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OK, so let me start by saying that I am really grateful for this occasion to talk about noncommutative
geometry. And I will concentrate on the spectral aspect of the subject. So somehow, I will start by

explaining the origin.

» Spectra, matrix mechanics, emer-
gence of time.

» Spectral paradigm of geometry.

They are spectra, how it leds Heisenberg to matrix mechanics, and emergence of time, as I will
explain, which is related to the ideas of von Neumann. Now, the next point will be the spectral
paradigm, the new paradigm that comes from dealing with noncommutative spaces, which is spec-

tral. And this will be analysed and explained at two levels.

First at the microscopic level, it will give the fine structure of space-time at the euclidean level. And
at the astronomic level, it will reveal the music of shapes. And I will end by exhibiting a mysterious

shape which is related to recent work with Katia Consani.

Conférence donnée a distance dans le cadre du cycle de conférences de I’Université de Harvard “Lecture series
Mathematical Science Literature”,

Vidéo visionnable ici https://youtu.be/AwVRssOF6z1.

Transcription Denise Vella-Chemla, novembre 2020.
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» Microscopic level, fine structure.

» Astronomic level, the music of shapes

» A mysterious shape.

So let me start with the old times. This picture represents what happened for instance when Newton

was decomposing a straight ray of light coming from the sun by letting it go through a prism.

Spectra

And one obtains the rainbow. What is really interesting about this rainbow is that when you look

at it very carefully, you find out that there are some missing lines,

there are some dark lines. At first, one was discovered for sodium. The real discovery was made
by Fraunhofer at the beginning of the 19" century. He exhibited about five hundred of these dark

lines which are understood now as the absorption lines, in the sense of what happens is that when

the light goes through some chemical like in the neighborhood of the sun, then the presence of these
chemicals has a consequence which is that the sort of signature of the chemicals appears in negative,

through these dark lines. Somehow, few years later



around 1860, what was discovered by Bunsen and Kirchhoff was that in fact one could obtain the
same lines but now as bright lines over a dark background, it is if you want the negative of the
previous and after that, they were able to identify many many of the lines which had been identified
as absorption lines by Fraunhofer, they were able to identify most of them as coming from chemicals.
So this means that each chemical has a sort of bar-code that is its own signature. And what they
found also is that there were few of these lines that actually would not pertain to any chemical
body that was known on Earth, so they invented a new chemical body which they called Helium,
in the honour of the Sun, of course, and what is amazing is that at the beginning of the twentieth
century, there was an eruption of the Vesuvio and people did spectral analysis of the lava coming out
from the volcano and amazingly, they found that the corresponding emission spectrum was exactly
corresponding missing lines found before and it was Helium. And of course, you know, now, Helium

is used on Earth. This is just clearly a featuring of the fact that chemicals have their own bar-code.

-

Now these bar-codes were studied by physicists and what happens is that they have a quite re-
markable compatibility property that is that some of these lines, when you express them in terms
of frequency, you have to be very careful that you should express them in terms of frequency and
not wavelength, some of them actually add up. And in order to understand how they add up, it’s
Ritz-Rydberg who found what is called the Ritz-Rydberg principle, and the idea is that these lines
would be indexed not by one index but by two indices, it could be greek letters whatever you want,
and the point is that Ritz-Rydberg principle tells you that the line with indices o8 will combine
with the line with indices 57, so I mean the second index of the first line has to be the first index of
the second line, and then they combine and they give you the line corresponding to ay. Now, this

Ritz-Rydberg combination principle had one amazing consequence in the hands of Heisenberg



Heisenberg :
Ritz-Rydberg =
Matrix Mechanics'!

(AB)i =Y AyiBjx

ai(A) = exp(itH)Aexp(—itH)

and what Heisenberg found out is that thanks to this principle, he was doing calculations when he

was alone

in Helgoland where he had been sent because he had allergy, he had been sent by his university,
because there was no cure except to send people in a place where there was no source of pollen. So
he was there and he had all the time he wanted to work and at some point, during a night, I think

it was near four o’clock in the morning, he had proven that the energy is conserved!,

Heisenberg h
Ritz-Rydberg =
Matrix Mechanics'!

(AB)y = 3 AyjBjx

ai(A) = exp(itH)Aexp(—itH)

because if you take H to be A, then, there is a commutation between these two terms and you will

get that H is preserved by time evolution.

'surrounding last line.



Then, instead of going to bed, what he did was to climb over one of the peaks which was along the
coast and he waited for the sunrise on the top of this peak. And he explains that he was seeing,
of course in his mind in his discovery, an incredible landscape. What he had discovered had one

peculiar consequence, and that consequence was that, because matrices don’t commute,

Werner Heisenberg

When manipulating the observables quantities for a mi-
croscopic system, the order of terms in a product plays
a crucial role. The commutativity of Cartesian coordi-
nates does not hold in the algebra of coordinates on
the phase space of a microscopic system.

[Pooe 10 ur 6]

when you work with observable quantities for a microscopic system, yu have to pay attention to the
order of terms in a product. In fact, the order of terms in a product plays a crucial role. And in
fact, if you come back to the evolution equation of Heisenberg,

Heisenberg :
Ritz-Rydberg =
Matrix Mechanics'!

(AB)u. =3 AyBjx

oi(A) = exp(itH)Aexp(—itH)

you find of course that if everything would commute, this evolution should be the identity. In fact,
as we shall see much later, the commutative world is static, whereas quantum world is dynamical,
and this is the first instance.



