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Analogies between number fields and function fields have been a long-time source of
inspiration in arithmetic. However, one of the most intriguing problems in this approach,
namely the problem of the absolute point, is still far from being satisfactorily understood.
The scheme Spec(Z), the final object in the category of schemes, has dimension 1 with
respect to the Zariski topology and at least 3 with respect to the etale topology. This
generated a long-standing desire to introduce a more mythical object P, the “absolute
point” with a natural morphism 7y : X — P given for any arithmetic scheme X so that
global invariants of X have an interpretations in terms of a version of direct image with
respect to mx. This problem involves also the question of the compactification, since even
a scheme proper over Z is still non-compact at the arithmetic infinity.

One theory which successfully addresses these problems is Arakelov geometry [...]. The
compactifications provided by it involve Riemannian metrics at the sets of real points
of arithmetic schemes, and the cohomological invariants have the form of volumes of
fundamental domains of some lattices (given by the direct image to Spec(Z)) with respect
to volume forms coming from the metrics. The volume of a convex body is the leading
term of the asymptotic of the number of integer points in its dilations. So the analog of
Arakelov-type invariants in the more geometric situation is the leading term of the Hilbert
polynomial of a coherent sheaf, which describes the asymptotic of the dimension of the
space of sections with growing order of poles at the infinity.

Thus the output of the Arakelov theory is essentially Archimedean, having to do with
the asymptotics of some integers within the real numbers.

In the present paper we would like to initiate a different approach to the problem of
“absolute” cohomological invariants, which can be called Arakeloy geometry modulo n.
Let us describe the main ideas.

First of all, it is an old idea to interpret combinatorics of finite sets as the g — 1 limit
of linear algebra over the finite fields F,. This had lead to frequent consideration of the
folklore object Fy, the “field with one element”, whose vector spaces are just sets. One
can postulate, of course, that Spec(F) is the absolute point, but the real problem is to
develop non-trivial consequences of this point of view.

In [...] the affine line over F, was considered; it consists formally of 0 and all the roots
of unity. Put slightly differently, this leads to the consideration of “algebraic extensions”
of F. By analogy with genuine finite field we would like to think that there is exactly
one such extension of any given degree n, denote it F1n. Of course, Fi» does not exist in
a rigorous sense, but we can think if a scheme X contains n-th roots of unity, then it is
defined over Fyn, so that we have a morphism

Px : X — Spec(Fyn). (1)



The point of view that adjoining roots of unity is analogous to the extension of the base
field goes back, at least, to Weil (Lettre a Artin, Ouevres, vol.1) and Iwasawa [...].

The aim of the “Arakelov geometry modulo n” which we propose, is to make sense of
the cohomological invariants obtained via the direct image of the morphism (1). One of
the most interesting such invariants is the determinant of the cohomology, det(Rpx.(F))
for a coherent sheaf F on X. In the geometric case the problem of calculating this de-
terminant, as a functor of F, contains the Riemann-Roch problem. In our case, vector
spaces over Fn are sets with a free action of the group g, of nth roots of 1, and it is
possible to develop the determinantal formalism (see Section 1 below). The corresponding
Riemann-Roch problem involves not volumes, but rather residues modulo n of the num-
bers of integer points in some polyhedra. The analogs of the direct images of Chern classes
(i.e., Deligne’s torsors (L, M)) involve n-power residue symbols, and well-definedness of
our determinantal formalism implies a very natural proof of the reciprocity law for these
symbols. In fact, some modern approaches to the reciprocity law, like the one of Kubota
[...], can be viewed as implicitly dealing with linear algebra over F», constructing special
bases etc. We use some of Kubota’s ideas to develop a theory of “Arakelov compactifi-
cation” of vector bundles on arithmetic curves; similarly to the standard procedure, our
compactification involves some domains in M ® R, where M is a module over the ring of
integers of a number field, but in our case the domains are of polyhedral nature and well
behaved with respect to counting of points modulo n in their dilations.

It is not yet clear how to formulate the correct analog of the Riemann- Roch theorem;
what is certain, is that it should be a statement relating residue modulo n of the number
of integer points in a polyhedron with n-power residue symbols. Several statements of
this kind are known, starting from the Gauss’ geometric proof of the quadratic reciprocity
law.

Let us now explain the contents of the paper in more detail. In Section 1 we discuss
in some detail the formalism of absolute fields (algebraic extensions of F), linear algebra
over such fields, theory of determinants and determinantal torsors.

In Section 2 we develop rudiments of the homological algebra over absolute fields,
which will be necessary for us. In particular, we study the analogs of exact sequences.
All this formalism is adapted to considering invariants (like dimension) modulo 7.

