Theorem 2.18. The dimension of the near intersection of Q_{Λ} with N_{E} is given by

$$
\begin{equation*}
\operatorname{Tr}\left(Q_{\Lambda} N_{E}\right)=\frac{4 E}{2 \pi} \log \Lambda-2(\langle N(E)\rangle-1)+o(1), \quad \text { for } \Lambda \rightarrow \infty \tag{2.132}
\end{equation*}
$$

This still requires justifying the fact that we applied the result of Theorem 2.6 to the function $h_{E} \notin \mathcal{S}\left(\mathbb{R}^{*}\right)$. This is discussed in $\S 5.1$ below. We also give in Remark 2.23 below an explanation for the additive 2 that appears in the expression $-2\langle N(E)\rangle+2$ in (2.131) and (2.132).

5.1. Quantized calculus.

In order to prove Theorem 2.18 and refine the analysis of $\S 5$, we use the quantized calculus developed in [68]. In particular, we analyze here the relative position of the three projections $P_{\Lambda}, \widehat{P}_{\Lambda}$, and N_{E}, using identities involving the quantized calculus, as proved in [72]. The method used here is based on the idea of Burnol [37] which simplifies the original argument of [71].

First recall from §IV of [68] that the main idea of quantized calculus is to give an operator-theoretic version of the calculus rules, based on the operator-theoretic differential

$$
\begin{equation*}
đ f:=[F, f], \tag{2.133}
\end{equation*}
$$

where f is an element in an involutive algebra \mathcal{A} represented as bounded operators on some Hilbert space \mathcal{H}, and the right-hand side of (2.133) is the commutator with a self-adjoint operator F on \mathcal{H} with $F^{2}=1$.

In particular, we recall the framework for the quantized calculus in one variable, as in $\S \mathrm{IV}$ of [68]. We let functions $f(s)$ of one real variable s act as multiplication operators on $L^{2}(\mathbb{R})$, by

$$
\begin{equation*}
(f h)(s):=f(s) h(s), \quad \forall h \in L^{2}(\mathbb{R}) \tag{2.134}
\end{equation*}
$$

We let $\mathbf{F}_{e_{\mathbb{R}}}$ denote the Fourier transform with respect to the basic character $e_{\mathbb{R}}(x)=$ $e^{-2 \pi i x}$, namely

$$
\begin{equation*}
\mathbf{F}_{e_{\mathbb{R}}}(h)(y):=\int h(x) e^{-2 \pi i x y} d y \tag{2.135}
\end{equation*}
$$

We also introduce the notation

$$
\begin{equation*}
\Pi_{[a, b]}:=\mathbf{F}_{e_{\mathbb{R}}} \mathbf{1}_{[a, b]} \mathbf{F}_{e_{\mathbb{R}}}^{-1} \tag{2.136}
\end{equation*}
$$

for the conjugate by the Fourier transform $\mathbf{F}_{e_{\mathbb{R}}}$ of the multiplication operator by the characteristic function $\mathbf{1}_{[a, b]}$ of the interval $[a, b] \subset \mathbb{R}$.

Definition 2.19. We define the quantized differential of f to be the operator

$$
\begin{equation*}
đ f:=[H, f]=H f-f H, \tag{2.137}
\end{equation*}
$$

where H is the Hilbert transform $H=2 \Pi_{[0, \infty]}-1$ given by

$$
\begin{equation*}
(H h)(s):=\frac{1}{i \pi} \int \frac{h(t)}{s-t} d t . \tag{2.138}
\end{equation*}
$$

Thus, the quantized differential of f is given by the kernel

$$
\begin{equation*}
k(s, t)=\frac{i}{\pi} \frac{f(s)-f(t)}{s-t} \tag{2.139}
\end{equation*}
$$

We follow [281] and [37], and use the classical formula expressing the Fourier transform as a composition of the inversion

$$
\begin{equation*}
I(f)(s):=f\left(s^{-1}\right) \tag{2.140}
\end{equation*}
$$

with a multiplicative convolution operator. We use the unitary identification

$$
\begin{equation*}
w: L^{2}(\mathbb{R}, d s)^{\text {even }} \rightarrow L^{2}\left(\mathbb{R}_{+}^{*}, d^{*} \lambda\right), w(\eta)(\lambda):=\lambda^{1 / 2} \eta(\lambda), \forall \lambda \in \mathbb{R}_{+}^{*} \tag{2.141}
\end{equation*}
$$

whose inverse is given by

$$
\begin{equation*}
w^{-1}: L^{2}\left(\mathbb{R}_{+}^{*}, d^{*} \lambda\right) \rightarrow L^{2}(\mathbb{R}, d s)^{\text {even }}, w^{-1}(\xi)(x):=|x|^{-1 / 2} \xi(|x|) . \tag{2.142}
\end{equation*}
$$

