discovered by Bunsen and Kirchhoff was that in fact one could obtain the

same lines but now as bright lines over a dark background, it is if you want the negative of the

previous and after that, they were able to identify many many of the lines which had been identified

as absorption lines by Fraunhofer, they were able to identify most of them as coming from chemicals.

So this means that each chemical has a sort of bar-code that is its own signature. And what they

found also is that there were few of these lines that actually would not pertain to any chemical

body that was known on Earth, so they invented a new chemical body which they called Helium,

in the honour of the Sun, of course, and what is amazing is that at the beginning of the twentieth

century, there was an eruption of the Vesuvio and people did spectral analysis of the lava coming out

from the volcano and amazingly, they found that the corresponding emission spectrum was exactly

corresponding missing lines found before and it was Helium. And of course, you know, now, Helium

is used on Earth. This is just clearly a featuring of the fact that chemicals have their own bar-code.

Now these bar-codes were studied by physicists and what happens is that they have a quite re-

markable compatibility property that is that some of these lines, when you express them in terms

of frequency, you have to be very careful that you should express them in terms of frequency and

not wavelength, some of them actually add up. And in order to understand how they add up, it’s

Ritz-Rydberg who found what is called the Ritz-Rydberg principle, and the idea is that these lines

would be indexed not by one index but by two indices, it could be greek letters whatever you want,

and the point is that Ritz-Rydberg principle tells you that the line with indices αβ will combine

with the line with indices βγ, so I mean the second index of the first line has to be the first index of

the second line, and then they combine and they give you the line corresponding to αγ. Now, this

Ritz-Rydberg combination principle had one amazing consequence in the hands of Heisenberg
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and what Heisenberg found out is that thanks to this principle, he was doing calculations when he

was alone

in Helgoland where he had been sent because he had allergy, he had been sent by his university,

because there was no cure except to send people in a place where there was no source of pollen. So

he was there and he had all the time he wanted to work and at some point, during a night, I think

it was near four o’clock in the morning, he had proven that the energy is conserved1,

because if you take H to be A, then, there is a commutation between these two terms and you will

get that H is preserved by time evolution.

1surrounding last line.
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Then, instead of going to bed, what he did was to climb over one of the peaks which was along the

coast and he waited for the sunrise on the top of this peak. And he explains that he was seeing,

of course in his mind in his discovery, an incredible landscape. What he had discovered had one

peculiar consequence, and that consequence was that, because matrices don’t commute,

when you work with observable quantities for a microscopic system, yu have to pay attention to the

order of terms in a product. In fact, the order of terms in a product plays a crucial role. And in

fact, if you come back to the evolution equation of Heisenberg,

you find of course that if everything would commute, this evolution should be the identity. In fact,

as we shall see much later, the commutative world is static, whereas quantum world is dynamical,

and this is the first instance.
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Now, in particular, what it means is that the commutativity of cartesian coordinates does not hold

in the algebra of coordinates on the phase space. And this is one fundamental instance of appearance

of such a noncommutative space.

Now, as a corollary of this, you might think that this is very strange, and that, you know, dealing

with this care with the order is something we are not used to, but this is wrong. We are perfectly

used to that, in the language. I mean, when we use words, we need, of course, to pay attention

to the order of the letters, and the order of the words, otherwise, you get anagrams. What I have

shown here is a french anagram which is quite amazing but somehow, one can clearly see that when

you go to the commutative, you lose meaning. For instance, I have written here for example, Santa

and Satan are the same in the commutative world (there are two a, one s, one n, one t). Listen is

the same thing as silent, and so on. So in fact, what you find is that this quantum way, this way of

being forced to pay attention to the order of the letters, is a way to keep meaning. So in ordinary

algebraic geometry, one forgets completely about these nuances.
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Now one corollary of the non-commutativity, of the Heisenberg uncertainty principle, is quantum

variability. And to understand this quantum variability, one needs for instance to give an example.

Several swiss engineers have manufactured a small device which you can use in a mobile phone and

which will generate random numbers. But the way they will generate those random numbers is

simply by letting a photon go through a small slit and land somewhere on a photo cell, and which

one of these cells it will land on is something which is totally unpredictible, by the uncertainty

principle of Heisenberg. And so, what this gives for you is a way to generate random number,

and this way of generating a random number cannot be attacked. For security reasons, it’s a way

which contrary what you would obtain if you would generate quantum numbers from a computer.

It’s totally different not only by experiment, but also by the theory : you know that they are not

reproducible. So there is this fundamental variability,
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which is in quantum mechanics and when you think about it, you will find out that quantum

mechanics is in fact a much more better formalism of variability than ordinary classical mathematics.