In Section 3 we define the cohomological invariants of arithmetic curves which are,
informally, related to cohomology of constructible sheaves rather than coherent sheaves.
This does not require compactification, but does require working with level N structures.
In particular, we define the “resultant torsors” (L, M) for two line bundles with level
structure. The existence of a good theory of such torsors is equivalent to the reciprocity
law of class field theory. We also trace in some detail the analogy between class field
theory and the theory of knots and links in the 3-space.

In Section 4 we construct a theory of “modulo n compactifications” of arithmetic
curves. In particular, we construct the cohomology of a (coherent) sheaf on the com-
pactified curve. They are, of course, vector spaces over the absolute field. Our approach
uses, in a crucial way, the notion of so-called “cohomological domain”, a certain technical
concept whose role is to make sure that the cohomology as we define it, behaves in the
expected way under twisting with very ample sheaf. This is done in the separate Section
5.



1 Absolute fields.
1.1 The “field” F;.

Let us briefly recall the folklore imagery related to F, the (non-existent) field with one
element.

A vector space over F; is just a set; the dimension of such a vector space is the
cardinality of the set. The general linear group GL,(Fy) is the symmetric group S,. The
analog of the determinant det : GL,(F) — F* for F = F, is the sign homomorphism
sgn : S, — {£1}. The special linear group SL,(F;) is just the alternating group A,.

Thus, the linear algebra over F, is the same as the combinatorics of (finite) sets. For
instance, if X is such a set, |X| = n, then k-elements subsets in X should be thought
as k-dimensional vector subspaces in X as a F;-vector space. Their number, (;‘) is equal
to the limit for ¢ — 1 of the cardinalities of G(k, n)(F,), the actual Grassmann varieties
over actual fields F,.

1.2 Polynomial rings over F;.

Along with the “field” Fy, we may want to have the polynomial “ring” Fy[t]. Although
such a ring does not exist as well, we can say something about objects related to it.

The group G Ly(F, [t]) is the full braid group By on d strings. The canonical homomor-
phism f : By — S; should be thought of as g — 1 limit of the evaluation homomorphisms

GL4(F,[t]) — GLu(F,), A(t) — A(0).

The subgroup P; = Ker(e), called the pure braid group, is thus the analog of the congru-
ence subgroup GLg4(F[t], t).

This point of view can be justified as follows. The group By is the fundamental group
of the space Cf of complex polynomials z¢+ a;z%! + ... + a, without multiple roots, and,
accordingly, the subgroup P, is the fundamental group of the space

Cf = Cd == U{(Il, ...,1Ed) T = Ij}.
i#j

Let now F be an algebraically closed field containing F,. The space

Fé=pi_ U {(ml,...,zd):Zaixi=0}

(@1 yeeey ad)ng~(O}

is acted upon by the group GL,(F,), and the quotient is identified with the space of
g-polynomials " g
=)
¥ +az? 4404127+ agz, ag #0.

Forevery N € F,[t], N = Y b;t!, Drinfeld constructed an unramified covering of F¢/GLy(F,)
with the Galois group GLy(F,[t]/N). This is the moduli space of elliptic F,[t]-modules
of rank d with level N structure, see [...]. Thus the profinite completion of GL4(F,[t]) is
embedded into the fundamental group of the space of g-polynomials.

(1.3) Algebraic extensions of F;. Since we think of F, as a “field”, we would like to
consider its finite extensions. It is natural to think, by analogy with genuine finite fields,



that for any n we have one such extension of degree n. Denote it Fin. We think of Fin
as containing zero and j,, the set of all roots of unity of order n. One can, if one wants,
say that Fj~ is the monoid {0} U pin.

Equivalently, we introduce the affine line over F, to consist of 0 and the roots of unity
of all orders. So as a set it is identified with the “algebraic closure” of F;. Also, the affine
line should be regarded as the spectrum of the non-existing ring F,[t]. For the analog of
the evaluation map from the braid group corresponding to a point of the affine line, see
n. 1.4 below.

We regard F, as the absolute point of the category of schemes, so that every scheme
is defined over F;. We say that a scheme X is defined over Fin, if the ring of regular
functions on X contains nth roots of 1. This is in accord with Iwasawa theory [...] where
adding roots of unity to a number field replaces the extension of base field for a curve.
(1.4) Linear algebra over Fin. Let us extend the formalism of (1.1) to algebraic
extensions of F;. A vector space over Fy» is a pointed set (V,0 € V) with an action of
the group i, free on V — {0}. The element 0 is fixed under the action. Its addition is
really optional; it serves to make the standard constructions with vector spaces sound
more familiar. Also, it is always present in natural examples. For a vector space V over
F1» we denote by V the set V — {0}.

A linear map V — W is just a map of p,-sets.

