Chapitre III

Le groupe euclidien

Frank Morley

§ 14. Affinités (applications affines). Algébriquement, une affinité H est l'équation

$$y = ax + b$$

On considère ici non pas les opérations mais les enregistrements - c'est-à-dire qu'on pense à x et y comme à des points du plan de base, liés par une application H, et non pas comme à des points de plans qui se superposent.

L'affinité H a un point fixe f donné par

$$f = af + b$$

Quand a = 1, on dit que le point fixe est à l'infini, $f = \infty$. En prenant le point fixe en 0, on a une forme canonique pour H, y = ax, excepté quand a est 1. Pour cela, on peut prendre y = x + p, où p est positif.

Toutes les applications affines forment un groupe. Car si z = cy + d et y = ax + b, alors z = cax + cb + d = ex + f.

Une affinité est un étirement S lorsque a est un réel, une rotation R quand a est un angle, une translation T quand a = 1.

Toutes les translations forment un groupe, puisque si a=1 et c=1, ac=1. Tous les étirements ne forment pas un groupe, puisque si a est réel, et c est réel, ac est réel mais peut être égal à 1. Tous les étirements et toutes les translations forment un groupe.

Donc toutes les rotations et toutes les translations forment un groupe, le groupe des déplacements dans le plan ou des mouvements rigides.

§ 15. Antilogies. Une antilogie A est l'équation

$$\bar{y} = ax + \bar{b}. \tag{1}$$

C'est la composition ou le produit de H et d'une réflexion $\bar{y} = x$ par rapport à la droite de base.

Elle a en général un point fixe f, donné par

$$\bar{f} = af + \bar{b}$$

Car alors

$$f = \bar{a}\bar{f} + b$$

Troisième chapitre du livre intitulé *Inversive geometry*, de Frank et F.V. Morley, G. Bell et fils éds, 1933.

Transcription et traduction en L^AT_EX : Denise Vella-Chemla, mai 2025.

$$f = a\bar{a}f + \bar{a}\bar{b} + b \tag{2}$$

Avec ceci comme point de base, b est égal à 0. Ainsi A est de la forme

$$\bar{y} = ax$$

En changeant l'unité de direction qui est, en écrivant τx pour x et $\tau^{-1}\bar{y}$ pour \bar{y} , on a

$$\bar{y} = a\tau^2 x.$$

On peut choisir τ^2 de telle façon que $a\tau^2$ est p. On obtient alors la forme canonique de A,

$$\bar{y} = px \tag{3}$$

Cela échoue si $a\bar{a}=1$; c'est-à-dire que, si A a pour équation

$$\bar{y} = tx + \bar{b}$$

En changeant l'unité de direction, ceci vaut

$$\bar{y} = x \pm (\lambda + \iota \mu)$$

et par une translation, $x = x' \pm \iota \mu/2$, on obtient

$$\bar{y} = x + p \tag{4}$$

Ceci est la forme canonique pour l'opération générale consistant en un nombre impair de réflexions.

Mais, si dans (2) $\bar{a} = -b/\bar{b}$, alors $a\bar{a} = 1$ et f devient arbitraire. Ainsi, pour l'antilogie

$$\bar{y} = -\bar{b}x/b + \bar{b}$$

ou

$$x/b + \bar{y}/\bar{b} = 1 \tag{5}$$

l'équation conjuguée est

$$\bar{x}/\bar{b} + y/b = 1.$$

En écrivant la conjuguée, on échange simplement x et y.

Les points du plan sont ainsi désappariés par (5). C'est l'équation d'une réflexion. Quand on rend x et y égaux, on obtient l'équation de la droite des points fixes

$$x/b + \bar{x}/\bar{b} = 1 \tag{6}$$

Ceci est une équation auto-conjuguée. Le point b est, à partir de (5) lorsque y=0, l'image du point de base dans la droite.

Les antilogies ne forment pas un groupe, puisque le produit de deux d'entre elles est une homographie. Mais elles forment le groupe euclidien.

De cela, il découle que tous les groupes mentionnés jusque-là sous des sous-groupes. Mais il y a aussi l'important sous-groupe formé par toutes les réflexions L, ou les antilogies de période 2. Deux ou n'importe quel nombre pair de réflexions donnent les déplacements positifs ou planaires, R ou T. Trois ou n'importe quel nombre impair donnent les déplacements négatifs, pour lesquels la forme canonique est

$$\bar{y} = x + p$$
.