Werner Heisenberg

When manipulating the observables quantities for a mi-
croscopic system, the order of terms in a product plays
a crucial role. The commutativity of Cartesian coordi-
nates does not hold in the algebra of coordinates on
the phase space of a microscopic system.

[Page 10 ur 116]

Now, in particular, what it means is that the commutativity of cartesian coordinates does not hold
in the algebra of coordinates on the phase space. And this is one fundamental instance of appearance

of such a noncommutative space.

Language
Anagrams :
(Anagrammes renversantes, d'Etienne Klein et Jacques
Perry-Salkow sur le sens caché du monde)

“L'horloge des anges ici-bas"

“Le boson scalaire de Higgs"

We can clearly see that going to the commutative is a
loss of meaning :

santa = satan

listen = silent

Now, as a corollary of this, you might think that this is very strange, and that, you know, dealing
with this care with the order is something we are not used to, but this is wrong. We are perfectly
used to that, in the language. I mean, when we use words, we need, of course, to pay attention
to the order of the letters, and the order of the words, otherwise, you get anagrams. What I have
shown here is a french anagram which is quite amazing but somehow, one can clearly see that when
you go to the commutative, you lose meaning. For instance, I have written here for example, Santa
and Satan are the same in the commutative world (there are two a, one s, one n, one t). Listen is
the same thing as silent, and so on. So in fact, what you find is that this quantum way, this way of
being forced to pay attention to the order of the letters, is a way to keep meaning. So in ordinary

algebraic geometry, one forgets completely about these nuances.



Quantum variability

Quantum random number generation
on a mobile phone

Bruno Sanguinetti, Anthony Martin, Hugo Zbinden, and
Nicolas Gisin

Group of Applied Physics, University of Geneva, Swit-
zerland

Now one corollary of the non-commutativity, of the Heisenberg uncertainty principle, is quantum

variability. And to understand this quantum variability, one needs for instance to give an example.

Camera

| Random
- Extractor numbers
LED

Several swiss engineers have manufactured a small device which you can use in a mobile phone and
which will generate random numbers. But the way they will generate those random numbers is
simply by letting a photon go through a small slit and land somewhere on a photo cell, and which
one of these cells it will land on is something which is totally unpredictible, by the uncertainty
principle of Heisenberg. And so, what this gives for you is a way to generate random number,
and this way of generating a random number cannot be attacked. For security reasons, it’s a way
which contrary what you would obtain if you would generate quantum numbers from a computer.
It’s totally different not only by experiment, but also by the theory : you know that they are not

reproducible. So there is this fundamental variability,

Real Variables
Classical formulation :

f: X—->R

Discrete and continuous variables cannot coexist in this
classical formalism.




which is in quantum mechanics and when you think about it, you will find out that quantum
mechanics is in fact a much more better formalism of variability than ordinary classical mathematics.
For instance, if you ask a mathematician what is a real variable, very often you will get as an answer
the fact that it’s just a map f from some set X to the real line. Now it turns out that this formalism
is in fact rather poor because you cannot have coexistence of discrete and continuous variables, in
this classical formalism. The reason is very simple. The reason is that if you have a continuous
variable, in the given X, then this given X has to be uncountable. And then, any variable meant to
be discrete will in fact take some value an infinite number of time, and in fact more than an infinite

countable number of times. So they don’t coexist.

Quantum formalism

Fortunately this problem of treating continuous and dis-
crete variables on the same footing is completely solved
using the formalism of quantum mechanics,

The first basic change of paradigm has indeed to do
with the classical notion of a “real variable” which one
would classically describe as a real valued function on
a set X, ie as a map from this set X to real numbers.
In fact quantum mechanics provides a very convenient
substitute. It is given by a self-adjoint operator in Hil-
bert space. Note that the choice of Hilbert space is
irrelevant here since all separable infinite dimensional
Hilbert spaces are isomorphic.
9

And amagzingly, they coexist in the quantum formalism. So if you want, the continuous and the
discrete coexist in the quantum formalism because in this formalism, a real variable becomes a

self-adjoint operator

Classical Quantum
Real variable Self-adjoint
f:X—=R operator in Hilbert space
Possible values Spectrum of
of the variable the operator
Complex variable Operator a
z with |z[2eN with [a,a*] =1

in Hilbert space. And in the same Hilbert space, you can have self-adjoint operator which is for
instance a multiplication by z in the Hilbert space which is L? functions over [0, 1], but this Hilbert
space of L? functions over [0,1] is isomorphic to the Hilbert space which is the Hilbert space of
£? sequences on the integers in which you also have another variable, if you want, which is the

multiplication by n, which is self-adjoint, and which is obviously discrete.



Quantum formalism

Fortunately this problem of treating continuous and dis-
crete variables on the same footing is completely solved
using the formalism of quantum mechanics.

The first basic change of paradigm has indeed to do
with the classical notion of a “real variable” which one
would classically describe as a real valued function on
a set X, ie as a map from this set X to real numbers.
In fact quantum mechanics provides a very convenient
substitute. It is given by a self-adjoint operator in Hil-
bert space. Note that the choice of Hilbert space is
irrelevant here since all separable infinite dimensional
Hilbert spaces are isomorphic.
9

So if you want, because there is only one Hilbert space, namely infinite dimensional with countable
basis, what you find out is that there is coexistence of the discrete variables, with the continuous
variables with the only proviso that they cannot commute. There is this nuance, and this nuance

will play a fundamental role later as we shall see.

