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Theorem 2.18. The dimension of the near intersection of QΛ with NE is given by

(2.132) Tr(QΛNE) =
4E

2π
log Λ− 2(〈N(E)〉 − 1) + o(1), for Λ →∞.

This still requires justifying the fact that we applied the result of Theorem 2.6 to the
function hE /∈ S(R∗). This is discussed in §5.1 below. We also give in Remark 2.23
below an explanation for the additive 2 that appears in the expression −2〈N(E)〉+2
in (2.131) and (2.132).

5.1. Quantized calculus.

In order to prove Theorem 2.18 and refine the analysis of §5, we use the quantized
calculus developed in [68]. In particular, we analyze here the relative position of the
three projections PΛ, P̂Λ, and NE , using identities involving the quantized calculus,
as proved in [72]. The method used here is based on the idea of Burnol [37] which
simplifies the original argument of [71].

First recall from §IV of [68] that the main idea of quantized calculus is to give
an operator-theoretic version of the calculus rules, based on the operator-theoretic
differential

(2.133) −d f := [F, f ],

where f is an element in an involutive algebra A represented as bounded operators
on some Hilbert space H, and the right-hand side of (2.133) is the commutator with
a self-adjoint operator F on H with F 2 = 1.

In particular, we recall the framework for the quantized calculus in one variable,
as in §IV of [68]. We let functions f(s) of one real variable s act as multiplication
operators on L2(R), by

(2.134) (f h)(s) := f(s) h(s) , ∀h ∈ L2(R).

We let FeR denote the Fourier transform with respect to the basic character eR(x) =
e−2πix, namely

(2.135) FeR(h)(y) :=
∫

h(x) e−2πixy dy.

We also introduce the notation

(2.136) Π[a,b] := FeR 1[a,b]F
−1
eR ,

for the conjugate by the Fourier transform FeR of the multiplication operator by the
characteristic function 1[a,b] of the interval [a, b] ⊂ R.

Definition 2.19. We define the quantized differential of f to be the operator

(2.137) −d f := [H, f ] = H f − f H,

where H is the Hilbert transform H = 2 Π[0,∞] − 1 given by

(2.138) (H h)(s) :=
1
iπ

∫
h(t)
s− t

dt.
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Thus, the quantized differential of f is given by the kernel

(2.139) k(s, t) =
i

π

f(s)− f(t)
s− t

.

We follow [281] and [37], and use the classical formula expressing the Fourier trans-
form as a composition of the inversion

(2.140) I(f)(s) := f(s−1)

with a multiplicative convolution operator. We use the unitary identification

(2.141) w : L2(R, ds)even → L2(R∗+, d∗λ), w(η)(λ) := λ1/2 η(λ), ∀λ ∈ R∗+
whose inverse is given by

(2.142) w−1 : L2(R∗+, d∗λ) → L2(R, ds)even, w−1(ξ)(x) := |x|−1/2 ξ(|x|) .

Also we define the duality 〈R∗+,R〉 by the bicharacter

(2.143) µ(v, s) = v−is , ∀v ∈ R∗+, s ∈ R ,

so that the Fourier transform Fµ : L2(R∗+) → L2(R) associated to the bicharacter µ
is

(2.144) Fµ(f)(s) :=
∫ ∞

0
f(v)v−isd∗v .

Lemma 2.20. On L2(R)even one has

(2.145) FeR = w−1 ◦ I ◦ F−1
µ ◦ u ◦ Fµ ◦ w,

where u is the multiplication operator by the function

(2.146) u(s) := e2 i θ(s),

where θ(s) is the Riemann-Siegel angular function of (2.24).

Proof. First FeR preserves globally L2(R)even. One has, for ξ ∈ L2(R∗+),

(w ◦ FeR ◦ w−1)(ξ)(v) = v1/2

∫

R
|x|−1/2 ξ(|x|) e−2πixv dx

= v1/2

∫

R∗+
u1/2 ξ(u) (e2πiuv + e−2πiuv) d∗u .

This gives
(I ◦ w ◦ FeR ◦ w−1)(ξ)(λ) = (w ◦ FeR ◦ w−1)(ξ)(λ−1)

= λ−1/2

∫

R∗+
(e2iπuλ−1

+ e−2iπuλ−1
) u1/2ξ(u)d∗u

We thus obtain

(2.147) I ◦ w ◦ FeR ◦ w−1 = C

where the operator C on the Hilbert space L2(R∗+, d∗λ) is given by convolution by

(2.148) v 7→ 2v−1/2 cos(2πv−1).