On renvoie ces questions au § 19, et on considère maintenant la composition ou le produit d'étirements, de rotations, et d'affinités en général.

§ 16. Le produit d'étirements. Le produit ou le résultat de deux étirements ou de deux rotations est naturellement d'importance. On le comprend mieux géométriquement - c'est-à-dire par une figure plutôt que par une équation.

Un étirement S est (f, p), où f est le point fixe et ρ un ratio réel. Soit S_i un couple (f_i, ρ_i) . On demande quelles sont les relations sur les points fixes f_i et les ratios ρ_i lorsque $S_1S_2S_3 = I$.

La droite $f_1 - f_2$ étant fixée selon S_1 et S_2 étant fixé selon S_3 , les trois points fixes sont donc sur une droite.

L'étirement S_1 envoie un cercle C de centre y sur un cercle CS_1 , de centre z. L'étirement S_2 envoie ce dernier sur un cercle de centre x. Ainsi ce cercle est CS_1S_2 . L'étirement S_3 envoie celui-ci sur le cercle original, puisque $S_1S_2S_3$ doit être égal à I. Le produit des ratios $\rho_1\rho_2\rho_3$ est alors 1,

$$\rho_1 \rho_2 \rho_3 = 1$$

Mais il y a une relation supplémentaire. On l'obtient en plaçant y et par conséquent z en f_1 . Alors xS_3 est f_1 et f_1S_2 est x. On a alors

$$f_1 - f_3 = \rho_3(x - f_3)$$

et

$$x - f_2 = \rho_2(x - f_2)$$

par conséquent, en éliminant x,

$$f_2 - f_3 + 1/\rho_3(f_3 - f_1) + \rho_2(f_1 - f_2) = 0.$$
 (7)

Ceci est l'une des trois formes équivalentes.

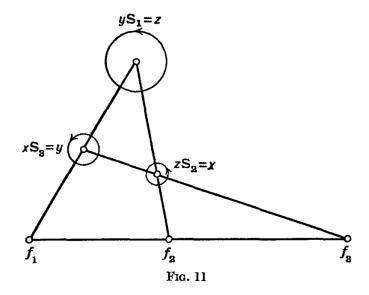
La chose judicieuse consiste à introduire le point auxiliaire f_0 sur la droite fixe, de telle façon que

$$f_2 - f_0 = \rho_1(f_3 - f_0)$$

$$f_3 - f_0 = \rho_2(f_1 - f_0)$$

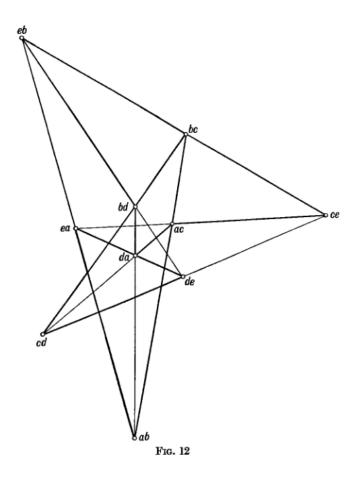
$$f_1 - f_0 = \rho_3(f_2 - f_0)$$

Ces équations satisfont à la fois (1) et (2).



Les points auxiliaires apparaissent plus naturellement dans le produit des affinités (§ 18).

La figure pour le produit de deux étirements est alors un triangle et une droite fixe, ou, si l'on préfère, la figure de trois cercles dirigés (fig. 11). Sur le premier graphique, les points du plan sont arrangés en triangles avec des arêtes sur les points f_i . Une ou trois des arêtes doivent être produites.