Classical Quantum
Real variable Self-adjoint
f:X—=R operator in Hilbert space
Possible values Spectrum of
of the variable the operator
Complex variable Operator a
z with |z]2 €N with [a,a*] = 1

So we have this dictionary, which is coming from the quantum. And of course, the values of a real
variable is just a spectrum of the self-adjoint operator, but physicists have been very very early
own capable of applying this notion to complex variables. In fact, they applied it to a very peculiar
situation where you would like to have a complex variable z which is such that |z|? is an integer.
This is related to the Planck discovery in 1900 and to what Einstein wrote in 1906 which is that the
energy of an oscillator should only take integral multiples of hv. The oscillator was first understood
in a paper of Born, Heisenberg and Jordan, I think in 1925, and then Dirac was able to use this
very same ansatz in which you replace variable z, that was supposed to be a complex variable, you
replace it by an operator a, and the only condition on that operator a is that its commutator with
its adjoint is equal to 1. That suffices to ensure that the spectrum will be formed of positive integers,
it’s a little exercize. And in the hands of Dirac, this allowed him to actually prove what Einstein
had guessed when he had guessed the constants A and B of emission and absorption of an atom.

So this is a very successful and a very amazing formalism, which replaces the classical formalism.



Time and Variability

At the philosophical level there is something quite sa-
tisfactory in the variability of the quantum mechanical
observables. Usually when pressed to explain what is
the cause of the variability in the external world, the
answer that comes naturally to the mind is just : the
passing of time.

And there is something in fact which is quite striking if you want at the level of the variability,
which is that normally, when we are addressed by people to explain what is really, the essence of
variability, what is the cause of variability in the external world, the usual answer that comes, I
remember giving this answer when I was in highschool, the natural answer that comes to mind is
just the passing of time. This is the only sort of reasonable answer we are able to give. But now,
because of this intrinsic and sort of fundamental variability which there is in the quantum, comes a

very natural question and

But precisely the quantum world provides a more subtle
answer since the reduction of the wave packet which
happens in any quantum measurement is nothing else
but the replacement of a “q-number” by an actual num-
ber which is chosen among the elements in its spec-
trum. Thus there is an intrinsic variability in the quan-
tum world which is so far not reducible to anything
classical. The results of observations are intrinsically va-
riable quantities, and this to the point that their values
cannot be reproduced from one experiment to the next,
but which, when taken altogether, form a g-number.

this question is... you know, of course, we have not been able in the formalism of quantum mechanics
to reduce this variability because of the reduction of the wave packet which is something which is
outside the time evolution, so if you want, this intrinsic variability in the quantum world sort of

poses a very natural question and this natural question is

How can time emerge

from quantum variability 7

As we shall see the study of subsystems as initiated by
Murray and von Neumann leads to a potential answer.

10



would it be more primitive that the passing of time 7 Namely, how could time emerge from this
quantum variability 7 And what I want to explain briefly is that the study of sub-systems which
was initiated by Murray and von Neumann, in the 1930-1940, leads in fact to a potential answer to
this question. What did they do ? This is just a picture

c
!

!
S0 REWARD
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&

just to make sure not to forget that von Neumann is also very well known for inventing computers.
But what did they do ?

Factorizations

Let the Hilbert space ¥ factor as a tensor product :
H=H @Ha

Von Neumann investigated the meaning of such a fac-
torization at the level of operators.

A factor is an algebra of operators which has all the
obvious properties of the algebra of operators of the
form T3 ® 1 acting in H = H; ® Ha.

&
[

They studied, they started by studying space factorizations. And in that respect, they were moti-
vated by quantum mechanics. So they wanted to understand that if you happen to have a Hilbert
space H which is a tensor product, which splits as a tensor product, then you can consider in this
Hilbert space the operators which are of the form 77 ® 1 where T} is acting in H; and 1 is the
identity in Hs. Somehow you want to understand algebraically what are the algebras which appear

in this way. So they motivated their work by quantum mechanics,

4. Another interpretation of (D) bs suggested by quantum mechanics. The
operstons of § correspond there to all observable quantities which ocewr in &
mechanical system . (CL. (8), pp. 55-60, and (20), p. 187. We restriet our-
selves o bounded operators, which correspond 1o those observables which have
u bounded range. Thus B correspands to the totality of these observables.)
Now if @ can be decompased into two parts @,, @y and If we denote the set of
the operators which cormespond 1o obeervables situated entirely in ©, or in &,
by M, resp. M, then we see:

(1) M, M;; are rings, and 1 (which corresponds to the "constant” cbeervable
1) belongs to both M,, M,
(2) 1 A « My, B« M, then the messurements of the observables of A and B
do not interfere (being in different parts of @); therefore 4, B commute
(cf. (6), pp. 11-14 aad 76, or (20), pp. 117-121). Thus M, © M
(3) As © is the sum of @, €, therefore R(M), M) = B.

>
[
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by of course saying that you want to consider observable quantities which occur in a sub-system,
then of course you are dealing with rings of operators, with algebras of operators, and you have a
commutation, between what happens in one system and in the complementary system, and so on.
So they studied these factorizations and the term factor comes from designing algebras that you will

have, that would imitate this situation of a tensor product.

Factorizations

Let the Hilbert space # factor as a tensor product :
H=H,®Ha

Von Neumann investigated the meaning of such a fac-
torization at the level of operators.

A factor is an algebra of operators which has all the
obvious properties of the algebra of operators of the
form T3 ® 1 acting in H = H; ® Ha.