A basis of a vector space V is, by definition, a subset B € V such that every ju,-orbit
contains a unique element of B. The dimension of V' is the cardinality of any basis, i.e.,
the cardinality of 1% it

The general linear group G La(F =) is the group of automorphisms of a d-dimensional
vector space; this is just the wreath product of Sy and (p,)% It can be viewed as the
group of d by d matrices which contain exactly one non-zero element in each row and
each column, and this element is a root of unity from p,. Given a root of unity € € fin,
we have the “evaluation map”

ff B Bd = GLd(Fl[t]) = GLd(Fln)

described as follows. Recall that By is generated by elements oy,¢ = 1, ..yd — 1 with
relations
0i0i410; = 0410041, 0;05 = 003, ]Z '—]I Z 2.

The map f. is defined by the condition
fs(gi) = ]-i—l 57} ®1n—1f17

where by 1; we denote the unit 4 by i matrix, and @ stands for the direct (block-diagonal)
sum of matrices.

The category of Fyn-vector space is equipped with the operations of direct sum V'V W
and smash product V A W. By definition, V VW is obtained from the disjoint union
V][W by identifying the zero elements, and V A W is obtained from the Cartesian
product V x W by identifying (V x 0)U (0 x W) with 0. Thus after disregarding the zero
elements the operations V, A correspond to disjoint inion and Cartesian product of free
[n-s€ts.

We introduce also the tensor product V @ W as the quotient of V AW by the antidiag-
onal action of piy, i.e., by the identification z Ay = ez Ae~ly. Denote by z®y the image of



zAy in VW and equip V@W with the y,-action by the rule e(z®y) = (ez)®y = z®(ey).
It is clear that

dim(V' vV W) = dim(V) + dim(W), dim(V ® W) = dim(V) x dim(W).

(1.5) Determinants. Let V be a vector space over F; and A : V — V be its automor-
phism. Its determinant det(A) is defined as follows. Choose any basis ey, ...,eg of V| so
that A(e;) = aye, () for some permutation ¢ € S, and some roots of unity o; € p,. Then,
by definition, det(4) = [J;. One easily verifies the equality det(AB) = det(A) det(B)
which implies that det(A) is independent on the choice of a basis.

Note the absense of any minus signs in our definition of the determinant. We will give
an explanation for this later on. Right now let us give two examples justifying our choice.

1.2.1. Proposition. (1.6) Proposition. Let n = 2 and let V be a Fi2-vector space, so
V is a set with free involution. Let d = dim(V) and A : V — V be an automorphism.
Then det(A) € pa = {£1} coincides with the sign of the permutation V — V of the 2d
elements of V given by A.

(1.7) Power residue symbol as the determinant. Let g be a prime power and F, be
a finite field with ¢ elements. Suppose that ¢ = 1(mod n). Then F, contains nth roots of
1, and we identify p, with the subgroup in F;. Then for every a € F we have the power

residue symbol
a g=1
— ) =aF € pn.
(F) b

n
On the other hand, the embedding un1F; makes Fy a vector space over Fi» in the above
defined sense. The multiplication by a is an automorphism of this space. The following
fact is a version of a classical lemma of Gauss.

1.2.2. Proposition. (1.8) Proposition. The nth power residue symbol (FL.,) is equal to
the determinant of the multiplication by a.

We leave the proof to the reader.
(1.9) Determinantal spaces and exterior powers. Let A be any Abelian group,
with operation written multiplicatively. The category of torsors (principal homogeneous
spaces) over A has a natural monoidal structure which we denote . Explicitly, if TS
are A- torsors, then T'® S is generated by symbols t ® s with t € T, s € S sub ject to the
relations (at) ® s =t ® (as). The operation ® is obviously commutative and associative
in the sense that we have natural isomorphisms. When A is the multiplicative group of a
field F, then this operation corresponds to the tensor product of 1-dimensional F-vector
spaces.

Let now V be a d-dimensional vector space over Fy». Then V is the union of Jin-0rbits,
each of which is a p,-torsor. We define the determinantal space det(V) as the union of
zero and the ®-product of all these torsors:

det(V)={0}u & T

TEV/#H

It is clear that for an automorphism f: V — V its determinant det(f) is just the induced
map det(V) — det(V).



Note, in particular, that for every € € p,, the multiplication by € defines an isomorphism
V — V, and its determinant, which is a map det(V) — det(V), is the multiplication by
«dim(V) Thus det as a functor recovers the dimensions of Fin-vector spaces taken modulo
n. Later we will consider the dimension modulo n as the basic invariant of a vector space
(see §2).