Considérons le cas suivant, $S_1S_2S_3S_4 = I$. Ici, S_1S_2 et S_3S_4 sont des étirements réciproques de même point fixe f, l'intersection de $f_1 - f_2$ et $f_3 - f_4$. En prenant n'importe quel point x, les points x, xS_1 , xS_1S_2 , $xS_1S_2S_3$ forment un cycle fermé. La diagonale xS_1 - xS_1S_2 est sur f. Donc également, l'autre diagonale xS_1 - $xS_1S_2S_3$ est sur un point fixe f', l'intersection de $f_2 - f_3$ et $f_4 - f_1$. On a alors quatre droites, $f_1 - f_2$, $f_2 - f_3$, $f_3 - f_4$, et $f_4 - f_1$, et quatre points, f_1 , f_1 , f_2 , f_2 , f_3 , f_3 , f_4 , et f_4 , et f_4 , et quatre points, f_1 , f_2 , f_3 , f_4 , et f_4 , et f_4 , et quatre points, f_1 , f_2 , f_3 , f_4 , et f_4 , et f_4 , et quatre points, f_1 , f_2 , f_3 , f_4 , et f_4 , et f_4 , et quatre points, f_1 , f_2 , f_3 , f_4 , et f_4 , et f_4 , et f_4 , et quatre points, f_1 , f_2 , f_3 , f_4 , et f_4 ,

§ 17. Le produit de rotations. Composer des rotations est plus simple, car une rotation R est le produit de deux réflexions selon les droites L_1 , L_2 , qui s'intersectent en, disons, f, et l'une de ces droites peut être prise comme étant n'importe quelle droite sur f.

Si l'on dénote R par (f,t) alors t est le clinant relatif de L_2 et L_1 .

Pour composer R_1 et R_2 , on prend la droite $f_1 - f_2$ ou L_3 comme seconde droite de R_1 , et la première droite de R_2 . On a ainsi

$$R_1 = L_2L_3$$
 et $R_2 = L_3L_1$

Alors

$$R_1R_2 = L_2L_3^2L_1 = L_2L_1$$

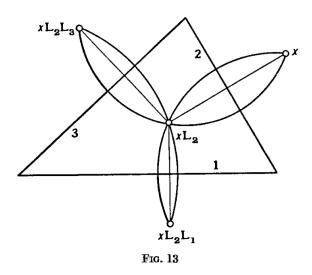
Ou symétriquement, si

$$R_1 = L_2L_3, R_2 = L_3L_1, R_3 = L_1L_2,$$

alors

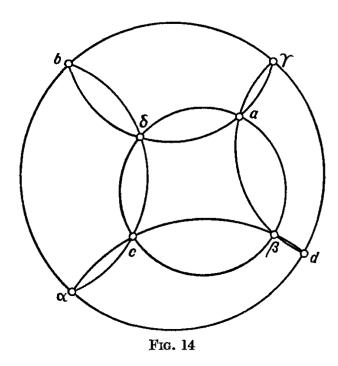
$$R_1R_2R_3 = I.$$

Ainsi, la composition de rotations successives par rapport aux sommets f_1, f_2, f_3 d'un triangle, d'angles deux fois les angles du triangle, correspond à l'identité. On fait référence à cela en parlant de triangle de rotations. En représentant les rotations par des arcs, on a une figure fermée de trois arcs succesifs qui se croisent en un certain point (fig. 13).



On appelle cette figure un trèfle. On peut bien sûr sélectionner les arcs qui s'intersectent seulement quand on les étire.

Si quatre rotations R_i équivalent à l'identité, alors quand on les représente par des arcs ab, bc, cd, da, qui s'intersectent à nouveau les uns après les autres, (fig. 14), on a R_1R_2 =arc $a\delta c$, R_3R_4 =arc $c\beta a$, et par conséquent l'arc $a\delta c \times arc \beta = I$. Donc, $a\delta c\beta$ sont sur un cercle. Et inversement, si $a\delta c\beta$ sont sur un cercle (dans cet ordre), alors $R_1R_2R_3R_4$ =I. Mais alors, on a aussi également $R_2R_3R_4$ = R_{-1} et $R_2R_3R_4$ R₁ =I. Donc également, $b\alpha d\gamma$ sont sur un cercle.



Si alors on prend 4 points $a\delta c\beta$ sur un cercle et que l'on dessine tous les cercles passant par $a\delta, \delta c, c\beta, \beta a$ les intersections restantes des cercles successifs sont sur un cercle.

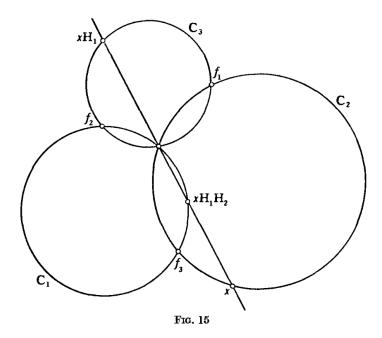
On a ici un schéma de $4 \times 2 = 8$ points :

$$abcd \\ \alpha\beta\gamma\delta$$

de telle façon que n'importe quels 2 points correspondant sur une ligne et les deux autres ne correspondant pas sur l'autre ligne sont sur un cercle; ce qui fait non pas 6, mais seulement 5 conditions sur les 8 points.

