
Goldbach Conjecture (7th june 1742)

We note P∗ the odd prime numbers set.
P∗ = {p1 = 3, p2 = 5, p3 = 7, p4 = 11, . . .}

∀ n ∈ 2N\{0, 2, 4},
∃ p ∈ P∗, p ≤ n/2,
∃ q ∈ P∗, q ≥ n/2,

n = p + q

We call n’s Goldbach decomposition such a sum p + q.

p and q are said n’s Goldbach decomponents.

verified by computer until 4.1018

(Oliveira e Silva, 4.4.2012)
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Notations

In the following, C.G. signifies Goldbach Conjecture,

s.c. signifies congruences system,

p.a. signifies arithmetic progression,

T.r.c. signifies Chinese Remainders Theorem.

For a given n, we note :

P∗1(n) = {x ∈ P∗/x ≤ n

2
}

P∗2(n) = {x ∈ P∗/x ≤
√
n}
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Reformulation

Goldbach Conjecture is equivalent to the following statement :
∀ n ∈ 2N\{0, 2, 4}, ∃ p ∈ P∗1(n), ∀ m ∈ P∗2(n),

p 6≡ n (mod m)

Indeed,
∀ n ∈ 2N\{0, 2, 4}, ∃ p ∈ P∗1(n), ∀ m ∈ P∗2(n),

p 6≡ n (mod m)⇔ n − p 6≡ 0 (mod m)⇔ n − p is prime
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Examples study : Example 1

Why 19 is the smallest 98’s Goldbach decomponent ?

98 ≡ 3 (mod 5) (98-3=95 and 5 | 95)

98 ≡ 5 (mod 3) (98-5=93 and 3 | 93)

98 ≡ 7 (mod 7) (98-7=91 and 7 | 91)

98 ≡ 11 (mod 3) (98-11=87 and 3 | 87)

98 ≡ 13 (mod 5) (98-13=85 and 5 | 85)

98 ≡ 17 (mod 3) (98-17=81 and 3 | 81)

98 6≡ 19 (mod 3) (98-19=79 and 3 6 | 79)

98 6≡ 19 (mod 5) (98-19=79 and 5 6 | 79)

98 6≡ 19 (mod 7) (98-19=79 and 7 6 | 79)

Conclusion : ∀ m ∈ P∗2(98), 19 6≡ 98 (mod m)
19 is a 98’s Goldbach decomponent.
Indeed, 98 = 19 + 79 with 19 and 79 both primes.

Denise Vella-Chemla Goldbach Conjecture Study 23/5/2012 4 / 31



Examples study : Example 2

Why 3 is a 40’s Goldbach decomponent ?

Z/3Z 0 1 2

Z/5Z 0 1 2 3 4

Z/7Z 0 1 2 3 4 5 6

Z/11Z 0 1 2 3 4 5 6 7 8 9 10

3’s equivalence class in each finite field,

40’s equivalence class in each finite field.

Conclusion : ∀ m ∈ P∗2(40), 3 6≡ 40 (mod m)
3 is a 40’s Goldbach decomponent.
Indeed, 40 = 3 + 37 with 3 and 37 primes.
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Examples study : Example 3

We are looking for Goldbach decomponents of natural integers that
are

≡ 2 (mod 3) and ≡ 3 (mod 5) and ≡ 3 (mod 7).

Those numbers we are looking Goldbach decomponents for, are
natural integers of the form 210k + 38 (result provided by Chinese
Remainders Theorem as we will see it sooner).

We saw that odd prime natural integers p that are
6≡ 2 (mod 3) and 6≡ 3 (mod 5) and 6≡ 3 (mod 7)

can be Goldbach decomponents of those numbers.

If we omit the case of “little prime numbers”
(i.e. congruences cases to 0 modulo one odd prime and only one),

• p must be ≡ 1 (mod 3).
• p must be ≡ 1 or 2 or 4 (mod 5).
• p must be ≡ 1 or 2 or 4 or 5 or 6 (mod 7).
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Examples study : Example 3
We are looking for Goldbach decomponents of some even natural
integers

≡ 2 (mod 3) and ≡ 3 (mod 5) and ≡ 3 (mod 7)
(⇔ of the form 210k + 38)

Combining all differents possibilities, we obtain :
1 (mod 3) 1 (mod 5) 1 (mod 7)

1 (mod 3) 1 (mod 5) 2 (mod 7)

1 (mod 3) 1 (mod 5) 4 (mod 7)