By construction C is unitary and commutes with the regular representation of R∗+.
Thus C = F−1

µ ◦ u ◦ Fµ where u is the Fourier transform

(2.149) u(s) =
∫ ∞

0
2v−1/2 cos(2πv−1)v−isd∗v.
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This is defined in the sense of distributions. To compute (2.149) one can let v = e−t

and use

(2.150)
∫

R
et/2e−zet

eist dt = z−(1/2+is)Γ(1/2 + is) , ∀z , =z > 0 .

This gives

(2.151) u(s) = 2 cos((1/2 + is)π/2)(2π)−(1/2+is)Γ(1/2 + is)

and the duplication formula

(2.152) Γ
(z

2

)
Γ

(
1 + z

2

)
= π1/221−zΓ(z)

shows that u(s) is given by

(2.153) u(s) =
π−z/2Γ(z/2)

π−(1−z)/2Γ((1− z)/2)
, z = 1/2 + is ,

which, using (2.24) gives (2.146). ¤
The following lemma relates the quantized calculus to the analysis of the geometry
of the three projections PΛ, P̂Λ and NE .

Lemma 2.21. For any Λ there is a unitary operator

(2.154) W = WΛ : L2(R)even → L2(R),

such that, for any functions hj ∈ S(R∗+), j = 1, 2, one has

(2.155)
Wϑa(h̃1)P̂ΛPΛϑa(h̃2)W ∗ =

ĥ1

(
1
2u−1 −duΠ

[−∞, 2 log Λ
2π

]
+ Π

[0, 2 log Λ
2π

]

)
ĥ2

Here h̃j(λ) = λ−1/2hj(λ), the operator −d u is the quantized differential of the function
u of (2.146) and ĥj is the multiplication operator by the Fourier transform Fµ(hj).

Proof. We let ϑm be the regular representation of R∗+ on L2(R∗+)

(2.156) (ϑm(λ) ξ)(v) := ξ(λ−1 v) , ∀ξ ∈ L2(R∗+) .

One has

(2.157) w ϑa(h̃j)w−1 = ϑm(hj), and Fµϑm(hj)F−1
µ = ĥj .

Now we have PΛ = 1[−Λ,Λ], so that wPΛw−1 = 1[0,Λ], and we obtain

P̂ΛPΛ = FeRPΛF−1
eR PΛ = w−1IF−1

µ uFµ1[0,Λ]F
−1
µ u−1FµI1[0,Λ]w

= w−1F−1
µ u−1Fµ1[Λ−1,∞]F

−1
µ uFµ1[0,Λ]w,(2.158)

where we used the identity IF−1
µ uFµ = F−1

µ u−1FµI, which follows from the sym-
metry θ(−s) = −θ(s). We also used the identity I1[0,Λ]I = 1[Λ−1,∞].
We now set

(2.159) WΛ := Fµ ϑm(Λ)w,

with ϑm(Λ) as in (2.156). One has

(2.160) WΛ ϑa(h̃1)P̂ΛPΛϑa(h̃2)W−1
Λ =
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Fµϑm(Λ)ϑm(h1)F−1
µ u−1Fµ1[Λ−1,∞]F−1

µ uFµ1[0,Λ]ϑm(h2)ϑm(Λ)−1F−1
µ

= ĥ1u
−1Fµϑm(Λ)1[Λ−1,∞]ϑm(Λ)−1F−1

µ uFµϑm(Λ)1[0,Λ]ϑm(Λ)−1F−1
µ ĥ2 .

Here we use the identities (2.157) and the fact that ϑm(Λ) commutes with multi-
plicative convolution operators such as F−1

µ u−1Fµ. Next we see that

(2.161) ϑm(Λ)1[Λ−1,∞]ϑm(Λ)−1 = 1[1,∞] , ϑm(Λ)1[0,Λ]ϑm(Λ)−1 = 1[0,Λ2] .

In order to use the quantized calculus on functions on R as in Definition 2.19, we
use the isomorphism of abelian groups

(2.162) t ∈ R 7→ e2πt ∈ R∗+
and note that Fµ and FeR are conjugate by this isomorphism since the bicharacter
µ(v, s) = v−is of (2.143) fulfills

(2.163) µ(e2πt, s) = e−2πist = eR(st) .

Thus we get from (2.136),

(2.164) Fµ1[a,b]F
−1
µ = Π

[ log a
2π

, log b
2π

]
,

and we obtain, using (2.160)

(2.165) WΛ ϑa(h̃1)P̂ΛPΛϑa(h̃2)W−1
Λ = ĥ1u

−1Π[0,∞] uΠ
[−∞, 2 log Λ

2π
]
ĥ2 .