§ 18. Les produits d'affinités. Géométriquement, une affinité de centre C envoie un cercle sur un cercle, et un cercle C sur f sur un autre cercle CH sur f. C et CH s'intersecteront à nouveau en d.

N'importe quel point x de C est envoyé sur un point xH de CH. L'union de ces points sera sur d, puisque les angles f, x, d et f, xH, d sont donnés.



Par conséquent, les deux cercles, ordonnés, donne un dessin pratique de ce qu'est une affinité.

Considérons les trois cercles C_i se rencontrant en d, et se rencontrant à nouveau en f_1, f_2, f_3 (fig. 15). Il y a une affinité H_1 envoyant C_2 sur C_3 , une affinité H_2 envoyant C_3 sur C_1 , une affinité H_3 envoyant C_1 sur C_2 . Par conséquent, le produit des trois est l'identité, ou

$$H_1H_2H_3=I. \\$$

Le point x de C_2 , quand on le relie à d, donne le point xH_1 de C_3 et le point xH_1H_2 de C_1 .

On montre que 3 affinités dont le produit est I amènent seulement à la figure ci-dessus. Considérons trois applications positivement similaires sur un plan. Il y a trois points fixes f_i , un pour chaque couple d'applications. Et il y a un point auxiliaire tel que pour les points correspondant des applications

$$(x_2 - f_1)/(x_3 - f_1) = (f_3 - a)/(f_2 - a)$$

$$(x_3 - f_2)/(x_1 - f_2) = (f_1 - a)/(f_3 - a)$$

$$(x_1 - f_3)/(x_2 - f_3) = (f_2 - a)/(f_1 - a)$$

Prenons a comme point de base. Alors

$$x_1f_1 + f_2f_3 = x_2f_2 + f_3f_1 = x_3f_3 + f_1f_2$$

de telle façon que

$$x_{1} = f_{2} + f_{3} + -f_{2}f_{3}/u$$

$$x_{2} = f_{3} + f_{1} + -f_{3}f_{1}/u$$

$$x_{3} = f_{1} + f_{2} + -f_{1}f_{2}/u$$
(8)

Quand la variable u est f_1 , $x_2 = x_3 = f_1$, et

$$x_1 = f_2 + f_3 - f_2 f_3 / f_1 = g_1$$
, disons

ce qui est équivalent à

$$f_1(f_1 - g_1) = (f_1 - f_2)(f_1 - f_3)$$

De (1),

$$x_1 - x_2 = (f_2 - f_1)(1 + (-f_3)/u)$$

$$(x_1 - x_2)/(x_1 - x_3) = (f_2 - f_1)(u - f_3)/(f_3 - f_1)(u - f_2)$$

Quand x_1, x_2, x_3 sont sur une droite, ils sont réels.

Par conséquent, l'angle f_2, u, f_3 est l'angle $f_2, f_1, f_3 \pmod{\pi}$, de telle façon que u est sur le cercle sur f_1, f_2, f_3 .

 Et

$$(x_1 - f_2)/(x_1 - f_3) = f_3(u - f_2)/f_2(u - f_3)$$

de telle façon que lorsque a est sur le cercle f_i , l'angle f_2, x_1, f_3 est une constante (mod π); c'est-à-dire, x_1 est sur le cercle f_2, g_1, f_3 .

Ainsi, quand dans les trois applications similaires, les trois points correspondant x_i sont sur une droite, chaque point x_i est sur un cercle défini sur deux points fixes. Les trois cercles se rencontrent en un point d (le point directeur) et toutes les droites sont sur d. Pour un compte-rendu purement géométrique de cette "théorie des trois figures similaires", voir Casey, Sequel to Euclid, 6ème édition.

Quand le point auxiliaire est le centre du cercle circonscrit de f_i , chaque affinité devient une rotation. En remplaçant f_i par une rotation t_i , les équations (1) deviennent

$$x_1 = t_2 + t_3 - t_2 t_3 / u$$

et en remplaçant u par son inverse y comme cercle de base, on obtient les équations (1) sous la forme des sécantes

$$x-1=t_2+t_3-t_2t_3\bar{y}$$
.