Also we define the duality $\left\langle\mathbb{R}_{+}^{*}, \mathbb{R}\right\rangle$ by the bicharacter

$$
\begin{equation*}
\mu(v, s)=v^{-i s}, \quad \forall v \in \mathbb{R}_{+}^{*}, s \in \mathbb{R} \tag{2.143}
\end{equation*}
$$

so that the Fourier transform $\mathbf{F}_{\mu}: L^{2}\left(\mathbb{R}_{+}^{*}\right) \rightarrow L^{2}(\mathbb{R})$ associated to the bicharacter μ is

$$
\begin{equation*}
\mathbf{F}_{\mu}(f)(s):=\int_{0}^{\infty} f(v) v^{-i s} d^{*} v \tag{2.144}
\end{equation*}
$$

Lemma 2.20. On $L^{2}(\mathbb{R})^{\text {even }}$ one has

$$
\begin{equation*}
\mathbf{F}_{e_{\mathbb{R}}}=w^{-1} \circ I \circ \mathbf{F}_{\mu}^{-1} \circ u \circ \mathbf{F}_{\mu} \circ w, \tag{2.145}
\end{equation*}
$$

where u is the multiplication operator by the function

$$
\begin{equation*}
u(s):=e^{2 i \theta(s)} \tag{2.146}
\end{equation*}
$$

where $\theta(s)$ is the Riemann-Siegel angular function of (2.24).
Proof. First $\mathbf{F}_{e_{\mathbb{R}}}$ preserves globally $L^{2}(\mathbb{R})^{\text {even }}$. One has, for $\xi \in L^{2}\left(\mathbb{R}_{+}^{*}\right)$,

$$
\begin{gathered}
\left(w \circ \mathbf{F}_{e_{\mathbb{R}}} \circ w^{-1}\right)(\xi)(v)=v^{1 / 2} \int_{\mathbb{R}}|x|^{-1 / 2} \xi(|x|) e^{-2 \pi i x v} d x \\
\quad=v^{1 / 2} \int_{\mathbb{R}_{+}^{*}} u^{1 / 2} \xi(u)\left(e^{2 \pi i u v}+e^{-2 \pi i u v}\right) d^{*} u
\end{gathered}
$$

This gives

$$
\begin{aligned}
& \left(I \circ w \circ \mathbf{F}_{e_{\mathbb{R}}} \circ w^{-1}\right)(\xi)(\lambda)=\left(w \circ \mathbf{F}_{e_{\mathbb{R}}} \circ w^{-1}\right)(\xi)\left(\lambda^{-1}\right) \\
& \quad=\lambda^{-1 / 2} \int_{\mathbb{R}_{+}^{*}}\left(e^{2 i \pi u \lambda^{-1}}+e^{-2 i \pi u \lambda^{-1}}\right) u^{1 / 2} \xi(u) d^{*} u
\end{aligned}
$$

We thus obtain

$$
\begin{equation*}
I \circ w \circ \mathbf{F}_{e_{\mathbb{R}}} \circ w^{-1}=C \tag{2.147}
\end{equation*}
$$

where the operator C on the Hilbert space $L^{2}\left(\mathbb{R}_{+}^{*}, d^{*} \lambda\right)$ is given by convolution by

$$
\begin{equation*}
v \mapsto 2 v^{-1 / 2} \cos \left(2 \pi v^{-1}\right) \tag{2.148}
\end{equation*}
$$

By construction C is unitary and commutes with the regular representation of \mathbb{R}_{+}^{*}. Thus $C=\mathbf{F}_{\mu}^{-1} \circ u \circ \mathbf{F}_{\mu}$ where u is the Fourier transform

$$
\begin{equation*}
u(s)=\int_{0}^{\infty} 2 v^{-1 / 2} \cos \left(2 \pi v^{-1}\right) v^{-i s} d^{*} v \tag{2.149}
\end{equation*}
$$