4. Another interpretation of (D) s suggested by quantum mechanics. The
operatons of  correspond there to all cheervable quantities which ocewr in &
mochandcal system €. (C1. (8), pp. 5560, and (20), p. 167. We restriet our-
selves to bounded operstors, which correspond 1o those observables which have
a bounded range. Thus B corresponds to the totality of these observables.)
Now if @ can be decompased into two parts @,, 4 and If we denote the set of
the operators which cormespond to observables situated entirely in ©, or in &,
by M, resp. M, then we see:

(1) M, M, are rings, and | (which corresponds to the “constant” cbservable
1) belongs to both M, M,

(2) If A « My, B oM, then the measurements of the obeervables of A and B
do mot interfere (being in different parts of @); therefore A, B commute
(e, (6), pp. 11-14 nnd 76, or (20), pp. 117-121). Thus M, C M

(3) As © is the sum of @, , therefore R(M,, M) = B.

Thus our problem of solving (Dy) 0 the quantum i
problem of dividing & system & into two subsystems &,, €,; and in particul
the solutions M of (Ds) correspond to the complete rings of all observables of
suitable quantum mechanical systems.

This interpretation of (Dy) suggests of course strongly the surmise formulated
at the end of §2.2: It should be possible to describe  as (isomorphic to) the
space of all two variable functions f(x, y), (If | f(z, y) [*d= dy finite), M operating
on z ooly, and M’ on y only. In this case €, &, would be explicitly given:
@, belng described by the coordinate z, and &, by the coordinate y.

The fact that the surmise of §2.2 is not true, is therefore the more remarkable;
particularly so because certain features of the “exceptional” rings M seem to
make them even better suited for quantum mechanical purposes than the cus-
tomary B.  We will now discuss these propertics of M.

But amazingly, what Murray and von Neumann found is that, besides the factorization, which
occurs from factoring the underlying Hilbert space, it turns out that there are factorizations which
do not come from there. And so the factorizations that come from factorizing the Hilbert space are

called of type I, they are the simplest by far.
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Three types

Type 1, if the Hilbert space # factor as a tensor pro-
duct :

H=H1@H2

Von Neumann found two other types

Type II : The classification of subspaces gives an in-
terval [0,1] or [0,0c] ; continuous dimensions !

Type 111 : All that remains.

But they found two other types. They found what are called type II, and type II, what does it
mean, in which way, if you want, the type II factorizations are different, are distinct from the type
I factorizations, well, they are very distinct, because when you consider a type I factorization, after
all, the algebra will just be the algebra of operators in a given Hilbert space. So, if you want, what
would correspond to the subspaces are classified by the integers, by the dimension of the subspace,
it could be infinite of course. Now, in the case of the type II, what happens is that what correspond
to the subspaces are no longer classified by an integer but they are classified depending on type
IT; or type Il, either by the interval [0, 1] or [0,00]. And I mean, this is the first appearance of
continuous dimensions which... I remember reading a paper of von Neumann when I was in Ecole
Normale, and this, really, intrigued me a lot, the fact that there are those continuous dimensions

that appear. And then, what do you have, you have the type III and the type III is all that remains.

-

KMS Condition

FUr v iB) = 9o b)a)

Boltzman State p(z) = Tr(zexp(-5H)) and Heisen-
berg evolution o(x) = exp(itH )z exp(—itH).

19

I mean in fact, came as an important tool the fact that the link between the Boltzman state which
is given when you consider all operators in the Hilbert space by the trace of x multiplied by the
exponential of —5H where H is the Hamiltonian and f is the inverse temperature. So this is related
to the Heisenberg time evolution which I showed you before, namely o,(z) = exp(it H )zexp(—itH).
They are related together by something which can be formulated purely algebraically in terms of
the state itself and the time evolution. And this is the Kubo-Martin-Schwinger (KMS) condition,

which is a condition that can be formulated in terms of holomorphic functions.

13



Tomita—Takesaki
Theorem

Let M be a von Neumann algebra and ¢ a faithful nor-
mal state on M, then there exists a unique N

af € Aut(M)
which fulfills the KMS condition for 8 =1.

And a very important step was done by Tomita and Takesaki around 1970 when they proved that
this association between a state and a one-parameter group of automorphisms actually holds for any
von Neumann algebra. So if you take a von Neumann algebra, and take any faithful normal state on
it, then there exist a unique one-parameter group of automorphisms that actually fulfills this KMS

condition of the association for § = 1. I started my thesis and in my thesis, what I proved

-

Thesis (1971-1972) |

Theorem (ac)

1 = Int(M) = Aut(M) — Out(M) — 1,
The class of af in Out(M) does not depend on .
Thus a von Neumann algebra M, has a canonical evo-
lution .

R -4 out(Mm).

Noncommutativity = Evolution

2

in 1971-1972, in april 1972 is that in fact, this one-parameter group of automorphisms is unique, when
you look at it in the quotient of the group of automorphisms of M divided by inner-automorphisms.
You see, when an algebra is not commutative, it admits trivial automorphisms, namely automor-
phisms that are obtained by conjugating an element by a unitary element in the algebra, so by =
goes to UzU*. And because these automorphisms are completely trivial in a certain way, they form
a normal subgroup of the group of automorphisms and the interesting automorphisms are forming
a quotient group which is the group Out(M). So what I proved in my thesis which was under
Jacques Dixmier, I proved that in fact, there is a unique, independent of the choice of the state,
homomorphism from the real line to the group Out(M) of automorphism classes of M. This is an
amazing fact in the sense that what it tells you that this algebra, just from its non-commutativity,

acquires an evolution. This of course gave me

14



Classification of factors

New invariants and reduction of type III to type Il and
automorphisms.