For instance, if you ask a mathematician what is a real variable, very often you will get as an answer

the fact that it’s just a map f from some set X to the real line. Now it turns out that this formalism

is in fact rather poor because you cannot have coexistence of discrete and continuous variables, in

this classical formalism. The reason is very simple. The reason is that if you have a continuous

variable, in the given X, then this given X has to be uncountable. And then, any variable meant to

be discrete will in fact take some value an infinite number of time, and in fact more than an infinite

countable number of times. So they don’t coexist.

And amazingly, they coexist in the quantum formalism. So if you want, the continuous and the

discrete coexist in the quantum formalism because in this formalism, a real variable becomes a

self-adjoint operator

in Hilbert space. And in the same Hilbert space, you can have self-adjoint operator which is for

instance a multiplication by x in the Hilbert space which is L2 functions over [0, 1], but this Hilbert

space of L2 functions over [0, 1] is isomorphic to the Hilbert space which is the Hilbert space of

`2 sequences on the integers in which you also have another variable, if you want, which is the

multiplication by n, which is self-adjoint, and which is obviously discrete.
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So if you want, because there is only one Hilbert space, namely infinite dimensional with countable

basis, what you find out is that there is coexistence of the discrete variables, with the continuous

variables with the only proviso that they cannot commute. There is this nuance, and this nuance

will play a fundamental role later as we shall see.

So we have this dictionary, which is coming from the quantum. And of course, the values of a real

variable is just a spectrum of the self-adjoint operator, but physicists have been very very early

own capable of applying this notion to complex variables. In fact, they applied it to a very peculiar

situation where you would like to have a complex variable z which is such that |z|2 is an integer.

This is related to the Planck discovery in 1900 and to what Einstein wrote in 1906 which is that the

energy of an oscillator should only take integral multiples of hν. The oscillator was first understood

in a paper of Born, Heisenberg and Jordan, I think in 1925, and then Dirac was able to use this

very same ansatz in which you replace variable z, that was supposed to be a complex variable, you

replace it by an operator a, and the only condition on that operator a is that its commutator with

its adjoint is equal to 1. That suffices to ensure that the spectrum will be formed of positive integers,

it’s a little exercize. And in the hands of Dirac, this allowed him to actually prove what Einstein

had guessed when he had guessed the constants A and B of emission and absorption of an atom.

So this is a very successful and a very amazing formalism, which replaces the classical formalism.
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And there is something in fact which is quite striking if you want at the level of the variability,

which is that normally, when we are addressed by people to explain what is really, the essence of

variability, what is the cause of variability in the external world, the usual answer that comes, I

remember giving this answer when I was in highschool, the natural answer that comes to mind is

just the passing of time. This is the only sort of reasonable answer we are able to give. But now,

because of this intrinsic and sort of fundamental variability which there is in the quantum, comes a

very natural question and

this question is... you know, of course, we have not been able in the formalism of quantum mechanics

to reduce this variability because of the reduction of the wave packet which is something which is

outside the time evolution, so if you want, this intrinsic variability in the quantum world sort of

poses a very natural question and this natural question is
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would it be more primitive that the passing of time ? Namely, how could time emerge from this

quantum variability ? And what I want to explain briefly is that the study of sub-systems which

was initiated by Murray and von Neumann, in the 1930-1940, leads in fact to a potential answer to

this question. What did they do ? This is just a picture

just to make sure not to forget that von Neumann is also very well known for inventing computers.

But what did they do ?

They studied, they started by studying space factorizations. And in that respect, they were moti-

vated by quantum mechanics. So they wanted to understand that if you happen to have a Hilbert

space H which is a tensor product, which splits as a tensor product, then you can consider in this

Hilbert space the operators which are of the form T1 ⊗ 1 where T1 is acting in H1 and 1 is the

identity in H2. Somehow you want to understand algebraically what are the algebras which appear

in this way. So they motivated their work by quantum mechanics,
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by of course saying that you want to consider observable quantities which occur in a sub-system,

then of course you are dealing with rings of operators, with algebras of operators, and you have a

commutation, between what happens in one system and in the complementary system, and so on.

So they studied these factorizations and the term factor comes from designing algebras that you will

have, that would imitate this situation of a tensor product.