1 (mod 3) 1 (mod 5) 5 (mod 7)

1 (mod 3) 1 (mod 5) 6 (mod 7)

1 (mod 3) 2 (mod 5) 1 (mod 7)

1 (mod 3) 2 (mod 5) 2 (mod 7)

1 (mod 3) 2 (mod 5) 4 (mod 7)

1 (mod 3) 2 (mod 5) 5 (mod 7)

1 (mod 3) 2 (mod 5) 6 (mod 7)

1 (mod 3) 4 (mod 5) 1 (mod 7)

1 (mod 3) 4 (mod 5) 2 (mod 7)

1 (mod 3) 4 (mod 5) 4 (mod 7)

1 (mod 3) 4 (mod 5) 5 (mod 7)

1 (mod 3) 4 (mod 5) 6 (mod 7)

Denise Vella-Chemla Goldbach Conjecture Study 23/5/2012 7 / 31



Examples : Example 3
We are looking for Goldbach decomponents of some even natural
integers

≡ 2 (mod 3) and ≡ 3 (mod 5) and ≡ 3 (mod 7)
(⇔ of the form 210k + 38)

Combining all differents possibilities, we obtain :
1 (mod 3) 1 (mod 5) 1 (mod 7) → 210k+1

1 (mod 3) 1 (mod 5) 2 (mod 7) → 210k+121

1 (mod 3) 1 (mod 5) 4 (mod 7) → 210k+151

1 (mod 3) 1 (mod 5) 5 (mod 7) → 210k+61

1 (mod 3) 1 (mod 5) 6 (mod 7) → 210k+181

1 (mod 3) 2 (mod 5) 1 (mod 7) → 210k+127

1 (mod 3) 2 (mod 5) 2 (mod 7) → 210k+37

1 (mod 3) 2 (mod 5) 4 (mod 7) → 210k+67

1 (mod 3) 2 (mod 5) 5 (mod 7) → 210k+187

1 (mod 3) 2 (mod 5) 6 (mod 7) → 210k+97

1 (mod 3) 4 (mod 5) 1 (mod 7) → 210k+169

1 (mod 3) 4 (mod 5) 2 (mod 7) → 210k+79

1 (mod 3) 4 (mod 5) 4 (mod 7) → 210k+109

1 (mod 3) 4 (mod 5) 5 (mod 7) → 210k+19

1 (mod 3) 4 (mod 5) 6 (mod 7) → 210k+139

Denise Vella-Chemla Goldbach Conjecture Study 23/5/2012 8 / 31



Examples study : Example 3

Here are some examples of Goldbach decomponents belonging to
arithmetic progressions found for some even numbers of the
arithmetic progression 210k + 38

248 : 7 19 37 67 97 109
458 : 19 37 61 79 109 127 151 181 229 (2p)
668 : 7 37 61 67 97 127 181 211 229 271 331
878 : 19 67 109 127 139 151 271 277 307 331 337 379 421 439 (2p)
1088 : 19 37 67 79 97 151 181 211 229 277 331 337 349 379 397 457

487 541
1298 : 7 19 61 67 97 127 181 211 229 277 307 331 379 421 439

487 541 547 571 607

Conclusion : It works, of course, it is studied for.
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We try to demonstrate the impossibility that exists an even
natural integer that doesn’t verify C.G.

(∃ x ∈ 2N\{0, 2, 4}, x ≥ 4.1018, x doesn′t verify C.G.) ⇒ false

but
∃ x ∈ 2N\{0, 2, 4}, x ≥ 4.1018, x doesn′t verify C.G.

⇔ ∃ x ∈ 2N\{0, 2, 4}, x ≥ 4.1018, ∀ p ∈ P∗1(x),
x − p is compound

⇔ ∃ x ∈ 2N\{0, 2, 4}, x ≥ 4.1018, ∀ p ∈ P∗1(x), ∃ m ∈ P∗2(x),
x − p ≡ 0 (mod m)

⇔ ∃ x ∈ 2N\{0, 2, 4}, x ≥ 4.1018, ∀ p ∈ P∗1(x), ∃ m ∈ P∗2(x),
x ≡ p (mod m)
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We try to demonstrate the impossibility that exists an even
natural integer that doesn’t verify C.G.