The Module S(M) : It is a closed subgroup of R‘ﬂ.
Factors of type III,, A€ [0, 1]
Periods : It is a subgroup of R, T(M) CR

the classification of factors. So I could define new invariants, and I could also reduce type III to
type II and automorphisms. In fact, I left one case open which was later done by Takesaki. But I
had defined two fundamental invariants, the module S(M) which is a closed subgroup of R and
which allowed to classify, if you want, the factors of type III into type III where A belongs to [0, 1]
and the reduction from type III to type II, I did in the case where \ was different from 1. The Il
case was particularly interesting. And I also defined the group of periods, which is a subgroup of
the real line, but this time, it’s not a closed subgroup, it can be quite wild. And it’s a remarkable
subgroup in the sense that what additive it is, there are certain times, from the subgroup of the

line, which are periods of the factors namely which the factor doesn’t move.

Foliations — Factors
Geometry ?

Developing geometry for spaces whose coordinates do
not commute leads to a spectral version of geometry
intimately related to the formalism of quantum mecha-
nics.

Once I have done this work, I arrived in IHES in Bures, and I found out that, of course I was a
specialist of a specific topic, but the people preoccupations were rather far from mine and I had the
luck to meet Dennis Sullivan, and to discuss with him a lot, and after these discussions, I found that
there was a completely canonical way to associate a von Neumann algebra that in the most case is a
factor to foliations. So foliations are very familiar objects in differential geometry, essentially what
they are are decompositions of the product but given locally only and what is interesting is not
their local properties which are trivial but their global properties. And what was amazing is that
this association I had found from foliations to factors allowed me to exhibit the most exotic factors
in the simplest case of foliations. For instance if you take the Kronecker foliation of the torus this
gives you type Il hyperfinite, if you take for instance the ... of foliations of the sphere bundle of
a Riemann surface, this gives you the unique type III; hyperfinite factor which is extremely exotic.
On the other hand you know what happens is that this association from foliations to factors in

von Neumann algebras was only taking into account the major theory of foliations. But foliations
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are much richer in a way. They belong to functional geometry. So they have differential structure.
They have a topology and so on and so forth. And this led to develop geometry for spaces whose
coordinates do not commute, because when you deal with algebra of foliations, of course the factors
you get are not commutative. This non commutativity comes from the fact that you are allowed
to slide along the leaves. So this led me to a spectral version of geometry, which I want to present,
and this is closely related to the formalism of quantum mechanics. And as a warm-up, one has to
understand what is sort of miraculous in this formalism of quantum mechanics and why it can be

so pertinent and so useful, for doing geometry.

Newton

“In a certain problem, a variable is the quantity that
takes an infinite number of values which are quite de-
termined by this problem and are arranged in a definite
order"

“A variable is called infinitesimal if among its particular
values one can be found such that this value itself and
all following it are smaller in absolute value than an
arbitrary given number”

One first thing which is remarkable is that if you read Newton, you’ll find that, provided you read
what he wrote in the quantum mechanics formalism, it will immediately give you the right answer
for what are infinitesimals. So, first of all, Newton was not interested in numbers, he was interested

in variables. What he says is that :

“In a certain problem, a variable is the quantity that takes an infinite number of values

which are quite determined by this problem and are arranged in a definite order”.

And then he talks about the infinitesimals. And for him, an infinitesimal is a variable. So,

“A wariable is called infinitesimal if among its particular values one can be found such
that this value itself and all following it are smaller in absolute value than an arbitrary

given number.”

Infinitesimals

What is surprising is that the new set-up immediately
provides a natural home for the “infinitesimal variables”
and here the distinction between “variables” and num-
bers (in many ways this is where the point of view of
Newton is more efficient than that of Leibniz) is essen-
tial.
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Now, what is amazing is that when you apply this notion of infinitesimal which is essentially there,
which is essentially defined in the words of Newton, then you find that they correspond on the nose

to a notion which is well-known in operator theory

Classical Quantum
Infinitesimal Compact
variable operator T
Infinitesimal of Operator T
order o with pn(T) = O(n™?)
Differential dT = [F,T)
of variable F=F* F2=1
Differential QF =
k-forms {w=Y fodfy..d}
26

and which is compact operators. Because compact operators, well, they are variables, as we saw,
because you know, variables are corresponding to operators, but moreover, they have exactly the
property that Newton was saying, namely that if you take their characteristic values, so the char-
acteristic values are eigenvalues for the absolute value of the operator. And these characteristic
values have the property that for any e, there are only finitely many of them which are larger than
€. So they correspond exactly to what Newton had in mind. In this formalism, you have a rule,
immediately, for what is an infinitesimal of order a. So for that, you look at the rate of decay of the
characteristic values, and for instance, an infinitesimal of order 1 is one such that its characteristic
value decay like 1/n. This is fundamental for later because such things are not tracable because the
series 1/n is divergent but when you look at their trace, it has a logarithmic divergency, and it is

the coefficient of this logarithmic divergency that gives you something local.