More generally, for every k < d we define the kth exterior power /\'c V as follows:

/k\V={0}u I &

IV /o, |T|=k TEI

It is convenient to do the tensor algebra in a slightly more systematic way. Fix the
following action of the symmetric group Sk on ek,

O'(.’El B us ®$k) =To(1) @ .. ® Lo (k)-

Then /\‘c V is obtained from the quotient V®* /S, by identifying with O every element
21 ®...Q 1y in which some of the z;, z; are proportional (with coefficient of proportionality
lying in p,). We denote by @y A ... Az the image of 2 ® ... ® Tk in /\’c V.

Still another justification for the absense of signs in our determinant theory is given
by the following fact.

1.2.3. Proposition. (1.10) Proposition. Let g be a prime power, F, be a field with g
elements and n = q — 1. Identify pn with F;. Let V be any F,-vector space. Then
the determinant of V regarded as a Fin-vector space is identified with the standard top
esterior power of V regarded as F4-vector space (the identification being equivariant with
respect to the group Autg, (V)).

In particular, for every F-linear automorphism f : V — V the two possible definitions
of the determinant of f coincide.

Proof. In view of our definition of the determinant over Fi», our statement amounts to
a statement of pure F-linear algebra which can be stated as the existence of the natural
isomorphism

(1.11) detp,(V) = Q) L,
LeP(V)

where on the right stands the (ordinary) tensor product of all the 1-dimensional F,-vector
subspaces in V. By P(V) we denote the projectivization of V.

By definition, the right hand side of (1.11) is generated by elements 24 = Rrepy ¢(L)
for all sections ¢ of the natural projection V —{0} — P(V). If ¢, ¢ are two such elements,

then we have (L)
w=( I 57)=

LeP(V)
On the othen hand, the space detp, (V) is spanned by symbols v; A ... A vg, for all the
bases v1, ..., vg of V with the standard relations of antisymmetry and multi-linearity. We
now define a map dety, (V) — detr,. (V) as follows.
Let vy, ...,vq be a basis of V. Consider the following system of representatives of the
F;-action on V — {0}: In other words, this is the natural lifting into V —{0} of the natural
cell decomposition of P(V) associated with the basis vy, ..., Va.



1.2.4. Lemma. (1.12) Lemma. The element z(vy, ...,v4) € ®L€P(V) L given by the ten-
sor product of the set of representatives just constructed, depends on vi, ..., vy in an anti-
symmetric and multilinear way.

Proof. (a) Antisymmetry: Suppose we interchange v; and v;;. Consider first for simplicity
the case 7 = 1. Denote by P! the projectivization of the F,-subspace in V' spanned by
vy, v2. The elements z(v;,vs, ..., va) and z(va, vy, ..., vy) differ by the factor which is the
product over all L € P! of the ratios of the representatives of the first and second family
lying in L. If L = Fyv; or Fyuvy, then the corresponding representatives are the same. If
L is spanned by v; + av, with a € F;, then the ratio of the two representatives is equal
to ™. Thus

-T(’U],’Uz,-...,'l/d) — H a—l = =,
z(vg,01,,%) g,
q

In the vase when we interchange v; and v;,; with i > 1, we have essentially the same
picture but directly multiplied by (F,)*~!. Thus the ratio of the two elements of det will
be (=1)¢"". This quantity always equal to 1 in the field Fy: if q is odd, then we raise
(=1) to an odd power and get (—1), while if ¢ is even, then (1) =1.

(b) Multilinearity: It is enough to prove that, first, z(v1, ..., vg) is unchanged under ele-
mentary transformations, i.e., replacement of v; by v; +Av; and, second, the multiplication
of one of the v; by A € F, multiplies z(v1, ..., v4) by A. To prove the first statement it is
enough, by antisymmetry, to consider the case s = 2, j = 1. But for two bases differing by
such a transformation, the corresponding sets of representatives are the same. To prove the
second statement, it is enough to multiply vy by A. But z(\vy, vy, ..., va) = Az(vy, v, ..., Vd)
by definition. Lemma 1.12 and Proposition 1.10 are proved.

2 Homological algebra over absolute fields.

In this section we fix an integer n, denote the group u, of nth roots of 1 simply by p and
write simply F instead of Fyn.

The category of finite-dimensional F-spaces will be denoted by M. This category
is non-linear, so the natural replacement of homological algebra would be the theory of
closed model categories of Quillen [...]. However, it seems that M does not allow a closed
model structure, and we define only certain rudiments of such a structure.

(2.1) Cofibrations. The role of cofibrations will be played by embeddings of F-spaces.
If f:V < W is such an embedding, we denote by V/W the result of contraction of W
into 0. Occasionally we will also deal with quotients of Abelian groups (which may also
be F-spaces). To avoid confusion, the group-theoretic quotient will be always denoted %
It is clear that we have a canonical isomorphism

det(V) @ det(W/V) — det(W).