This is defined in the sense of distributions. To compute (2.149) one can let $v=e^{-t}$ and use

$$
\begin{equation*}
\int_{\mathbb{R}} e^{t / 2} e^{-z e^{t}} e^{i s t} d t=z^{-(1 / 2+i s)} \Gamma(1 / 2+i s), \quad \forall z, \Im z>0 \tag{2.150}
\end{equation*}
$$

This gives

$$
\begin{equation*}
u(s)=2 \cos ((1 / 2+i s) \pi / 2)(2 \pi)^{-(1 / 2+i s)} \Gamma(1 / 2+i s) \tag{2.151}
\end{equation*}
$$

and the duplication formula

$$
\begin{equation*}
\Gamma\left(\frac{z}{2}\right) \Gamma\left(\frac{1+z}{2}\right)=\pi^{1 / 2} 2^{1-z} \Gamma(z) \tag{2.152}
\end{equation*}
$$

shows that $u(s)$ is given by

$$
\begin{equation*}
u(s)=\frac{\pi^{-z / 2} \Gamma(z / 2)}{\pi^{-(1-z) / 2} \Gamma((1-z) / 2)}, z=1 / 2+i s \tag{2.153}
\end{equation*}
$$

which, using (2.24) gives (2.146).
The following lemma relates the quantized calculus to the analysis of the geometry of the three projections $P_{\Lambda}, \widehat{P}_{\Lambda}$ and N_{E}.
Lemma 2.21. For any Λ there is a unitary operator

$$
\begin{equation*}
W=W_{\Lambda}: L^{2}(\mathbb{R})^{\mathrm{even}} \rightarrow L^{2}(\mathbb{R}) \tag{2.154}
\end{equation*}
$$

such that, for any functions $h_{j} \in \mathcal{S}\left(\mathbb{R}_{+}^{*}\right), j=1,2$, one has

$$
\begin{align*}
& W \vartheta_{\mathrm{a}}\left(\tilde{h}_{1}\right) \widehat{P}_{\Lambda} P_{\Lambda} \vartheta_{\mathrm{a}}\left(\tilde{h}_{2}\right) W^{*}= \\
& \quad \hat{h}_{1}\left(\frac{1}{2} u^{-1} d u \Pi_{\left[-\infty, \frac{2 \log \Lambda}{2 \pi}\right]}+\Pi_{\left[0, \frac{2 \log \Lambda}{2 \pi}\right]}\right) \hat{h}_{2} \tag{2.155}
\end{align*}
$$

Here $\tilde{h}_{j}(\lambda)=\lambda^{-1 / 2} h_{j}(\lambda)$, the operator $d u$ is the quantized differential of the function u of (2.146) and \hat{h}_{j} is the multiplication operator by the Fourier transform $\mathbf{F}_{\mu}\left(h_{j}\right)$.

Proof. We let ϑ_{m} be the regular representation of \mathbb{R}_{+}^{*} on $L^{2}\left(\mathbb{R}_{+}^{*}\right)$

$$
\begin{equation*}
\left(\vartheta_{\mathrm{m}}(\lambda) \xi\right)(v):=\xi\left(\lambda^{-1} v\right), \quad \forall \xi \in L^{2}\left(\mathbb{R}_{+}^{*}\right) \tag{2.156}
\end{equation*}
$$

One has

$$
\begin{equation*}
w \vartheta_{\mathrm{a}}\left(\tilde{h}_{j}\right) w^{-1}=\vartheta_{\mathrm{m}}\left(h_{j}\right), \quad \text { and } \quad \mathbf{F}_{\mu} \vartheta_{\mathrm{m}}\left(h_{j}\right) \mathbf{F}_{\mu}^{-1}=\widehat{h}_{j} . \tag{2.157}
\end{equation*}
$$

Now we have $P_{\Lambda}=\mathbf{1}_{[-\Lambda, \Lambda]}$, so that $w P_{\Lambda} w^{-1}=\mathbf{1}_{[0, \Lambda]}$, and we obtain

$$
\begin{align*}
\widehat{P}_{\Lambda} P_{\Lambda}=\mathbf{F}_{e_{\mathbb{R}}} P_{\Lambda} \mathbf{F}_{e_{\mathbb{R}}}^{-1} P_{\Lambda} & =w^{-1} I \mathbf{F}_{\mu}^{-1} u \mathbf{F}_{\mu} \mathbf{1}_{[0, \Lambda]} \mathbf{F}_{\mu}^{-1} u^{-1} \mathbf{F}_{\mu} I \mathbf{1}_{[0, \Lambda]} w \\
& =w^{-1} \mathbf{F}_{\mu}^{-1} u^{-1} \mathbf{F}_{\mu} \mathbf{1}_{\left[\Lambda^{-1}, \infty\right]} \mathbf{F}_{\mu}^{-1} u \mathbf{F}_{\mu} \mathbf{1}_{[0, \Lambda]} w \tag{2.158}
\end{align*}
$$