There is also the differential of variables. Normally, you try to differentiate the functions, and so
on, but here, it’s just defined, for a bounded operator, it’s just defined as a commutator with the
operator F' which satisfies two conditions : the condition that it is self-adjoint and the condition that
its square is 1. So there is no content in the operator F itself, what is really important is the relation
between the operator F' and the operator T'. Because F? is 1, you can easily show that the square of
the differential in the graded sense is 0, and then you have the notion of differential k-forms, which
are obtained only by taking operators sums of products of (k-forms) 1-forms, if you are defining
them in an obvious way. So many properties come out naturally. But the most important was that

this quantized calculus
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Quantized Calculus

2

Cyclic cohomology

De Rham homology in noncommuta-
tive framework !

tr(yw) : Q¥ > C

Cycles and SBI long exact sequence.
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led me in 1980-1981 to the cyclic-cohomology. And cyclic cohomology is really playing a fundamental
role in non-commutative geometry as a de Rham cohomology in this non-commutative framework.
I gave a talk in 1981 in Oberwolfach whose title was “Spectral sequences and cohomology of cur-
rents for non-commutative algebras”, where if you want all the basic properties, the fundamental
properties of cyclic cohomology follow if one takes seriously this quantized calculus. Because in
the quantized calculus, what you get is what is called the cycle, because you can use the trace to
integrate the differential forms, and you get that this cycle is closed, and so on. And moreover, if
you can integrate form of dimension k, you can also integrate forms of dimension k + 2. There is a
distinction between even and odd cases, and this gives to the operator S a periodicity, and to the SBI
an exact sequence that is the corresponding spectral sequence. So of course, this is just one instance
of the use of quantized calculus. There are many other instances. Someone is for instance that you
can do differential geometry in the group ring of the free group, using the quantized calculus which
is defined by actually the group on a tree. But these are tools, and now, with these tools, we want
really to come to the geometry itself, in the metric sense. So for the geometry itself, in the metric

sense, we have to make a little discussion, going backwards, to the riemannian paradigm

Riemannian paradigm

The Riemannian paradigm is based on the Taylor ex-
pansion in local coordinates of the square of the line
element and in order to measure the distance between
two points one minimizes the length of a path joining
the two points

d(a,b) = lnf/ V‘“g,,,,rLr“ dz"
7
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and to the way the metric system evolves. The riemannian paradigm is based on the Taylor expan-
sion... Riemann had this fantastic inaugural talk, to which we shall come back later, in which he
had the insight to define the metric locally, by looking at the Taylor expansion of the line element
in local coordinates, and in fact, he was looking at the square of the line element. So there is a
squareroot involved, and the distance between two points, as you know very well, is computed by

minimizing the length of the path, like here,
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for instance between Seattle and London. And so, it’s a very concrete definition of length and

somehow, it fits very well with

J-8. ). DELAMBRE

P. F. A. MECHAIN

17921799

how the metric system was developed and typically, what happened... what I am showing you the
fact that during the French revolution, they wanted to have a unification of the unit of length, so
they defined it as m times the circumference of the Earth and of course, we are measuring just
an angle, that they knew from the stars, and I mean this angle, this distance was between Dunkerque
and Barcelone and two physicists, astronomers, went along and they made a concrete measurement
and out of this concrete measurement (they were Delambre and Méchain) was fabricated a platinium
bar, which was deposited near Paris in Pavillon de Breteuil in Sevres, which was supposed to be
the unit of length. Now what happened was very interesting. Because what happened around the
years 1925 or something like that, physicists discovered that the unit of length which was deposited
near Paris and so on and so forth, didn’t have a constant length. How did they do that 7 Well
they compared it with the wavelength of Krypton. There is a certain orange in the wavelength
of Krypton which they used to measure this platinium bar, and they found that the length was
changing. So I mean, of course, this was not a good definition, and they shifted, I mean physicists

shifted, in the Conference on metric system,
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Metric System

In 1960, the 11-th CGPM redefined the unit of length
as 1 650 763,73 wavelength of the orange radiation
of isotope 86 of krypton. One uses, since the 13-th
CGPM in 1967, the hyperfine transition of the Cesium

30

they shifted first to define the unit of length by this orange radiation of Krypton, a certain multiple
of this wavelength. But then they found that there was a better way of doing it, which was with
Cesium. And in fact, with this definition of Cesium, you can buy, in a store, some apparatus which

allows you to make immediate measurements with a precision which is 10 decimal places.

Geometry from the : |
spectral point of view

Es muss also entweder das dem Raume zu Grunde lie-
gende Wirkliche eine discrete Mannigfaltigkeit bilden,
oder der Grund der Massverhdltnisse ausserhalb, in da-
rauf wirkenden bindenen Kraften, gesucht werden.

It is therefore necessary that the reality on which space
is based form a discrete variety, or that the founda-
tion of the metric relations be sought outside it, in the
binding forces which act in it.

I mean, it’s a big step forward, and what happened is that there is an hyperfine transition between

two levels, and it corresponds roughly to

In fact the spoed of ight is fixed at
209792458 mwters/second

and the second s cefined as the duration of 9 192

631 TTO periods Of the radation corresponding 10 the

above hyperfine tramsition. The meter is therefore by

convention (with a practical precision of 10-%4)

- '.-_56!5‘10555 ~ 30.6633
21413747

times the wavelength of the hyperfine transition

a wavelength of about 3.26 centimeters and then, you redefine the whole thing, so in fact, you define
the speed of light, you fix the speed of light at this number (I heard that Grothendieck was furious
when he heard that, because he wanted it to be 300 000 000), but the reason why you cannot do
that is that there are already measurements which are precise which are done, so you have to accord

this. So I mean there is a strange value which is taken. Then you define the second, as a number
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of periods of this radiation coming from the hyperfine transition, and as a corollary of that, you
know the meter, the unit of length, is therefore defined as being this proportion (it’s a rational
number) times the wavelength of the hyperfine transition. Now what is extremely amazing is that
this transition which the physicists have done, long ago, between the platinium bar and the spectral
definition, is exactly parallel to the transition between the riemannian paradigm and the spectral

paradigm, which I will explain.