La relation des points a et d aux points fixes f_i est digne d'intérêt.

La droite f_1g_1 a comme équation

$$\frac{x - f_1}{f_1 - g_1} = \frac{\bar{x} - \bar{f}_1}{\bar{f}_1 - \bar{g}_1} = \text{un reel.}$$

Puisque

$$(f_1 - g_1)f_1 = (f_1 - f_2)(f_1 - f_3)$$

 $(x - f_1)f_1(f_2 - f_3) = \text{son conjugue} = \text{un reel.}$

Par conséquent, pour le point d sur toutes les droites, on a trois équations telles que

$$(d - f_1)f_1(f_2 - f_3) = \lambda_1,$$

donc

$$\sum \lambda_1/(d-f_1)=0$$

et aussi

$$\sum \lambda_1/f_1=0.$$

La dernière équation avec sa conjuguée détermine les ratios réels $\lambda_1:\lambda_2:\lambda_3$. Il en découle que quand f_i sont les points fixes, a le point auxiliaire, et d le point directeur, les deux derniers sont reliés mutuellement comme racines d'une équation

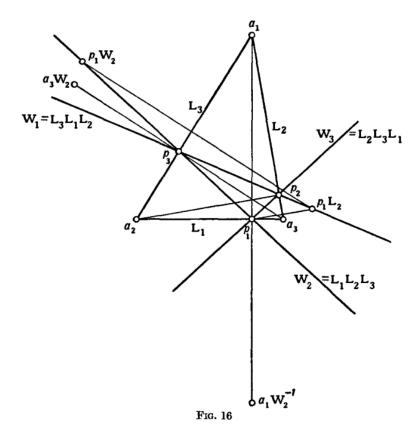
$$\sum \lambda_i / (x - f_i) = 0 \tag{9}$$

où les λ_i sont réels.

On rencontre à nouveau cette équation dans le § 143.

§ 19. Déplacements négatifs. Un nombre impair de réflexions se réduit à une rotation et une réflexion; par conséquent à une réflexion L_1 et une translation; et finalement, en résolvant la translation selon et le long de la droite L_1 à une réflexion L et à une translation L parallèle à la droite L. Ceci est la réduction canonique pour un déplacement négatif (§ 15). On peut penser à cela comme à un twist dans l'espace le long d'une vis dont l'axe est la droite L, selon deux angles droits. Avec cela en tête, on désignera le déplacement LT par le terme de t par le

Si l'on dénote un twist (d'angle π) par W, alors W=LT=TL. On note que le point médian de x et xW est sur l'axe L, et que W et W⁻¹ ont le même axe.



La transformation d'une opération par une réflexion L_0 étant l'opération réfléchie, la transformation de W,

$$L_0LW_0=W^\prime$$

est un twist dont l'axe est l'image dans L₀ de l'axe de W.

Considérons le produit de réflexions selon trois droites formant un triangle a_1, a_2, a_3 (fig. 16). On a ici

$$W_2 = L_1 L_2 L_3$$

 $W_2^{-1} = L_3 L_2 L_1$

Appelons le vecteur à partir d'un sommet perpendiculaire à, et se terminant en, le côté opposé, une altitude. Appelons les points extrémités ou pieds de ces altitudes p_1, p_2, p_3 . Puisque a_3 est sur L_1 et L_2 , a_3W_2 est a_3L_3 , de telle façon que le point médian de a_3 et a_3W_2 est p_3 . C'est un point sur l'axe de W_2 . Puisque a_1 est sur L_2 et L_3 , $a_1W_2^{-1}$ est a_1L_1 , de telle façon que le point médian de a_1 et $a_1W_2^{-1}$ est p_1 . C'est un point sur l'axe de W_2^{-1} , qui est sur W_2 . L'axe de $L_1L_2L_3$ est alors sur p_3 et p_1 . Si l'on transforme $L_1L_2L_3$ par L_1 , on obtient $L_1L_1L_2L_3L_1$, c'est-à-dire $L_1 = 2L_3L_1$ est W_3 . Son axe est sur p_1 et p_2 . Par conséquent, cette droite est l'image de la droite $p_3 - p_1$ dans L_1 . Similairement, la transformation de $L_2L_3L_1$ par L_2 est $L_3L_1L_2 = W_1$, avec l'axe $p_2 - p_3$.