(2.2) Fibrations and equivalences. Let f : V — W be a morphism of F-vector
spaces. We say that f is a fibration if for each wy,w, € W we have the congruence
If 7 (ws)] = | £~ (ws)| (mod n).

We say that f is an equivalence if f~!(0) = 0 and for every non-zero w € W the
cardinality of f~'(w) is congruent to 1 modulo n. Thus every equivalence in our sense is
a fibration.



Clearly, if f is an equivalence, then dim(V) = dim(W) (modn).
We denote by M* the subcategory in M with the same objects as M and morphisms
which are the equivalences.

2.0.5. Proposition. (2.3) Proposition. Let f : V. — W be an equivalence and B =
{wy, ..., wq} be a basis of W. Then f~Y(B) is a basis of V. Moreover, the rule

wy AN ... Nwg — /\ v
vef~1(B)

defines an isomorphism det(W) — det(V). This isomorphism is independent on the
choice of a basis B.

We denote by det(f) : det(V) — det(W) the isomorphism inverse to one constructed
in Proposition 2.3.

Let P be the category of 1-dimensional F-vector spaces and their isomorphisms. Then
det extends to a covariant functor M* — P. Since every morphism in P is an isomor-
phism, this shows that the category obtained from M* by formally inverting all the
morphisms, is non-trivial.

2.0.6. Definition. (2.4) Definition. A sequence of F-vector spaces and their morphisms
S = {0-» v’-‘:vﬂv"-»o} (2.4.1)

is called ezact, if o is a set-theoretic injection, the composition Ba is equal to 0, and the
map from V/a(V') to V" induced by 3, is an equivalence.

It is clear that for an exact sequence we have
dim(V) = dim(V’) + dim(V") (modn).

(2.5) Examples. (a) For every V the map (V' x F)/(0 x F) — V is an equivalence.

(b) Let g be a prime power, and n be a divisor of g— 1. Let us identify p = p, with the

group of n-th roots of unity inside the finite field Fy. Then any F,-vector space becomes
an F-vector space, and every short exact sequence of Fg-vector spaces and F-linear
operators is exact in the sense of Definition 2.3.
(2.6) Determinants and exact sequences. The category P of 1-dimensional vector
spaces and their isomorphisms is naturally a Picard category, i.e., a symmetric monoidal
category with every object functorially invertible. The operation on P is given by the
tensor product ® (which corresponds to the the product © on p-torsors).

Given an exact sequence S as in (2.3.1), the functoriality of det on equivalences gives
an isomorphism

Ag : det(V') ® det(V") — det(V)

which is natural with respect to equivalences of short exact sequences.
(2.7) Exact complexes. Let

d dn—
0=V B yrtayds tyr g



be a sequence of F-vector spaces and their morphisms. Such a sequence is called a
complex, if the composition d; o d;_; is the zero map for every i. A sequence is called
exact, if it is a complex and for every 7 the sequence

0= Im(di_y) = V' & Im(d;) — 0

is exact.
For any graded F-space V* = (V*,i € Z) we define

det(V*) = (X) det (Vi)D"
In particular, every complex gives a graded F-space.

2.0.7. Proposition. (2.8) Proposition. IfV* = (V%,d;) is an ezact complez, then there
is a natural identification
Bu : det(V*) — p.

This isomorphism depends on the maps in the complex. We will denote by (V*) €
det(V*) the inverse image of 1 € p under the isomorphism Eu.

3 Class field theory and level structures.

(3.1) Three-dimensional point of view on Spec(Z). A considerable part of class field
theory can be viewed as an analog of the theory of knots and links in 3-manifolds.

More precisely, the spectrum of a finite field F, can be naturally visualized as a circle,
because, similarly to the circle, it has one connected unramified cover Spec(Fym) for every
m 2 1. The Frobenius element, generating Gal(fq /F,) is represented by the monodromy
along the circle.

Let now K be a number field, A its ring of integers and X = Spec(A). Then it is

natural to visualize X as a 3-dimensional manifold. The spectra of prime residue fields of
A can be thus viewed as circles inside this 3-manifold which can be knotted, linked etc.
This point of view was advocated by Y. Manin and B. Mazur. It is in agreement with
the fact that the etale cohomological dimension of X is equal to 3, see [...].
(3.2) Legendre symbols and linking numbers. Recall one of the definitions of
the linking number. Let M be a compact 3-manifold and C, D be two non-intersecting
embedded circles in M. Suppose that C is homologous to 0. Then there exists a connected
Galois covering M — M with Galois group Z ramified along C. The monodromy along
D in this covering is thus an integer (C, D) called the linking number of C and D. In the
case when D is also homologous to 0, the number (D, C) is defined and we have

(D,C)=(C,D) (3.2.1)

If C'is homologous to 0 modulo n, we can, by using Z/n-coverings, define the intersection
index modulo n.

