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THEOREM 2.18. The dimension of the near intersection of Qp with Ng is given by
4F
(2.132) Tr(QANE) = 9 logA —2((N(E)) — 1) +o(1), for A — oc.
m

This still requires justifying the fact that we applied the result of Theorem 2.6 to the
function hp ¢ S(R*). This is discussed in §5.1 below. We also give in Remark 2.23
below an explanation for the additive 2 that appears in the expression —2(N(E))+2
in (2.131) and (2.132).

5.1. Quantized calculus.

In order to prove Theorem 2.18 and refine the analysis of §5, we use the quantized
calculus developed in [68]. In particular, we analyze here the relative position of the
three projections Py, ﬁA, and Ng, using identities involving the quantized calculus,
as proved in [72]. The method used here is based on the idea of Burnol [37] which

simplifies the original argument of [71].

First recall from §IV of [68] that the main idea of quantized calculus is to give
an operator-theoretic version of the calculus rules, based on the operator-theoretic
differential

(2.133) af:=[F fl,

where f is an element in an involutive algebra A represented as bounded operators
on some Hilbert space H, and the right-hand side of (2.133) is the commutator with
a self-adjoint operator F on H with F? = 1.

In particular, we recall the framework for the quantized calculus in one variable,
as in §IV of [68]. We let functions f(s) of one real variable s act as multiplication
operators on L?(R), by

(2.134) (fh)(s) := f(s)h(s), Vhe L*R).

We let F, denote the Fourier transform with respect to the basic character eg(z) =
e~ 2™ namely

(2.135) F..(h)(y) :== / h(z) e 2™ dy.

We also introduce the notation

(2.136) g p) := Feg 1[a,b]Fe_Rlu

for the conjugate by the Fourier transform F, of the multiplication operator by the
characteristic function 1(, 4 of the interval [a,b] C R.

DEFINITION 2.19. We define the quantized differential of f to be the operator
(2.137) df:=[H, fl=Hf—- fH,
where H s the Hilbert transform H =2 Iljg o) — 1 given by

(2.138) (H h)(s) = — / At 4

T s—t
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Thus, the quantized differential of f is given by the kernel
] — f(t
(2.139) (s, 1) = L L =IO
us s—1
We follow [281] and [37], and use the classical formula expressing the Fourier trans-
form as a composition of the inversion

(2.140) I(f)(s) = f(s71)

with a multiplicative convolution operator. We use the unitary identification
(2.141) w: L3R, ds)"™ — L2(R%, d*\), w(n)(N) == A/2p(N), VA € R:
whose inverse is given by

(2.142) w s LARY, d*N) — L*(R,ds)™™, w™(¢)(z) == 2|72 ¢(|z)) .
Also we define the duality (R*,R) by the bicharacter

(2.143) (v, s) =v"*, WYweR* seR,

so that the Fourier transform F, : L*(R* ) — L%*(R) associated to the bicharacter p
is

e}

(2.144) B = [ fwpuid.
0

LEMMA 2.20. On L?(R)®¥® one has

(2.145) Fo,=w 'oloF,' ouoF,ow,

where u is the multiplication operator by the function
(2.146) u(s) = e2190),
where 0(s) is the Riemann-Siegel angular function of (2.24).
PRrROOF. First F, preserves globally L?(R)®*". One has, for £ € L*(R%),

(w 0 Fey 0w 1)()(v) = /2 / 2 V2 £(j]) 2
R

— ,Ul/2 / u1/2 f(u) (627riuv + e—27rz'uv) d*u .
This gives '
(Tow oFe 0w ™)(§)(A) = (w o Feg ow™)(E)(A™)

_ )\—1/2/ (€2i7ru)\’1 +e—2i7ru>\’l)u1/2£(u)d*u
+
We thus obtain

(2.147) TowoFg,ow'=C
where the operator C' on the Hilbert space L2(Ri, d*\) is given by convolution by
(2.148) v 20712 cos(2mvh).

By construction C is unitary and commutes with the regular representation of R7 .
Thus C = F;l ouoF, where u is the Fourier transform

(2.149) u(s):/ 20712 cos(2mv o d*v.
0
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This is defined in the sense of distributions. To compute (2.149) one can let v = e~

and use

(2.150) / et/2em2e" it gt — 2~ U2H)D(1/2 +4s), Yz, Sz2>0.
R
This gives
(2.151) u(s) = 2cos((1/2 +is)m/2)(2m)~ /20 (1/2 4 is)
and the duplication formula
1
(2.152) r (g) T < er z) — 71/291=2D(2)

shows that wu(s) is given by

221 (2/2)
== ((1 = 2)/2)
which, using (2.24) gives (2.146)). O

(2.153) u(s) =

,z=1/2+1s,

The following lemma relates the quantized calculus to the analysis of the geometry
of the three projections Py, Py and Ng.

LEMMA 2.21. For any A there is a unitary operator

(2.154) W =Wy : L*(R)>" — L*(R),

such that, for any functions hj € S(R%), j = 1,2, one has
W (hy) Pp PAOa(ho)W* =

(2.155)

iLl (%uildun[—oo M} + H[O M]) iL2

’ 27 ’2m

Here ﬁj()\) = A"12h;(N), the operator du is the quantized differential of the function
u of (2.146) and h; is the multiplication operator by the Fourier transform F,(h;).

PROOF. We let ¥y, be the regular representation of R* on L?(R*)

(2.156) (Im(N) €)(v) == EATw), VEe LA(RY).
One has
(2.157) wa(hj)w™! = V(h;), and Fu¥u(h;)F, ' =h;.