Pour obtenir le pitch de $L_1L_2L_3 = W_2$, on prend p_1 et on obtient $p_1L_1L_2L_3$, qui est $p_1L_2L_3$ (fig. 16); p_1L_2 est sur la droite p_2, p_3 , et $p_2L_2L_3$ est donc sur la droite p_1, p_3 . Par conséquent, pour un angle aigu, le pitch, notamment

$$|p_1W - p_1|$$

est le périmètre du triangle p_1, p_2, p_3 .

Si maintenant on regarde un triangle à angle aigu comme un instrument, et qu'on le tourne pour l'accoler d'abord au côté 1 fixé, puis au côté 2 fixé, puis enfin au côté 3 fixé, on obtient la fig. 17. Les points p_3, p_1 de la première position (marqués I) sont alignés avec les points p_1, p_2 de la seconde position (marquée L_1), et etc. La condition que le triangle ait des angles aigus est la condition pour que l'axe du twist coupe les positions successives du triangle. Quand cette condition est vérifiée, l'axe coupe la position I en p_1, p_3 ; effectuer une réflexion de l'axe selon les côtés 1 et 3 donne le triangle p_1, p_2, p_3 .

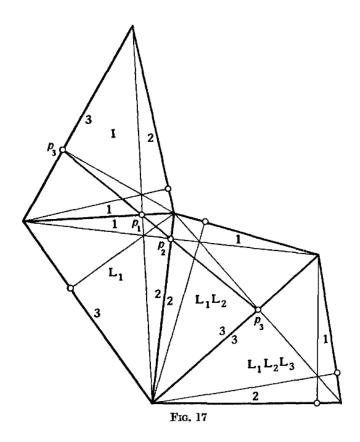
C'est une image dans le plan pratique de ce qu'est un twist, les réflexions étant les droites marquées 11, 22, 33. Le pitch est le périmètre du triangle p_1, p_2, p_3 . Il est clair sur cette figure que le périmètre de $P_1P_2P_3$ est le périmètre minimum pour les triangles inscrits, car aucun autre triangle inscrit ne donnerait une ligne droite 1 .

Les deux opérations, celle de faire tourner le triangle sur les côtés successifs 1, 2, 3, et de faire une réflexion du plan successivement selon les droites 1, 2, 3, sont des opérations réciproques, et elles ont le même axe.

Construisons la fig. 18 pour un pentagone analogue à la fig. 17 pour un triangle.

^{1.} H. A. Schwarz, Mathematische Abhandlungen, vol. 2.

En regardant le pentagone comme une carte, on la fait tourner sur les côtés 1, 2... 5 successivement, en nommant les positions I, L_1 ... $L_1L_2L_3L_4L_5$. W désigne $L_1L_2L_3L_4L_5$. Le point médian de x et xW est sur l'axe de W. Cet axe est ainsi déterminé par les points médians, disons, de 23 et 23W, 45 et 45W.



La condition pour qu'un pentagone inscrit soit de périmètre minimum est que l'axe de W coupe toutes les positions successives du pentagone donné. En prenant ce cas, l'axe détermine dans la position I les points p_1, p_5 . Effectuer une réflexion de l'axe dans 1 et 5 de la position I donne p_2 et p_4 ; et effectuer une réflexion de la droite $p_1 - p_2$ ou de la droite $p_5 - p_4$ dans 4, donne p_3 . On a alors le pentagone $p_1, p_2...p_5$ de périmètre minimum.

Comme auparavant, le produit de tours successifs de l'instrument pentagone, et les réflexions successives du plan selon les droites 1, 2,... 5, sont des opérations réciproques, avec le même axe.

Et ainsi, en général, pour un polygone ayant un nombre impair de côtés, disons 2n+1, le problème de construire le chemin fermé de longueur minimale qui relie les côtés successifs est résolu en construisant une figure analogue à la fig. 18. Le polygone P est déplacé en PW, avec $W = L_1L_2$ L_{2n+1} ; l'axe de W est déterminé par les points médians des points convenables x, xW et y, yW; et les points p_1, p_{2n+1} sont coupés par l'axe sur les côtés 1, 2n+1 de P; en respectant la condition sur P, que l'axe de W doive couper toutes les positions successives de P.