Geometry from the
spectral point of view

Es muss also entweder das dem Raume zu Grunde lie-
gende Wirkliche eine discrete Mannigfaltigkeit bilden,
oder der Grund der Massverhdltnisse ausserhalb, in da-
rauf wirkenden bindenen Kraften, gesucht werden.

It is therefore necessary that the reality on which space
is based form a discrete variety, or that the founda-
tion of the metric relations be sought outside it, in the
binding forces which act in it.

What is also amazing is that Riemann was incredibly careful in his inaugural lecture, to say, I mean,
he didn’t really believed that his notion of metric would continue to make sense in the very very
small. And the reason that he was advocating was that... because he was working with solid bodies
and he was using lightrays in his theory so what he was writing was that when you work in the
very small, solid bodies no longer make sense, and neither do lightrays and so, what he wrote for

instance was that

“It is therefore necessary that the reality on which space is based form a discrete variety,
or that the foundation of the metric relations be sought outside it, in the binding forces

which act in it”.

and as we shall see, this is exactly what happens, in the spectral framework.

a -
P e )
J “t g

Hamilton, Clifford, Dirac

So the possibility to do that, to transfer to the spectral framework these ideas is in fact coming from

work of Hamilton, Clifford and Dirac, and essentially what is the way to extract the squareroot

in the formula of Riemann (d(a,b) = Inf [ g,,dx*dx"”). When there is the squared root of line

.
element, one would like in fact to have not the squared but the line element itself. It’s possible to
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extract this squareroot at the level of the quantum formalism, at the level of operators. And it’s
possible thanks to Hamilton, Clifford and Dirac. Hamilton was the first one to write really the Dirac
operators, because he had the quaternions, and he wrote, you know, ¢,d by dz plus j, d by dy, plus
k, d by dz, which is an example of Dirac operator. And the key to all of this stuff, is that when you

have two operators X and Y, which anti-commute,

Spectral Paradigm

Hamilton, Clifford, extraction of square root
XY=-YX=>(X+Y)2=Xx24Y?
Dirac, Atiyah-Singer = Dirac operator D
ds= o——e =D"1
The length element is the propagator of fermions

d(a,b) = Sup|f(a) - F(®)| | I[D, f]I| £ 1.

It is the “Kantorovich dual” of the usual formula.

then in fact, you can write X2 4+ Y2 as a single square, namely as the square of X +Y. So through
the work of Dirac and also of Atyiah-Singer, who defined the Dirac operator for arbitrary spin-
manifolds, then emerges the Dirac operator D. In the spectral theory, the line element, which is the
squareroot of the Riemann’s ds?, is an operator, it is an infinitesimal when the variety is compact,
and what is it 7 It’s simply the inverse of the Dirac operator. Of course, there are minor things to
which you have to be careful about, what about the zeros and so on, but I mean, this line element
is what is called the fermion propagator, and you have to think of it as physicists write it when
they write Feynman diagrams : it’s a very very tiny little line, which is joining two points which
are very close by. And then, rather ought of this inverse which is the operator D, you can compute
a distance between two points, and this distance is no longer computed by the infimum of an arc
joining the two points, but it’s computed by looking at the maximal waveshift, between the value
at a and the value at b, when you subject the waves to the fact that their frequences are bounded.

It is what is called, mathematically speaking, the “Kantorovich dual” of the usual formula.

Classical Quantum
Line element Propagator
ds? = uvdzidz” ds:= D
d(a,b) = d(a,b) = Sup|f(a) = f(b)|
Inf [, Vds? I, A1l < 1
Volume ds* = coefficient of
[ Vad*z log(A) in Trp(ds®)

So you have this dictionary now that the line element is ds which is the propagator of fermions, the
distance is computable, it’s computed not by an infimum on arcs, but by a supremum, and by this
way, notice it applies to many more spaces, because there are many spaces in which you cannot join

two points by an arc, think about a space which is disconnect, whereas the formula on the right
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makes perfectly good sense. And the volume, for instance, is defined as the integral of the power
of the line element that will be of order 1, and as I said before, when something is of order 1, an
infinitesimal of order 1, then it means that its trace is logarithmically divergent. So what you do is
that you take the coefficient of the logarithmic divergency and this will give you the volume. Also,
what one has to understand is that if this formalism in which geometry is defined is the quantum

formalism, this immediately

Quantum corrections

ds=8~"
. = .
O h > e

allows you to understand how to incorporate the quantum corrections. Why ? Because we know
very well that the fermion propagator when we do quantum fields theory doesn’t stay as it was
before. It acquires quantum corrections. They are minute modifications of the geometry, which are
given by some kind of power series, but which can be incorporated in the spectral formalism. So

the spectral formalism is encoded in

Spectral Paradigm

— Involutive algebra A,
— Hilbert space H.
— Self-adjoint operator D in H.

The algebra A encodes the space and acts in the Hilbert
space H. The self-adjoint operator D represents the
inverse of the line element.

what is called a spectral triple. So such a triple contains three data :

- the data of an involutive algebra, which gives you the space essentially, the coordinates of the

space ; this algebra is acting in a Hilbert space ;
- the Hilbert space is fixed.