Now we have Py = 1|_j 4], so that wPyw™ = 1j0,7]; and we obtain
P\Py =F PAF_'Py = w 'IF,"uF, 1\ F, v F I1 w
(2.158) = w F T Fulpy-1 o F, uF 1 aw,
where we used the identity I F;luF“ = F;luleMI , which follows from the sym-

metry 6(—s) = —0(s). We also used the identity I1gz)] = 1jp-1 o)
We now set

(2.159) Wp :=F,0n(A)w,
with ¥y, (A) as in (2.156). One has
(2.160) W a(h1) Py Prda(ho) Wit =
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F . 0m(A)9m(h1) F ol u™ F Ly o F  uF 1 o/ 0m (ho)dm (A) 71F,
= T F 0 (A) 1 [p -1 o O (A) T F L 0 (A) 1 o) (A) TV F Ty

Here we use the identities (2.157) and the fact that ¥y, (A) commutes with multi-
plicative convolution operators such as F;lu_lF#. Next we see that

(2.161) ﬁm(A)l[A—l,oo}’&m(A)il = 1[17001 s ﬁm(A)l[O,A]ﬁm(A)il = 1[0,A2] .

In order to use the quantized calculus on functions on R as in Definition 2.19, we
use the isomorphism of abelian groups

(2.162) teR— ™ e R

and note that F, and F., are conjugate by this isomorphism since the bicharacter
w(v,s) =v=" of (2.143)) fulfills

(2.163) (™, s) = e 2™t = ep(st) .
Thus we get from (2.1306),
(2.164) FulioyF,' = Mjioa o0,

and we obtain, using (2.160)

(2.165) W a(h1) PAPAOa (ho) Wit = hiu™ g o un[m,zggﬂ% :
We then use
1
(2.166) 5 du = [ o), ul,
which completes the proof of (2.155). O

5.2. Proof of Theorem 2.18.

As a first application of Lemma 2.21 we now complete the proof of Theorem 2.18.
One has Ng = 9y (hg), where hg = 1i_g,g- Thus, Ng Py Py is unitarily equivalent
to

1
(2167) 1[—E,E] (2u_1d—UH[OO,21§gA] + H[O 2logA}> .

’2m
The trace of 1[—E,E}H[0 2logA | is equal to 2E% and gives the leading term in the
’ 27

formula for Tr(N EﬁAPA). If we replace H[ioo 2log ) by 1 the other term gives
’ 2w

1 E
(2.168) Tr (1[_E7E] <2u_1d'u>> :/ k(s,s)ds,
)
where k(s,t) is the kernel representing %u_ld“u. Its diagonal values are
1do
2.169 k = ———
(2.169) (5.5) =~

where we use (2.139) and (2.146)). Thus, the integral gives

(2.170) T (1[_E7E} (;u—lcru» - —%H(E) — _2((N(E)) - 1).
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The remainder in the formula

2log A
(2.171) Tr(NgPyPy) = 2E Og —((N(E)) — 1) + r(E, A)
is therefore given by
1
(2.172) r(E,A\) = fTr( a E,E]u—ldun[mogA o))"
2T

For A — oo one has I 210¢ o] 0 strongly. However, one needs to be a bit careful

PE

about the operator T'=1|_g, E]ufld‘u, since it is unclear that it is of trace-class. One
can check that the operator T'T™ is a Hilbert-Schmidt operator. Also 1|_pg, E]u_ld‘u f
is of trace-class, for any compactly supported function f, since 6 is smooth. With f
smooth, compactly supported and identically equal to 1 on [—F, E] one has

(2.173) Tr(1_pg, E]u_ld“u H[%m}) = Tr(l[_E,E]U_lth H[%’w} f).

In fact, 1_g gju~ Yau Il 210 4 o] is of trace-class by Lemma [2.21.

2
Moreover, the commutator [H[2logA o]’ f] is the conjugate of df by the function
) 27
s — A". Thus, it is of trace-class and converges weakly to 0 as a family of Hilbert-
Schmidt operators for A — oo. Since 1|_g, E]ufld‘u is Hilbert-Schmidt, we see that
we can permute f with H[QlogA o] without affecting the limit. Since H[2logA o] ™ 0
2w 2m 0

strongly, we obtain

(2.174) r(E,A) -0 for A — oco.

This completes the proof of Theorem 2.18, making use of (2.66) to control the
difference between (Qx and P P in the statement.

REMARK 2.22. One can use Lemma 2.21] to estimate the angle of the projections
Qa and Ng. Indeed, we obtain

~ 1 _
(2.175) [Ng, PAPy] ~ [1[—E,E]7 §u 1d—uH[_oo 210gA]} + [1[—E,E}7H[0721§7§A]]-

’ 27
The second commutator on the right hand side of (2.175) is of the order of log(E) +
log(log(A)) by the analysis of §3.2. The limit for A — oo of the first commutator on
the right hand side of (2.175) has Hilbert-Schmidt norm of the order of \/log(E),
as one gets from the estimate

(2.176) /s|>E /e[ E,E]

e2i0(s 216(15)
dtds = O(log(E)).

T s—t

6. The map ¢

Notice that the first term in (2.132)) of Theorem 2.18 above, of the form % log A, is
in fact the symplectic volume v(W(E, A)) of the box

(2.177) W(E,A) ={(\,s) e RL xR : |[log A] <logA, and |s| < E}

as in (2.46). The symplectic volume is computed in the symplectic space given by
the product of the group R ~ R by its dual R under the pairing (A, s) — A*, with
the symplectic form given by the product of the Haar measure by the dual one.