Another, more standard, definition of (C,D) is as the intersection number (0-D)
where o is a 2-chain bounding C.

Now the Legendre symbol of quadratic reciprocity is the arithmetic analog of the
mod. 2 linking number. Namely, take X = Spec(Z) and let p € Z be a prime of the form
4k 4 1. Then the scheme X, the spectrum of the ring of integers of Q[\/p], is a double



cover of X ramified only at p. If ¢ is another prime number, then the Legendre symbol
(23) is the element of Gal(X/X) = {1} corresponding to the Frobenius at g, i.e., in our

visualization, to the monodromy along the circle Spec(Fg)1.X. Thus (g) can be viewed
as the linking number of the “circles” Spec(F,) and Spec(F,) in the “3-fold” Spec(Z). If
both p, g are of the form 4k + 1, then the Gauss reciprocity law shows that (5) = (%),
which is the analog of (3.2.1).

If, however, p = 4k + 3, then there is no covering of X ramified only at p (by taking
/P we get ramification at p and 2, while by taking /—p we get ramification at p and
00). This means that in this case Spec(F,)1Spec(Z) should be regarded as a circle not
homologous to 0. So before going further we discuss how the notion of linking number
generalizes to such circles.

(3.3) Linking torsors. Let M be any 3-manifold. It is possible to associate to any two
homology classes ¢, d € Hy(M,Z) a certain Z-torsor (c, d) with the following properties:

1. There are natural isomorphisms
e+, d)~(c,d)®(c,d), (cd+d)=(cd)®(cd), (dec)= (¢, d),
where ® is the natural monoidal structure on the category of Z-torsors
2. If ¢ = 0, then (c,d) is canonically identified with Z.

3. For any two non-intersecting oriented 1-dimensional submanifolds C, DiM of ho-
mology classes ¢ and d there is a naturally defined element (C,D) € (c,d), and
these elements satisfy the properties:

(C+C', D) = (C,D)+(C",D), (C,D+D')=(C, D)+(C, D), (C,D)=-(D,C).

4. If C,C" are two circles of the same homology class c, and D is a circle of homology
class d, then we have the equality of integers

(C,D)~(C",D) = (- D),

where the integer on the left is the difference of two elements of the Z-torsor (c,d)
and o is a 2-chain such that 8o = C — C".

In fact, one can define {c,d) to be generated by symbols (C,D) withC ec, Ded
which are subject to relations from (4).

(3.4) Class field theory. Let K be a number field containing p,,, the group of nth roots
of unity, A its ring of integers, X = Spec(A). Thus X can be thought of as a scheme over
the absolute field Fin, see §1.

The part of the class field theory for F' related to cyclic degree n extensions of F' can
be reformulated in a way very similar to (3.3).

If N is an ideal of A, and L is a line bundle on X, we call a level N structure on L a
trivialization of L modulo N plus a choice of a direction (called positive) in the completion
L, for every real archimedean valuation v of K. (Since we assume that K contains jn,
real valuations will be not present if n > 2). If f is a rational section of L, we say that
f = 1(mod N), if the divisor of f is relatively prime to N, the image of f under the
composite map L — L/NL — A/N is equal to 1, and the image of f in each L,, where
v is a real valuation, is positive (lies in the distinguished half-line).
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3.0.8. Theorem. (5.5) Theorem. There exist:
1. An ideal N1A lying over n.

2. A rule which associates to every two line bundles L, M on X with level N structure
a fin-torsor (L, M).

3. A rule which associates to every sections | € L, m € M which are relatively prime
and congruent to 1 modulo N an element (l,m), € pn with the following properties:

4. There are natural isomorphisms
(LOL', M) ~ (L, M)®(L', M), (L, M@M') ~ (L, MY®(L, M"), (M,L) = (L, M),
5. If L = Ox with trivial level N structure, then (L, M) is canonically identified with
fin-
6. We have equalities (1® I, m),, = (I, m),(l', M), and (L,m @ m/)y = (I, m)n(l, m'),..
7. (reciprocity law): We have (l,m)n = (m,1),.

8. If f is an element of A congruent to 1 modulo N, then for any M and any section
m e M, m = 1(mod N) relative prime to [, then the element (f,m) e (Ox, M) ~
Hn s equal to the product of power residue symbols

H (L>ordv("’-)’

veX v/ n

3.0.9. Corollary. (5.6) Corollary. If f,g € A are two coprime elements congruent to 1

modulo N, then
H i ordy(g) E H /i ordy(g)
v F” n v (FU n .