where we used the identity $I \mathbf{F}_{\mu}^{-1} u \mathbf{F}_{\mu}=\mathbf{F}_{\mu}^{-1} u^{-1} \mathbf{F}_{\mu} I$, which follows from the symmetry $\theta(-s)=-\theta(s)$. We also used the identity $I \mathbf{1}_{[0, \Lambda]} I=\mathbf{1}_{\left[\Lambda^{-1}, \infty\right]}$.
We now set

$$
\begin{equation*}
W_{\Lambda}:=\mathbf{F}_{\mu} \vartheta_{\mathrm{m}}(\Lambda) w, \tag{2.159}
\end{equation*}
$$

with $\vartheta_{\mathrm{m}}(\Lambda)$ as in (2.156). One has

$$
\begin{equation*}
W_{\Lambda} \vartheta_{\mathrm{a}}\left(\tilde{h}_{1}\right) \widehat{P}_{\Lambda} P_{\Lambda} \vartheta_{\mathrm{a}}\left(\tilde{h}_{2}\right) W_{\Lambda}^{-1}= \tag{2.160}
\end{equation*}
$$

$$
\begin{aligned}
& \mathbf{F}_{\mu} \vartheta_{\mathrm{m}}(\Lambda) \vartheta_{\mathrm{m}}\left(h_{1}\right) \mathbf{F}_{\mu}^{-1} u^{-1} \mathbf{F}_{\mu} \mathbf{1}_{\left[\Lambda^{-1}, \infty\right]} \mathbf{F}_{\mu}^{-1} u \mathbf{F}_{\mu} \mathbf{1}_{[0, \Lambda]} \vartheta_{\mathrm{m}}\left(h_{2}\right) \vartheta_{\mathrm{m}}(\Lambda)^{-1} \mathbf{F}_{\mu}^{-1} \\
= & \widehat{h}_{1} u^{-1} \mathbf{F}_{\mu} \vartheta_{\mathrm{m}}(\Lambda) \mathbf{1}_{\left[\Lambda^{-1}, \infty\right]} \vartheta_{\mathrm{m}}(\Lambda)^{-1} \mathbf{F}_{\mu}^{-1} u \mathbf{F}_{\mu} \vartheta_{\mathrm{m}}(\Lambda) \mathbf{1}_{[0, \Lambda]} \vartheta_{\mathrm{m}}(\Lambda)^{-1} \mathbf{F}_{\mu}^{-1} \widehat{h}_{2} .
\end{aligned}
$$

Here we use the identities (2.157) and the fact that $\vartheta_{\mathrm{m}}(\Lambda)$ commutes with multiplicative convolution operators such as $\mathbf{F}_{\mu}^{-1} u^{-1} \mathbf{F}_{\mu}$. Next we see that

$$
\begin{equation*}
\vartheta_{\mathrm{m}}(\Lambda) \mathbf{1}_{\left[\Lambda^{-1}, \infty\right]} \vartheta_{\mathrm{m}}(\Lambda)^{-1}=\mathbf{1}_{[1, \infty]}, \vartheta_{\mathrm{m}}(\Lambda) \mathbf{1}_{[0, \Lambda]} \vartheta_{\mathrm{m}}(\Lambda)^{-1}=\mathbf{1}_{\left[0, \Lambda^{2}\right]} . \tag{2.161}
\end{equation*}
$$

In order to use the quantized calculus on functions on \mathbb{R} as in Definition 2.19, we use the isomorphism of abelian groups

$$
\begin{equation*}
t \in \mathbb{R} \mapsto e^{2 \pi t} \in \mathbb{R}_{+}^{*} \tag{2.162}
\end{equation*}
$$

and note that \mathbf{F}_{μ} and $\mathbf{F}_{e_{\mathbb{R}}}$ are conjugate by this isomorphism since the bicharacter $\mu(v, s)=v^{-i s}$ of (2.143) fulfills

$$
\begin{equation*}
\mu\left(e^{2 \pi t}, s\right)=e^{-2 \pi i s t}=e_{\mathbb{R}}(s t) . \tag{2.163}
\end{equation*}
$$