∃ x ∈ 2N\{0, 2, 4}, x ≥ 4.1018, ∀ p ∈ P∗1(x), ∃ m ∈ P∗2(x),
x ≡ p (mod m)

Quantificators expansion

p1, . . . , pk ∈ P∗1(x), m1, . . . ,ml ∈ P∗2(x).
∃ x ∈ 2N\{0, 2, 4}, x ≥ 4.1018,

∀ i ∈ [1, k], ∃ j ∈ [1, l ]
x ≡ pi (mod mj)
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We try to demonstrate the impossibility that exists an even
natural integer that doesn’t verify C.G.

Let us write all of the congruences :

p1, . . . , pk ∈ P∗1(x), mj1 , . . . ,mjk ∈ P∗2(x).
∃ x ∈ 2N\{0, 2, 4}, x ≥ 4.1018,

S0


x ≡ p1 (mod mj1)
x ≡ p2 (mod mj2)
. . .
x ≡ pk (mod mjk )

Note : mi moduli are odd prime natural integers that are not
mandatory all differents.
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Interlude : Chinese Remainders Theorem

We call arithmetic progression a set containing natural integers
of the form ax + b with a ∈ N∗, b ∈ N and x ∈ N.

A congruences system not containing contradiction can be solved by
the Chinese Remainders Theorem.

The Chinese Remainders Theorem establishes an isomorphism
between Z/m1Z× . . .× Z/mkZ and Z/

∏k
i=1 miZ

if and only if the modules mi are two by two coprime.
(∀ mi ∈ N∗, ∀ mj ∈ N∗, (mi ,mj ) = 1)

The Chinese Remainders Theorem establishes a bijection
between the set of non-contradictory congruences systems
and the set of arithmetic progressions.
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Interlude : Recall of Chinese Remainders Theorem

We are looking for the set of solutions of the following congruences
system S : {

x ≡ r1 (mod m1)
x ≡ r2 (mod m2)
. . .
x ≡ rk (mod mk )

We set M =
∏k

i=1 mi .

Let us calculate M1 = M/m1,M2 = M/m2, . . . ,Mk = M/mk .

Let us calculate d1, d2, . . . , dk such that
d1.M1 ≡ 1 (mod m1)
d2.M2 ≡ 1 (mod m2)
. . .
dk .Mk ≡ 1 (mod mk )

S ’s solution is x ≡ Σ
k

i=1
ri .di .Mi (mod M)
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Interlude : Chinese Remainders Theorem

Let us try to solve : 
x ≡ 1 (mod 3)
x ≡ 3 (mod 5)
x ≡ 5 (mod 7)

We set M = 3.5.7 = 105.
M1 = M/3 = 105/3 = 35 35.y1 ≡ 1 (mod 3) y1 = 2
M2 = M/5 = 105/5 = 21 21.y2 ≡ 1 (mod 5) y2 = 1
M3 = M/7 = 105/7 = 15 15.y3 ≡ 1 (mod 7) y3 = 1

x ≡ r1.M1.y1 + r2.M2.y2 + r3.M3.y3

≡ 1.35.2 + 3.21.1 + 5.15.1 = 70 + 63 + 75 = 208 = 103 (mod 105)

that are the natural integers of the sequence : 103, 208, 313, . . .

i.e. from the arithmetic progression : 105k + 103

Ambiguity, Galois theory, invariant function by a roots permutation
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Interlude : Chinese Remainders Theorem

If we had to solve nearly the same congruences system, but with one
congruence less : {

x ≡ 3 (mod 5)
x ≡ 5 (mod 7)

We set M ′ = 5.7 = 35.
M ′1 = M ′/5 = 7 7.y ′1 ≡ 1 (mod 5) y ′1 = 3
M ′2 = M ′/7 = 5 5.y ′2 ≡ 1 (mod 7) y ′2 = 3

x ≡ r ′1.M
′
1.y
′
1 + r ′2.M

′
2.y
′
2

≡ 3.3.7 + 5.3.5 = 63 + 75 = 138 = 33 (mod 35)

that are natural integers from the sequence :
33, 68, 103, 138, 173, 208, 243, . . .

i.e. from the arithmetic progression : 35k+33
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Interlude : Congruence relation powerfulness

≡ is an equivalence relation.

a ≡ b
c ≡ d

a + c ≡ b + d
ac ≡ bd

Let us compare the resolution of the two following systems :

A :

{
x ≡ 3 (mod 5)
x ≡ 5 (mod 7)

B :

{
x ≡ 13 (mod 5)
x ≡ 5 (mod 7)

A : x ≡ 3.3.7 + 5.3.5 = 63 + 75 = 138 = 33 (mod 35)

B : x ≡ 13.3.7 + 5.3.5 = 273 + 75 = 348 = 33 (mod 35)
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Interlude : What does the Chinese Remainders Theorem
bijection ?