This is the reciprocity law in the classical form. It can be used to recover the whole
structure given by Theorem 3.5.
(3.7) Line bundles with level structure. We preserve the notation of n. 3.4. Denote
by la\zic(X) the group of line bundles L on X with level N structure. Denote by K*(N)
the multiplicative group of f € K which are totally positive, relatively prime to N and
congruent to 1 modulo N. In Theorem 3.5, we are free to enlarge N. In the sequel we
will always make the following assumption on V:

3.0.10. Remark. (3.8) Assumption. For every f € K*(N) we have the congruence
Normg/q(f) = 1 (mod n?).

This will be true, for instance, if N is divisible by (the lifting into A of) n2.
Let Div(X, N) be the group of divisors on X relatively prime to V. Then, clearly,

Pic(X) = Div(X, N)/{div(f), f € K*(N)}.

11



As far as modulo n phenomena are concerned, line (and vector) bundles on X with
level N structure behave like bundles on a compact curve, even though X itself is not
compactified in any sense. For instance, the p,-torsor (L, M) has the meaning of the

direct image
/ a(De(M),
X/Spec(Fyn)
cf. [Deligne].

In addition, such line bundles have a notion of degree which takes values in Z/n. It is
defined as follows. Let us use the language of Sections 1 and 2, in particular, use linear
algebra over the absolute field F' = Fi». For an ideal D1A relatively prime to N we set

deg,(D) = dimp(A/D) (modn).

3.0.11. Proposition. (8.9) Proposition. (a) For two ideals Dy, DaA prime to N we
have deg, (D1 Dy) = deg, (Ds) + deg,(D2) (mod n).
(b) If f € AN K*(N), then deg,(div(f)) =0 (mod n).

Proof. (a) Let A; = Normg/q(D;). Then A; is an ideal in Z; let d; be its positive
generator. Clearly |A/D;| = |Z/A;| = d;. Thus deg,(D;) = (d; — 1)/n (mod n), and
deg,, (D + Dy) = (dida — 1)/n (mod n). Our statement amounts to the congruence

d1d2—15d1—1+d2—1(

mod n).
n n n

This can be rewritten as
(dy — 1)(dz — 1) = 1 (mod n?),

which is true by Assumption 3.8.
(b) Set, as before, d to be the positive generator of Normpgq(f). Thend =1 (mod n?)
by Assumption 3.8 and, on the other hand, deg, (div(f)) = (d —1)/n (mod n).

3.0.12. Corollary. (8.10) Corollary. The map deg,, extends to a well defined homomor-
phism oL’}
deg,, : Pic(X) — Z/n.

Proof. Any element of K*(N) is a ratio of two elements of AN K*(N).

4 Compactified arithmetic curves.

As in the previous sections, we denote by K a number field containing the group mu = fin
of nth roots of 1, by A its ring of integers and by X the spectrum of A. We also choose
an ideal N in A as in Section 3.

Although line bundles on X with level N structure possess the degree modulo n and
possess also the torsors (L, M), they do not possess finite-dimensional spaces of global
sections or cohomology. In the geometric situation, however, an important step is the
comparison of (L, M) with the determinant of the cohomology. So we introduce objects
for which such determinants make sense.
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(4.1) Fundamental domains. We will do some polyhedral constructions in the real
vector space Kr = K @ R. In fact, tensoring with R is not really necessary, but it helps
visualization.

Let us fix some terminology related to subsets of any real vector space V. We will call
a (convex) polytope the convex hull of a finite set of points (so, in particular, this is a
closed subset of V). A polytope P has faces, which are (closed) subpolytopes in P. By a
polyhedral domain we mean a subset in V' of the form P — Q where P is a polytope and
@ is the union of the interiors of some faces of P.

The ring 4 is a lattice in KR, as is any projective A-submodule in K of rank 1, for
instance, any fractional ideal.

If A is such a submodule, we will call a fundamental polytope for A a convex polytope
P € Kg with the following property: for any two «, # € A the intersection of the two
translates (P + o) N (P + ) is a face of both of them. Of course, an obvious choice of
a fundamental polytope would be a “cube” of the lattice, but we will need other choices
(see below).

A set of representatives for A is a polyhedral domain B € Kg such that the composite
projection B — Kp — Kg/A is a bijection.

For example, when K = Q, then [0,1] is a fundamental polytope for A = Z, while
[0,1) is a set of representatives.
(4.2) Definition. Let B1KR be a p-invariant subset containing 0. We say that B is
a controlled domain, if there exist subsets By, BaB and a fractional ideal A1K with the
following properties:

1. We have B = B; U B, and BN B, =0.
2. The set By is a set of representatives for A.

3. For any z € B, N K the ideal (z:A)={a€ dlaz € Lambda} is divisible by any
prime ideal in A which divides 7.

(4.3) Example. In the case K — Q the interval [~1,1] is a controlled domain. Indeed,
we can take By = [~1,1) to be the half-open interval, B, = {1} and A = 2Z.