Thus we get from (2.136),

$$
\begin{equation*}
\mathbf{F}_{\mu} \mathbf{1}_{[a, b]} \mathbf{F}_{\mu}^{-1}=\Pi_{\left[\frac{\log a}{2 \pi}, \frac{\log b}{2 \pi}\right]}, \tag{2.164}
\end{equation*}
$$

and we obtain, using (2.160)

$$
\begin{equation*}
W_{\Lambda} \vartheta_{\mathrm{a}}\left(\tilde{h}_{1}\right) \widehat{P}_{\Lambda} P_{\Lambda} \vartheta_{\mathrm{a}}\left(\tilde{h}_{2}\right) W_{\Lambda}^{-1}=\widehat{h}_{1} u^{-1} \Pi_{[0, \infty]} u \Pi_{\left[-\infty, \frac{2 \log \Lambda}{2 \pi}\right]} \widehat{h}_{2} . \tag{2.165}
\end{equation*}
$$

We then use

$$
\begin{equation*}
\frac{1}{2} \varpi u=\left[\Pi_{[0, \infty]}, u\right], \tag{2.166}
\end{equation*}
$$

which completes the proof of (2.155).

5.2. Proof of Theorem 2.18,

As a first application of Lemma 2.21 we now complete the proof of Theorem 2.18, One has $N_{E}=\vartheta_{\mathrm{m}}\left(h_{E}\right)$, where $\widehat{h}_{E}=\mathbf{1}_{[-E, E]}$. Thus, $N_{E} \widehat{P}_{\Lambda} P_{\Lambda}$ is unitarily equivalent to

$$
\begin{equation*}
\mathbf{1}_{[-E, E]}\left(\frac{1}{2} u^{-1} d u \Pi_{\left[-\infty, \frac{2 \log \Lambda}{2 \pi}\right]}+\Pi_{\left[0, \frac{2 \log \Lambda}{2 \pi}\right]}\right) . \tag{2.167}
\end{equation*}
$$

The trace of $\mathbf{1}_{[-E, E]} \Pi_{\left[0, \frac{2 \log \Lambda}{2 \pi}\right]}$ is equal to $2 E \frac{2 \log \Lambda}{2 \pi}$ and gives the leading term in the formula for $\operatorname{Tr}\left(N_{E} \widehat{P}_{\Lambda} P_{\Lambda}\right)$. If we replace $\Pi_{\left[-\infty, \frac{2 \log \Lambda}{2 \pi}\right]}$ by 1 the other term gives

$$
\begin{equation*}
\operatorname{Tr}\left(\mathbf{1}_{[-E, E]}\left(\frac{1}{2} u^{-1} d u\right)\right)=\int_{-E}^{E} k(s, s) d s \tag{2.168}
\end{equation*}
$$

where $k(s, t)$ is the kernel representing $\frac{1}{2} u^{-1} d u$. Its diagonal values are

$$
\begin{equation*}
k(s, s)=-\frac{1}{\pi} \frac{d \theta}{d s} \tag{2.169}
\end{equation*}
$$

where we use (2.139) and (2.146). Thus, the integral gives

$$
\begin{equation*}
\operatorname{Tr}\left(\mathbf{1}_{[-E, E]}\left(\frac{1}{2} u^{-1} d u\right)\right)=-\frac{2}{\pi} \theta(E)=-2(\langle N(E)\rangle-1) \tag{2.170}
\end{equation*}
$$

The remainder in the formula

$$
\begin{equation*}
\operatorname{Tr}\left(N_{E} \widehat{P}_{\Lambda} P_{\Lambda}\right)=2 E \frac{2 \log \Lambda}{2 \pi}-2(\langle N(E)\rangle-1)+r(E, \Lambda) \tag{2.171}
\end{equation*}
$$

is therefore given by

$$
\begin{equation*}
r(E, \Lambda)=\frac{1}{2} \operatorname{Tr}\left(\mathbf{1}_{[-E, E]} u^{-1} d u \Pi_{\left[\frac{2 \log \Lambda}{2 \pi}, \infty\right]}\right) \tag{2.172}
\end{equation*}
$$