We then use

(2.166)
1
2
−d u = [Π[0,∞], u] ,

which completes the proof of (2.155). ¤

5.2. Proof of Theorem 2.18.

As a first application of Lemma 2.21 we now complete the proof of Theorem 2.18.
One has NE = ϑm(hE), where ĥE = 1[−E,E]. Thus, NEP̂ΛPΛ is unitarily equivalent
to

(2.167) 1[−E,E]

(
1
2
u−1 −duΠ

[−∞, 2 log Λ
2π

]
+ Π

[0, 2 log Λ
2π

]

)
.

The trace of 1[−E,E]Π[0, 2 log Λ
2π

]
is equal to 2E 2 log Λ

2π and gives the leading term in the

formula for Tr(NEP̂ΛPΛ). If we replace Π
[−∞, 2 log Λ

2π
]
by 1 the other term gives

(2.168) Tr
(
1[−E,E]

(
1
2
u−1 −du

))
=

∫ E

−E
k(s, s)ds,

where k(s, t) is the kernel representing 1
2u−1 −du. Its diagonal values are

(2.169) k(s, s) = − 1
π

dθ

ds
,

where we use (2.139) and (2.146). Thus, the integral gives

(2.170) Tr
(
1[−E,E]

(
1
2
u−1 −du

))
= − 2

π
θ(E) = −2(〈N(E)〉 − 1).
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The remainder in the formula

(2.171) Tr(NEP̂ΛPΛ) = 2E
2 log Λ

2π
− 2(〈N(E)〉 − 1) + r(E, Λ)

is therefore given by

(2.172) r(E,Λ) =
1
2
Tr(1[−E,E]u

−1 −duΠ
[ 2 log Λ

2π
,∞]

).

For Λ →∞ one has Π
[ 2 log Λ

2π
,∞]

→ 0 strongly. However, one needs to be a bit careful

about the operator T = 1[−E,E]u
−1 −du, since it is unclear that it is of trace-class. One

can check that the operator TT ∗ is a Hilbert-Schmidt operator. Also 1[−E,E]u
−1 −du f

is of trace-class, for any compactly supported function f , since θ is smooth. With f
smooth, compactly supported and identically equal to 1 on [−E, E] one has

(2.173) Tr(1[−E,E]u
−1 −duΠ

[ 2 log Λ
2π

,∞]
) = Tr(1[−E,E]u

−1 −duΠ
[ 2 log Λ

2π
,∞]

f).

In fact, 1[−E,E]u
−1 −duΠ

[ 2 log Λ
2π

,∞]
is of trace-class by Lemma 2.21.

Moreover, the commutator [Π
[ 2 log Λ

2π
,∞]

, f ] is the conjugate of −df by the function

s 7→ Λis. Thus, it is of trace-class and converges weakly to 0 as a family of Hilbert-
Schmidt operators for Λ → ∞. Since 1[−E,E]u

−1 −du is Hilbert-Schmidt, we see that
we can permute f with Π

[ 2 log Λ
2π

,∞]
without affecting the limit. Since Π

[ 2 log Λ
2π

,∞]
→ 0

strongly, we obtain

(2.174) r(E, Λ) → 0 for Λ →∞.

This completes the proof of Theorem 2.18, making use of (2.66) to control the
difference between QΛ and P̂ΛPΛ in the statement.

Remark 2.22. One can use Lemma 2.21 to estimate the angle of the projections
QΛ and NE . Indeed, we obtain

(2.175) [NE , P̂ΛPΛ] ∼ [1[−E,E],
1
2
u−1 −duΠ

[−∞, 2 log Λ
2π

]
] + [1[−E,E],Π[0, 2 log Λ

2π
]
].

The second commutator on the right hand side of (2.175) is of the order of log(E)+
log(log(Λ)) by the analysis of §3.2. The limit for Λ →∞ of the first commutator on
the right hand side of (2.175) has Hilbert-Schmidt norm of the order of

√
log(E),

as one gets from the estimate

(2.176)
∫

|s|>E

∫

t∈[−E,E]

∣∣∣∣∣
e2iθ(s) − e2iθ(t)

s− t

∣∣∣∣∣
2

dt ds = O(log(E)).

6. The map E

Notice that the first term in (2.132) of Theorem 2.18 above, of the form 4E
2π log Λ, is

in fact the symplectic volume v(W (E,Λ)) of the box

(2.177) W (E,Λ) = {(λ, s) ∈ R∗+ × R : | log λ| ≤ log Λ , and |s| ≤ E}
as in (2.46). The symplectic volume is computed in the symplectic space given by
the product of the group R∗+ ∼ R by its dual R under the pairing (λ, s) 7→ λis, with
the symplectic form given by the product of the Haar measure by the dual one.


