
Probability to obtain a Goldbach decomposition of an even number (Denise Vella-
Chemla, august 2022)

1. An illustrative example

Let us take the example of looking for Goldbach decompositions of the even number n = 98.

S98 =


98 ≡ 0 (mod 2)
98 ≡ 2 (mod 3)
98 ≡ 3 (mod 5)
98 ≡ 0 (mod 7)

Let us call d98 a potential Goldbach decomponent of n = 98. d98 can be congruent, except 0, to
every number that n = 98 isn’t congruent to. The ∨ symbol in the above congruence system is
to be read as an exclusive or, its extended use is to be understood as the fact to respect as many
congruence systems as combinatorics permits to have (combining one possibility of each exclusive
or).

Sd98 =


d98 ≡ 1 (mod 2)
d98 ≡ 1 (mod 3)
d98 ≡ 1 ∨ 2 ∨ 4 (mod 5)
d98 ≡ 1 ∨ 2 ∨ 3 ∨ 4 ∨ 5 ∨ 6 (mod 7)

Remark : we notice that obeying the system of systems of congruences is a sufficient condition
but not a necessary condition to obtain a Goldbach decomponent of n. The demonstration of the
validity of this characterization of Goldbach decomponents of an even number n that are greater
than

√
n is provided in section 2.

What can be easily understood is that modules that don’t divide n “eliminate more congruence
classes” (2 by each prime module lesser than

√
n) than modules that divide n. Let us take the

worst case, where two congruence classes are eliminated for each prime module lesser than
√

n (for
n an even number of the form 2kp with p prime for instance), we find all the same∏

p prime
3≤p≤

√
n

(p− 2)

different congruence classes by applying the chinese remainder theorem to each of the congruence
systems combinatorialy found (see Sd98 above). All those solutions are lesser than D =

∏
p prime

3≤p≤
√

n

p.

Could it be possible to miss the targeted interval, i.e. that all solutions should be greater than n,
between n and D ? In section 3, we will see that the probability to obtain at least one solution
lesser than n tends to 1 very quickly.

2. Characterization of the Goldbach decomponents of n greater than
√

n1

Let n ∈ 2N + 6 be an even number greater than 6.

1Leila Schneps wrote this proof that the characterization of those Goldbach decomponents was valid.
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For each p ∈ P∗ an odd prime number lesser than
√

n (i.e. 3 ≤ p ≤
√

n), let us define the set :

Fn(p) = {m ∈ 2N + 1 : 3 ≤ m ≤ n/2, m 6≡ 0 [p], m 6≡ n [p]}

The intersection of the sets Fn(p) for each p prime between 3 and
√

n is denoted as :

Dn =
⋂
p∈P

3≤p≤
√

n

Fn(p)

We are going to show that Dn and its complementary n−Dn contain only prime numbers.

Lemma 1 : Let m ∈ 2N+ 1 be an odd integer. If m is divisible by no prime number between 3 and√
m, then it is prime.

Proof : If m is composite, we have m = pq, where p is the smallest prime number in m’s canonical
factorization in prime numbers and where q is the product of all the other factors. Since m is odd,
p ≥ 3, and since q ≥ p (q being the product of integers ≥ p), m = pq ≥ pp = p2 and so

√
m ≥ p (the

sqrt function being increasing). We have thus shown that if m an odd number is composite, it is
divisible by a prime number between 3 and

√
m. The lemma is obtained by contraposition. �

Lemma 2 : Dn ⊆ P

Proof : Let m ∈ Dn. Then m ∈ Fn(p) for all prime number p between 3 and
√

n. Thus, m is odd
and m is divisible by no prime number p between 3 and

√
n (since m 6≡ 0 [p]), and so a fortiori by no

prime number between 3 and
√

m (since m ≤ n/2 =⇒ m ≤ n =⇒
√

m ≤
√

n). By lemma 1, m is
therefore prime. �

Lemma 3 : n−Dn ⊆ P

Proof : Let m ∈ Dn. Then m ∈ Fn(p) for all prime number p between 3 and
√

n. Therefore, n−m
is odd (since m is odd and n is even) and n−m is divisible by no prime number p between 3 and√

n (since m 6≡ n [p]), and thus a fortiori by no prime number between 3 and
√

n−m (because
n−m ≤ n =⇒

√
n−m ≤

√
n). From lemma 1, n−m is thus prime. �

The sets Dn contain only Goldbach decomponents of n.

Lemma 4 : Let n ∈ 2N + 6. If Dn 6= ∅, then n verify Goldbach’s conjecture.

Proof : If Dn 6= ∅, it contains an integer p necessarily prime (from lemma 1), such that q = n− p
is also prime (from lemma 2), and so n = p + q verify Goldbach’s conjecture. �
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3. Probability P (n, k, p) to pick a number lesser than or equal to k, without replacement,
when we pick uniformly p integers among the n first integers.

The probability2 P (n, k, p) to pick an integer lesser than or equal to k, without replacement, when
we pick uniformly p integers among the n first integers is computed using the following formula :

P = k

n
+ n− k

n

(
k

n− 1 + n− k − 1
n− 1

(
k

n− 2 + n− k − 2
n− 2

(
. . .

(
k

n− p + 1

)
. . .

)))

The first term of the sum corresponds to the fact the first number picked is lesser than k. The
second term of the sum corresponds to the fact that the first number is greater than k at the
first pick, this number is not replaced (we don’t have the possibility to pick it another time) and
the chance is tried on the remaining numbers, probability being uniform on remaining numbers, etc.

This probability is computed for
p =

∏
x premier
36x6

√
k

(x− 2)

and
n =

∏
x premier
36x6

√
k

x.

The following python program was used :

2Thanks Jacques.
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Let us provide its results in the following table :

k n k2 + 1 p P (n, k, p)
5 30 26 3 0.9990147783251231
7 210 50 15 0.9856514594832753

11 2310 122 135 0.9994752040784769
13 30030 170 1485 0.999824267526177
17 510510 290 22275 0.9999976037996607
19 9699690 362 378675 0.9999994514468453
23 223092870 530 7952175 0.9999999955788792
29 6469693230 842 214708725 0.9999999997119475
31 200560490130 962 6226553025 0.9999999921336346

To confirm the program results, we use a function that calculate the complementary events proba-
bilities, i.e. the probability that during the p pickings without replacement realised under a uniform
discrete law in interval 1..n, all picked numbers would be greater than k according to the formula

P (n, p, k) = 1− P (n, p, k) = n− p

n
.
n− p− 1

n− 1 . . .
n− p− k + 1

n− k + 1 .

The probability to obtain a Goldbach decomponent of an even number is equal to 1 above prime
number 37 if computation precision is fixed to 20 decimal digits.

This program results are provided in the following table :
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