For $\Lambda \rightarrow \infty$ one has $\Pi_{\left[\frac{2 \log \Lambda}{2 \pi}, \infty\right]} \rightarrow 0$ strongly. However, one needs to be a bit careful about the operator $T=\mathbf{1}_{[-E, E]} u^{-1} d u$, since it is unclear that it is of trace-class. One can check that the operator $T T^{*}$ is a Hilbert-Schmidt operator. Also $\mathbf{1}_{[-E, E]} u^{-1} d u f$ is of trace-class, for any compactly supported function f, since θ is smooth. With f smooth, compactly supported and identically equal to 1 on $[-E, E]$ one has

$$
\begin{equation*}
\operatorname{Tr}\left(\mathbf{1}_{[-E, E]} u^{-1} d u \Pi_{\left[\frac{2 \log \Lambda}{2 \pi}, \infty\right]}\right)=\operatorname{Tr}\left(\mathbf{1}_{[-E, E]} u^{-1} d u \Pi_{\left[\frac{2 \log \Lambda}{2 \pi}, \infty\right]} f\right) \tag{2.173}
\end{equation*}
$$

In fact, $\mathbf{1}_{[-E, E]} u^{-1} d u \Pi_{\left[\frac{2 \log \Lambda}{2 \pi}, \infty\right]}$ is of trace-class by Lemma 2.21 .
Moreover, the commutator $\left[\Pi_{\left[\frac{2 \log \Lambda}{2 \pi}, \infty\right]}, f\right]$ is the conjugate of $d f$ by the function $s \mapsto \Lambda^{i s}$. Thus, it is of trace-class and converges weakly to 0 as a family of HilbertSchmidt operators for $\Lambda \rightarrow \infty$. Since $\mathbf{1}_{[-E, E]} u^{-1} đ u$ is Hilbert-Schmidt, we see that we can permute f with $\Pi_{\left[\frac{2 \log \Lambda}{2 \pi}, \infty\right]}$ without affecting the limit. Since $\Pi_{\left[\frac{2 \log \Lambda}{2 \pi}, \infty\right]} \rightarrow 0$ strongly, we obtain

$$
\begin{equation*}
r(E, \Lambda) \rightarrow 0 \quad \text { for } \quad \Lambda \rightarrow \infty \tag{2.174}
\end{equation*}
$$

This completes the proof of Theorem 2.18, making use of (2.66) to control the difference between Q_{Λ} and $\widehat{P}_{\Lambda} P_{\Lambda}$ in the statement.
Remark 2.22. One can use Lemma 2.21 to estimate the angle of the projections Q_{Λ} and N_{E}. Indeed, we obtain

$$
\begin{equation*}
\left[N_{E}, \widehat{P}_{\Lambda} P_{\Lambda}\right] \sim\left[\mathbf{1}_{[-E, E]}, \frac{1}{2} u^{-1} d u \Pi_{\left[-\infty, \frac{2 \log \Lambda}{2 \pi}\right]}\right]+\left[\mathbf{1}_{[-E, E]}, \Pi_{\left[0, \frac{2 \log \Lambda}{2 \pi}\right]}\right] \tag{2.175}
\end{equation*}
$$

The second commutator on the right hand side of (2.175) is of the order of $\log (E)+$ $\log (\log (\Lambda))$ by the analysis of $\S 3.2$. The limit for $\Lambda \rightarrow \infty$ of the first commutator on the right hand side of (2.175) has Hilbert-Schmidt norm of the order of $\sqrt{\log (E)}$, as one gets from the estimate

$$
\begin{equation*}
\int_{|s|>E} \int_{t \in[-E, E]}\left|\frac{e^{2 i \theta(s)}-e^{2 i \theta(t)}}{s-t}\right|^{2} d t d s=O(\log (E)) \tag{2.176}
\end{equation*}
$$

6. The map \mathfrak{E}

Notice that the first term in (2.132) of Theorem 2.18 above, of the form $\frac{4 E}{2 \pi} \log \Lambda$, is in fact the symplectic volume $v(W(E, \Lambda))$ of the box

$$
\begin{equation*}
W(E, \Lambda)=\left\{(\lambda, s) \in \mathbb{R}_{+}^{*} \times \mathbb{R}:|\log \lambda| \leq \log \Lambda, \text { and }|s| \leq E\right\} \tag{2.177}
\end{equation*}
$$

as in (2.46). The symplectic volume is computed in the symplectic space given by the product of the group $\mathbb{R}_{+}^{*} \sim \mathbb{R}$ by its dual \mathbb{R} under the pairing $(\lambda, s) \mapsto \lambda^{i s}$, with the symplectic form given by the product of the Haar measure by the dual one.