Chinese Remainders Theorem associates to every prime modules
non-contradictory congruences system an arithemtic progression.

Let us call E the set of prime modules congruences systems.
Let us call E ′ the set of arithmetic progressions.

E → E ′

sc1 7→ pa1

sc2 7→ pa2

sc1 ∧ sc2 7→ pa1 ∩ pa2

Moreover,
(sc1 ⇒ sc2) ⇔ (pa1 ⊂ pa2)

.
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Interlude : Recalls

An arithmetic progression being a part of N, it admits a smallest
element. We will choose in the following to represent an arithmetic
progression by its smallest element.

E and E ′ are two given arithmetic progressions, E ⊂ E ′ ⇒ n′ ≤ n

A set E provided with a partial order relation is a lattice
⇔ ∀a ∈ E ,∀b ∈ E , {a, b} admits a least upper bound and a greatest
lower bound.

The set of prime modules congruences systems (all modules being
differents) is a lattice provided with a partial order (based on logical
implication relationship (⇒)).

The set of arithmetic progressions is a lattice provided with a partial
order (based on set inclusion relationship (⊂)).
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Interlude : Let us observe more precisely the trc bijection
intervening in Chinese Remainders Theorem

What are the solutions obtained by Chinese Remainders Theorem ?
Z/3Z× Z/5Z→ Z/15Z

(0, 0) 7→ 0
(0, 1) 7→ 6
(0, 2) 7→ 12
(0, 3) 7→ 3
(0, 4) 7→ 9

(1, 0) 7→ 10
(1, 1) 7→ 1
(1, 2) 7→ 7
(1, 3) 7→ 13
(1, 4) 7→ 4

(2, 0) 7→ 5
(2, 1) 7→ 11
(2, 2) 7→ 2
(2, 3) 7→ 8
(2, 4) 7→ 14

In this array, line (1, 3) 7→ 13 must be read “the set of numbers that
are congruent to 1 (mod 3) and to 3 (mod 5) is equal to the set of
numbers that are congruent to 13 (mod 15)”. It is interesting to
notice that the same line can be read “13 is congruent to 1 (mod 3)
and to 3 (mod 5)” (fractality).

Peano’s arithmetic axioms : let us add (1,1) recursively from (0,0) (Succ function).
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Interlude : Let us observe more precisely trc bijection
intervening in Chinese Remainders Theorem

Z/3Z× Z/5Z× Z/7Z→ Z/105Z

(0, 0, 0) 7→ 0
(0, 0, 1) 7→ 15
(0, 0, 2) 7→ 30
(0, 0, 3) 7→ 45
(0, 0, 4) 7→ 60
(0, 0, 5) 7→ 75
(0, 0, 6) 7→ 90

(0, 1, 0) 7→ 21
(0, 1, 1) 7→ 36
(0, 1, 2) 7→ 51
(0, 1, 3) 7→ 66
(0, 1, 4) 7→ 81
(0, 1, 5) 7→ 96
(0, 1, 6) 7→ 6

(0, 2, 0) 7→ 42
(0, 2, 1) 7→ 57
(0, 2, 2) 7→ 72
(0, 2, 3) 7→ 87
(0, 2, 4) 7→ 102
(0, 2, 5) 7→ 12
(0, 2, 6) 7→ 27

(0, 3, 0) 7→ 63
(0, 3, 1) 7→ 78
(0, 3, 2) 7→ 93
(0, 3, 3) 7→ 3
(0, 3, 4) 7→ 18
(0, 3, 5) 7→ 33
(0, 3, 6) 7→ 48

(0, 4, 0) 7→ 84
(0, 4, 1) 7→ 99
(0, 4, 2) 7→ 9
(0, 4, 3) 7→ 24
(0, 4, 4) 7→ 39
(0, 4, 5) 7→ 54
(0, 4, 6) 7→ 69

(1, 0, 0) 7→ 70
(1, 0, 1) 7→ 85
(1, 0, 2) 7→ 100
(1, 0, 3) 7→ 10
(1, 0, 4) 7→ 25
(1, 0, 5) 7→ 40
(1, 0, 6) 7→ 55

(1, 1, 0) 7→ 91
(1, 1, 1) 7→ 1
(1, 1, 2) 7→ 16
(1, 1, 3) 7→ 31
(1, 1, 4) 7→ 46
(1, 1, 5) 7→ 61
(1, 1, 6) 7→ 76