In general, a controlled domain can be viewed as a replacement of this interval. The
following fact will be proved in the next section.

4.0.13. Theorem. (4.4) Theorem. Ifn is any prime power, n = p* and K is any number
field containing ju,,, then there erists a controlled domain in Kg.

4.0.14. Definition. (4.5) Definition. A compact curve over Fin is a pair X = (X, B),
where X = SpecA with A the ring of integers of a number field K containing pi,, and
BiKR is a controlled domain such that y,1B.

In the remainder of this section we assume that X and B are chosen.

4.0.15. Definition. (4.6) Definition. A line bundle over X is a pair L = (Mg, Br) where
My is a projective A-module of rank 1 and BpiMy, ® R is a subset which is K-linearly
isomorphic to B1Kg.

We denote H°(X, L) = MyNBy,. This is a vector space over F' = F». For any divisor
D on X we denote by O(D)\K the corresponding fractional ideal and denote by L(D)
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the pair formed by My (D) = My ® O(D) and the same set Byr. We will denote by Oy
or simply O the pair (A, B).

Suppose that D is positive, i.e., O(D) is an ideal in A. Then MpiMy(D) and the
quotient can be viewed as a skyscraper sheaf on X with support on the support of D. We
denote this sheaf by L(D)|p, and think of the quotient group M, (D) /My as the space of
global sections (over X or X)) of this sheaf. Thus we have a sequence

(47) 0 — H°(X, L) — H(X, L(D)) — H(X,L(D)|p — 0
When D is prime to n, the sets in this sequence are F-vector spaces, where F' = Fyn.

4.0.16. Definition. (4.8) Definition. A line bundle L over X is called acyclic (or is
said to have no higher cohomology) if for any positive divisor D in A the sequence (4.7)
is ezact in the sense of Section 2.

4.0.17. Theorem. (4.9) Theorem. For any line bundle L on X there is a positive divisor
D prime ton such that for any divisor D' 2 D prime ton the line bundle L(D) is acyclic.

Proof.

4.0.18. Corollary. (4.10) Corollary (Riemann-Roch modulo n ). There ezists a number
g=g(X) € Z/n such that for D >0 we have

dim H(X, O(D)) = deg, (D) + 1 — g (mod n).
Here the number deg, (D) was defined in Section 3.

(2.7) Homotopy colimits. Since we have defined only rudiments of a closed model
structure, we can define homotopy limits and colimits only in special cases. Here is the
situation we will be using.

Let I be a finite category and ® : I — M be a functor, ie., a diagram of F-spaces
of type I. Suppose that all the morphism ®(a), @ € Mor(I) are embeddings. A system
consisting of an object C' € M and morphisms /; : ®(i) — C is called a homotopy colimit
of @, if:

1. B(i)®(a) = B; for every a: j — i in I.
9. The natural morphism colim;® — C existing by the property (1), is an equivalence.

(2.8) Examples. (a) A sequence (2.4.1) is exact if and only if V" is a homotopy colimit
of the diagram

(b): Exact (homotopy cocartesian) squares. A commutative square will be called
exact, or homotopy cocartesian, if the maps in the diagram are embeddings and Vi3 is a
homotopy limit of this diagram.

In a similar way one defines exact cubes of an arbitrary dimension d. By definition,
such a functor is a commutative diagram consisting of f-spaces Vs where S runs over
subsets in {1, ...,d}, and there is a map Vs — Vr when S17°. A cube is called exact if in
the subdiagram formed by the Vs, S # {1, ..., d} all the maps are embeddings and V1. a4y
is a homotopy limit of this diagram.
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4.0.19. Proposition. (2.9) Proposition. If (Vs) is an ezact d-dimensional cube, then
we have a natural isomorphism

Q) det(Vs) V"~ 4

(4.2) Example: the cyclotomic field. Let n = p* where p is a prime number, and let
K = Q(/1) be the nth cyclotomic field. Let A = Z[{/1] be its ring of integers. The only
ideal in A lying over p is A = (1 —¢) where ¢ is any primitive root of 1. Consider the set

P= {Z aes}, a. € [0,1].
€Epn

This is clearly a polytope, since it is the image of the cube [0, 1]#» under the natural
projection to Kg.

4.0.20. Proposition. (4.2.1 ) Proposition. P is a fundamental polytope for A.

Proof. Fix a primitive root ¢ € pn. An R-basis of Ky and a Z-basis of A is provided by
the powers (*, where 1 <4 < n and (4,n) = 1. Thus the cube

Q={ > aic}, a €[0,1]
(3,n)=1

is a fundamental polytope for A. Now P is the union of n rotated cubes ¢’Q where
0<j <n-—1, and the intersection of any two of these cubes is a face of both of them.,
This can be verified in a straightforward way.

15