But amazingly, what Murray and von Neumann found is that, besides the factorization, which

occurs from factoring the underlying Hilbert space, it turns out that there are factorizations which

do not come from there. And so the factorizations that come from factorizing the Hilbert space are

called of type I, they are the simplest by far.
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But they found two other types. They found what are called type II, and type II, what does it

mean, in which way, if you want, the type II factorizations are different, are distinct from the type

I factorizations, well, they are very distinct, because when you consider a type I factorization, after

all, the algebra will just be the algebra of operators in a given Hilbert space. So, if you want, what

would correspond to the subspaces are classified by the integers, by the dimension of the subspace,

it could be infinite of course. Now, in the case of the type II, what happens is that what correspond

to the subspaces are no longer classified by an integer but they are classified depending on type

II1 or type II∞, either by the interval [0, 1] or [0,∞]. And I mean, this is the first appearance of

continuous dimensions which... I remember reading a paper of von Neumann when I was in École

Normale, and this, really, intrigued me a lot, the fact that there are those continuous dimensions

that appear. And then, what do you have, you have the type III and the type III is all that remains.

I mean in fact, came as an important tool the fact that the link between the Boltzman state which

is given when you consider all operators in the Hilbert space by the trace of x multiplied by the

exponential of −βH where H is the Hamiltonian and β is the inverse temperature. So this is related

to the Heisenberg time evolution which I showed you before, namely σt(x) = exp(itH)xexp(−itH).

They are related together by something which can be formulated purely algebraically in terms of

the state itself and the time evolution. And this is the Kubo-Martin-Schwinger (KMS) condition,

which is a condition that can be formulated in terms of holomorphic functions.
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And a very important step was done by Tomita and Takesaki around 1970 when they proved that

this association between a state and a one-parameter group of automorphisms actually holds for any

von Neumann algebra. So if you take a von Neumann algebra, and take any faithful normal state on

it, then there exist a unique one-parameter group of automorphisms that actually fulfills this KMS

condition of the association for β = 1. I started my thesis and in my thesis, what I proved

in 1971-1972, in april 1972 is that in fact, this one-parameter group of automorphisms is unique, when

you look at it in the quotient of the group of automorphisms ofM divided by inner-automorphisms.

You see, when an algebra is not commutative, it admits trivial automorphisms, namely automor-

phisms that are obtained by conjugating an element by a unitary element in the algebra, so by x

goes to UxU∗. And because these automorphisms are completely trivial in a certain way, they form

a normal subgroup of the group of automorphisms and the interesting automorphisms are forming

a quotient group which is the group Out(M). So what I proved in my thesis which was under

Jacques Dixmier, I proved that in fact, there is a unique, independent of the choice of the state,

homomorphism from the real line to the group Out(M) of automorphism classes of M. This is an

amazing fact in the sense that what it tells you that this algebra, just from its non-commutativity,

acquires an evolution. This of course gave me
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the classification of factors. So I could define new invariants, and I could also reduce type III to

type II and automorphisms. In fact, I left one case open which was later done by Takesaki. But I

had defined two fundamental invariants, the module S(M) which is a closed subgroup of R∗+ and

which allowed to classify, if you want, the factors of type III into type IIIλ where λ belongs to [0, 1]

and the reduction from type III to type II, I did in the case where λ was different from 1. The III0

case was particularly interesting. And I also defined the group of periods, which is a subgroup of

the real line, but this time, it’s not a closed subgroup, it can be quite wild. And it’s a remarkable

subgroup in the sense that what additive it is, there are certain times, from the subgroup of the

line, which are periods of the factors namely which the factor doesn’t move.

Once I have done this work, I arrived in IHES in Bures, and I found out that, of course I was a

specialist of a specific topic, but the people preoccupations were rather far from mine and I had the

luck to meet Dennis Sullivan, and to discuss with him a lot, and after these discussions, I found that

there was a completely canonical way to associate a von Neumann algebra that in the most case is a

factor to foliations. So foliations are very familiar objects in differential geometry, essentially what

they are are decompositions of the product but given locally only and what is interesting is not

their local properties which are trivial but their global properties. And what was amazing is that

this association I had found from foliations to factors allowed me to exhibit the most exotic factors

in the simplest case of foliations. For instance if you take the Kronecker foliation of the torus this

gives you type II∞ hyperfinite, if you take for instance the ... of foliations of the sphere bundle of

a Riemann surface, this gives you the unique type III1 hyperfinite factor which is extremely exotic.

On the other hand you know what happens is that this association from foliations to factors in

von Neumann algebras was only taking into account the major theory of foliations. But foliations
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are much richer in a way. They belong to functional geometry. So they have differential structure.

They have a topology and so on and so forth. And this led to develop geometry for spaces whose

coordinates do not commute, because when you deal with algebra of foliations, of course the factors

you get are not commutative. This non commutativity comes from the fact that you are allowed

to slide along the leaves. So this led me to a spectral version of geometry, which I want to present,

and this is closely related to the formalism of quantum mechanics. And as a warm-up, one has to

understand what is sort of miraculous in this formalism of quantum mechanics and why it can be

so pertinent and so useful, for doing geometry.
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