(1, 2, 0) 7→ 7
(1, 2, 1) 7→ 22
(1, 2, 2) 7→ 37
(1, 2, 3) 7→ 52
(1, 2, 4) 7→ 67
(1, 2, 5) 7→ 82
(1, 2, 6) 7→ 97

(1, 3, 0) 7→ 28
(1, 3, 1) 7→ 43
(1, 3, 2) 7→ 58
(1, 3, 3) 7→ 73
(1, 3, 4) 7→ 88
(1, 3, 5) 7→ 103
(1, 3, 6) 7→ 13

(1, 4, 0) 7→ 49
(1, 4, 1) 7→ 64
(1, 4, 2) 7→ 79
(1, 4, 3) 7→ 94
(1, 4, 4) 7→ 4
(1, 4, 5) 7→ 19
(1, 4, 6) 7→ 34

(2, 0, 0) 7→ 35
(2, 0, 1) 7→ 50
(2, 0, 2) 7→ 65
(2, 0, 3) 7→ 80
(2, 0, 4) 7→ 95
(2, 0, 5) 7→ 5
(2, 0, 6) 7→ 20

(2, 1, 0) 7→ 56
(2, 1, 1) 7→ 71
(2, 1, 2) 7→ 86
(2, 1, 3) 7→ 101
(2, 1, 4) 7→ 11
(2, 1, 5) 7→ 26
(2, 1, 6) 7→ 41

(2, 2, 0) 7→ 77
(2, 2, 1) 7→ 92
(2, 2, 2) 7→ 2
(2, 2, 3) 7→ 17
(2, 2, 4) 7→ 32
(2, 2, 5) 7→ 47
(2, 2, 6) 7→ 62

(2, 3, 0) 7→ 98
(2, 3, 1) 7→ 8
(2, 3, 2) 7→ 23
(2, 3, 3) 7→ 38
(2, 3, 4) 7→ 53
(2, 3, 5) 7→ 68
(2, 3, 6) 7→ 83

(2, 4, 0) 7→ 14
(2, 4, 1) 7→ 29
(2, 4, 2) 7→ 44
(2, 4, 3) 7→ 59
(2, 4, 4) 7→ 74
(2, 4, 5) 7→ 89
(2, 4, 6) 7→ 104

Same remark as for previous page concerning the two possible
manners to read each line.
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restricted trc bijection

Let us define restricted trc bijection as the bijection that associates to
a congruences system the smallest natural integer of the arithmetic
progression the Chinese Remainders Theorem associates to it.

Consequence of the fact that trc (and restricted trc) are
bijections
restricted trc bijection associating to each prime modules
congruences system with modules some mi all differents a natural
integer from the finite part N that is between 0 and

∏k
i=1 mi , if

sc1 ⇒ sc2 and sc1 6= sc2 then the sc1 congruences system solution
(the natural integer paired with sc1 by restricted trc bijection) is
strictly greater than the sc2 congruences system solution.
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Let us provide an example of paired integer by
restricted trc bijection of a t-uple and of the t-uples that
are its projection according to some of its coordinates

Let us study 3-uple (1, 4, 3) projections.

Z/3Z× Z/5Z× Z/7Z → N
(1, 4, 3) 7→ 94

Z/3Z× Z/5Z → N
(1, 4) 7→ 4

Z/3Z× Z/7Z → N
(1, 3) 7→ 10

Z/5Z× Z/7Z → N
(4, 3) 7→ 24

94 has three integers paired with itself that are strictly lesser than it
by restricted trc bijection.

94 projects itself in natural integers strictly lesser than it because
3.5 < 3.7 < 5.7 < 94 < 3.5.7.
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Interlude : Fermat’s Infinite Descent

If an even integer should not verify Goldbach Conjecture, there should
be another even integer lesser than the first one that should not verify
Goldbach Conjecture neither and step by step, like this, we proceed
until reaching so little integers that we know they verify Goldbach
Conjecture.

Exists no infinite strictly decreasing sequence of natural integers.

Reductio ad absurdum :
- we suppose that x is the smallest such that P(x).
- we show that then P(x ′) with x ′ < x .
- we reached a contradiction.
(If P(n) for a given natural integer n, there exists a non-empty part of N containing an element that verifies property P.