- and moreover you have the selfadjoint element, which is the propagator, which is acting in the
Hilbert space H.

In most cases, by the way, what you will find out is that the representation of both A and D is,

when you take them together, irreducible.
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So this is the spectral paradigm. And what I want to explain will illustrate the power of this

paradigm by a number of cases.

Inner automorphisms

and internal symmetries

A =C®(M,Mn(C)) = C®(M) @ Ma(C)
Algebra of n x n matrices of smooth functions on ma-
nifold M.

The group Int(A) of inner automorphisms is locally iso-
morphic to the group G of smooth maps from M to the
small gauge group SU(n)

1 = Int(A) — Aut(A) — Out(A) = 1
becomes identical to
1 — Map(M,G) = G — DIiff(M) — 1.

So the first thing which happens is that now, because you can talk about the geometry when the
algebra is no longer commutative, now you don’t have the g,, which depends on z and so on and
so forth, just because of that, you can look at the most simple example. The simplest example
which is not commutative is to replace the algebra of functions on a manifold M by n x n matrices
over this algebra. So, if you do that, you just look at the algebra for a while, what you find out,
as I said before, when an algebra is not commutative, it has this non trivial exact sequence, when
you have the trivial automorphisms, which are the inner ones, and which form a normal subgroup
of automorphisms, and then you go to the quotient which is outer automorphisms. Now, when
you apply this sequence, which is general, when you apply it to the algebra of n x n matrices over
manifold, what you obtain is an exact sequence where the inner automorphisms become the maps
from the manifold M to the group G which is in this case the group SU (n), if you take n xn matrices,
and then this goes to the group of automorphisms, and it goes to diffeomorphisms. So what you
find is that automatically by this very simple non-commutative extension, you have enhanced the
group of diffeomorphisms to a group which physicists know very well, because this is the group of
invariance of the action functional if they couple, minimally, gravity with Yang-Mills theory, with
group SU(n).

Spectral Action
and Einstein—Yang-Mills

We have shown with A. Chamseddine that the spectral
action on this space yields Einstein gravity on M mi-
nimally coupled with Yang-Mills theory for the gauge
group SU(n). The Yang-Mills gauge potential appears
as the inner part of the metric, in the same way as the
group of gauge transformations (for the gauge group
SU(n)) appears as the group of inner diffeomorphisms.

So in our work with Ali Chamseddine, what we found was the action functional. We found that if
we take the above very simple case of taking n X n matrices over a manifold, and if we look at the

action that would replace the Einstein action, which is the spectral action, so this spectral action, it
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can hardly be more invariant, this action only depends on the spectrum of the line element. What
you do is that you write the asymptotic expansion and you get the Einstein action. You get the

cosmological term to which I will come back much later.

So you get this Einstein gravity but if you take this Einstein gravity minimally coupled with Yang-
Mills theory, when you do the calculation. And Yang-Mills gauge potential as they appear, appear
as the inner part of the metric. So in exactly the same way that I just said, the group of gauge trans-
formations of second kind, the gauge group SU(n) appear as the group of inner diffeomorphisms.
So you have this blending together, which just comes, you know, from having replaced the algebra
of functions by matrices over V. So this is a very entire thing and with Ali Chamseddine, we have
done a lot of work, then, with Matilde Marcolli, with Walter van Suijlekom, and also with Slava
Mukhanov, we have done a very great amount of work in order to go much further than just this

simple instance of Einstein Yang-Mills.

Spectral Action

and Einstein—Yang-Mills

We have shown with A, Chamseddine that the spectral
action on this space yields Einstein gravity on M mi-
nimally coupled with Yang-Mills theory for the gauge
group SU(n). The Yang-Mills gauge potential appears
as the inner part of the metric, in the same way as the
group of gauge transformations (for the gauge group
SU(n)) appears as the group of inner diffeomorphisms.

In this work, there is an essential role which is played by the real structure. So what happened if
you want is that there is a sort of reconstruction that allows you to reconstruct the manifold from
the spectral data. And in order to restrict to spin manifolds, you have to think to spin ¢ of things
like that, one needs to incorporate a little decoration in the spectral data, which is that of a real
structure. So it’s an anti-linear unitary operator, and we shall see what it is in the physics language
and in the maths language, but essentially, you also have to add another decoration in the case of

even dimension which is the chirality operator. So we have these two, and

Real Structure J

The restriction to spin manifolds is obtained by requi-
ring a real structure i.e. an antilinear unitary operator J
acting in H which plays the same role and has the same
algebraic properties as the charge conjugation operator
in physics.

In the even case the chirality operator ~ plays an impor=-

tant role, both y and J are decorations of the spectral
triple.

39

they fulfilled some commutation rules. And these commutation rules in fact, they tell you that

you are dealing in fact with eight fold-theories, there are 8 possible theories that in the ordinary
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manifold case depend on the dimension modulo 8. If you want, the underlying conceptual theory
is what is called K O-homology, and the reason why this K O-homology plays a fundamental role is
that, if you try to understand at a conceptual level what is a manifold, in the ordinary situation,
in the ordinary differential geometry what is a manifold, you will find out, and this is a work which
goes back to the 1970’s, in particular by Dennis Sullivan, you will find out that what you need to
do...

The following further relations hold for D,J and +

J2=¢, DI=€JD, Jy=¢e'"yJ, Dy= -aD

The values of the three signs ¢,¢/,¢” depend only, in the
classical case of