This part admits a smallest element. In our case, property P consists in not verifying Goldbach Conjecture)
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Recall : We try to reach a contradiction from the
following hypothesis :

p1, . . . , pk ∈ P∗1(x), mj1 , . . . ,mjk ∈ P∗2(x).
∃ x ∈ 2N\{0, 2, 4}, x ≥ 4.1018,

S0


x ≡ p1 (mod mj1)
x ≡ p2 (mod mj2)
. . .
x ≡ pk (mod mjk )

Note : some modules can be equal.
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First step

System transformation to order modules according to an increasing
order and to eliminate redundancies.

p′1, . . . , p
′
k ∈ P∗1(x), nj1 , . . . , njk ∈ P∗2(x).

∃ x ∈ 2N\{0, 2, 4}, x ≥ 4.1018,

S


x ≡ p′1 (mod nj1)
x ≡ p′2 (mod nj2)
. . .
x ≡ p′k (mod njk )

S has d that is paired with itself by restricted trc bijection.
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Where can contradiction come from ?

It can come from Fermat’s Infinite Descent.

We know that restricted trc bijection provides as solution for S the
natural integer d that is the smallest natural integer of the arithmetic
progression associated to S by the Chinese Remainders Theorem.

S system is such that d doesn’t verify Goldbach Conjecture.

Conclusion : We are looking for a S ′ congruences system, implied by
S and 6= to S, to what restricted trc bijection associates a natural
integer d ′ < d, with d ′ doesn’t verify Goldbach Conjecture neither.
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We look for S ′ ⇐ S that has d ′ < d paired with it by
restricted trc bijection.

Let us consider a S ′ congruences system constituted by a certain
number of congruences of S according to all differents odd prime
natural integers mi , i an integer between 1 and k, such that
d >

∏k
i=1 mi ;

First problem : To descend one Fermat’s descent step, it is necessary
that d ′ < d .

But we saw that d ′ < d comes from restricted trc bijection.

Second problem : How to be sure that d ′ doesn’t verify Goldbach
Conjecture neither ?

For this aim, we need that congruences kept from initial S
congruences system are such that d ′ is congruent to all P∗1(d ′)
elements according to a module that is an element of P∗2(d ′).

(Said in another way, we must be sure that removing congruences to make strictly decrease the congruences system

solution, we won’t “lose” congruences that ensured the Goldbach Conjecture non-verification.)
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Second step

We keep from the resulting congruences system a maximum of
congruences in a new system S ′ in such a way that d , the initial
system S’s solution, is strictly greater than the moduli kept in the
new system product and in such a way that every module intervening
in a kept congruence of the system is lesser than

√
d ′. .

p′1, . . . , p
′
k ′ ∈ P∗1(x), nj1 , . . . , njk′ ∈ P∗2(x).

∃ x ∈ 2N\{0, 2, 4}, x ≥ 4.1018,

S ′


x ≡ p′1 (mod nj1)
x ≡ p′2 (mod nj2)
. . .
x ≡ p′k ′ (mod njk′ )

d >
∏k ′

u=1 nju
p′x are all differents odd prime natural integers and ny are all differents
odd prime natural integers ordered according to an increasing order.

S ′ is paired with d ′ by restricted trc bijection.
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Why d ′ doesn’t verify Goldbach Conjecture neither ?
d ′ <

∏k ′

u=1 nju < d

So
d ′

2
<

d

2
⇔ P∗1(d ′) ⊂ P∗1(d).

But ∀ mi ∈ P∗2(d), d ′ ≡ d (mod mi ).

Then ∀pi ∈ P∗1(d), ∃mi ∈ P∗2(d), d ≡ pi (mod mi )

⇔ ∀pi ∈ P∗1(d), ∃mi ∈ P∗2(d), d ′ ≡ pi (mod mi )

⇒ ∀pi ∈ P∗1(d ′), ∃mi ∈ P∗2(d ′), d ′ ≡ pi (mod mi )

The implication is true because every kept module is an element of
P∗2(d ′).

This last line expresses the fact that d ′ doesn’t verify Goldbach
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Conclusion

If one natural even integer d doesn’t verify Goldbach Conjecture
C .G ., we are ensured to find another natural even integer d ′ < d not
verifying Goldbach Conjecture neither, we established a contradiction
from the hypothesis that d was the smallest natural even integer not
verifying Goldbach Conjecture

We so established that we always reach a contradiction when we start
from the hypothesis that some natural even integer doesn’t verify
Goldbach Conjecture.

For this aim, we used what we could call a “Residue Numeration
System in Finite Parts of N”

Congruence relationship makes of N the natural integers set a fractal
set.

Denise Vella-Chemla Goldbach Conjecture Study 23/5/2012 31 / 31


