Goldbach conjecture, rewriting, contradiction

Denise Vella-Chemla

March 30, 2014

116 rewriting rules

We remind that we choosed to represent that an integer is prime by boolean 0 and the fact that it is compound by boolean 1 .

We also decided to use the following conventions $(3 \leqslant p \leqslant n / 2)$:

- a letter symbolizes an n decomposition of the form $p+q$ with p and q primes;
- b letter symbolizes an n decomposition of the form $p+q$ with p compound and q prime;
- c letter symbolizes an n decomposition of the form $p+q$ with p prime and q compound;
- d letter symbolizes an n decomposition of the form $p+q$ with p and q compound.
a letter codes $\binom{0}{0}$ matrix, and respectively $b\binom{0}{1}, c\binom{1}{0}$ and finally $d\binom{1}{1}$
Example : Hereafter the word $m_{a b c d}(40)$.

40	37	35	33	31	29	27	25	23	21
	0	1	1	0	0	1	1	0	1
	0	0	0	1	0	0	1	0	0
	3	5	7	9	11	13	15	17	19
$m_{a b c d}(40)$	a	c	c	b	a	c	d	a	c

In the following, we use the operation on matrices defined as :

$$
\binom{x_{1}}{x_{2}} \cdot\binom{y_{1}}{y_{2}}=\binom{x_{1}}{y_{2}}
$$

Our operation provides 16 rewriting rules of couples of letters, that seem relevant to study Goldbach conjecture :

1) $a a \rightarrow a$
2) $a b \rightarrow b$
3) $a c \rightarrow a$
4) $a d \rightarrow b$
5) $b a \rightarrow a$
6) $b b \rightarrow b$
7) $b c \rightarrow a$
8) $b d \rightarrow b$
9) $\quad c a \rightarrow c$
10) $c b \rightarrow d$
11) $c c \rightarrow c$
12) $c d \rightarrow d$
13) $d a \rightarrow c$
14) $d b \rightarrow d$
15) $d c \rightarrow c$
16) $d d \rightarrow d$

2 Reminders from language theory

An alphabet is a finite set of symbols.
Alphabets used in the following are : $A=\{a, b, c, d\}, A_{a b}=\{a, b\}, A_{c d}=\{c, d\}$, $A_{a c}=\{a, c\}$ and $A_{b d}=\{b, d\}$.

A word on X alphabet is a finite and ordered sequence, eventually empty, of alphabet elements. It's a letters concatenation. We note X^{*} the set of words over X alphabet.

A word is called a prefix of another one if it contains, on all its length, the same letters as it at same positions (X being an alphabet and $w, u \in X^{*} . u$ is a prefix of w if and only if $\exists v \in X^{*}$ such that $\left.w=u . v\right)$.

3 Observing words

Let us observe words associated with even numbers between 6 and 80 .

Figure 1 : words associated to even numbers between 6 and 36

We see that words in diagonals contain either a and b letters exclusively, or c and d letters exclusively.

4 Words properties

Diagonal words (diagonals) have their letters either in $A_{a b}$ alphabet or in $A_{c d}$ alphabet.

Every diagonal is a prefix of the following one that is defined on the same alphabet.

Indeed, a diagonal code decompositions that have the same second sommant and that have a first sommant that is an odd number from the list of successive odd numbers beginning at 3 .

For instance, diagonal aaabaa beginning with first letter of 26 's word on figure 1 code the following decompositions : $3+23,5+23,7+23,9+23,11+23$ and $13+23$.

Thus, diagonals on $A_{a b}$ alphabet "code" decompositions that have a same second sommant which is prime ; their letters code either by a letters corresponding to prime numbers, or by b letters corresponding to compound ones the primality characters of odd numbers (the first sommants), beginning at 3 .

Diagonals on $A_{c d}$ alphabet "code" on their side decompositions that have a same second sommant which is compound ; their letters code either by c letters corresponding to prime numbers, or by d letters corresponding to compound ones the primality characters of odd numbers (the first sommants), beginning at 3 .

Vertical words have their letters either in $A_{a c}$ alphabet or in $A_{b d}$ alphabet. A vertical word code decompositions that have same first sommant. Every vertical word is contained in a vertical word that is "on its left side" and that is defined on the same alphabet.

5 Some regularities

We observe some regularities easily explanables, that link together letters numbers of each kind that appear in an even number word or in a certain portion of first column of letters. Figure 2 above presents schematically variable names that will be useful to conduct reasoning :

Figure 2: linked variables
Global triangle contains words associated to even numbers from 6 to n.
X_{a}, X_{b}, X_{c} et X_{d} count a, b, c or d letters numbers in n word.
T_{a} and T_{c} count numbers of a or c letters that are first letters of words associated with even numbers between 6 and $2\left\lceil\frac{n+2}{4}\right\rceil$.
T_{a} thus corresponds to decompositions of the form $n^{\prime}=3+p_{i}, p_{i}$ prime, $n^{\prime} \leqslant 2\left\lceil\frac{n+2}{4}\right\rceil$. For instance, if $n=34, T_{a}=\#\{3+3,3+5,3+7,3+11,3+13\}$.
T_{a} thus corresponds to decompositions of the form $n^{\prime}=p_{i}+p_{i}, p_{i}$ prime for $n^{\prime}<n$. For instance, if $n=34, T_{a}=\#\{3+3,5+5,7+7,11+11,13+13\}$.
T_{c} corresponds to decompositions of the form $n^{\prime}=3+c_{i}, c_{i}$ compound $n^{\prime} \leqslant$ $2\left\lceil\frac{n+2}{4}\right\rceil$. For instance, if $n=34, T_{c}=\#\{9+9,15+15\}$.
Y_{a} and Y_{c} count numbers of a or c letters that are first letters of words associated to even numbers between $2\left\lceil\frac{n+2}{4}\right\rceil+2$ and n.

The trivial one-to-one mapping on the decompositions second term permits to explain easily why $Y_{a}=X_{a}+X_{b}$ or $Y_{c}=X_{c}+X_{d}$. The simple reading of sets defined in extension suffices to convince oneself.

$$
\begin{aligned}
& Y_{a}=\#\{3+17,3+19,3+23,3+29,3+31\} \\
& X_{a}=\#\{3+31,5+29,11+23,17+17\} \\
& X_{b}=\#\{15+19\} \\
& \\
& Y_{c}=\#\{3+21,3+25,3+27\} \\
& X_{c}=\#\{7+27,13+21\} \\
& X_{d}=\#\{9+25\}
\end{aligned}
$$

Hereafter two figures to "fix ideas" for even numbers $n=32$ or $n=34$.

Figure 3 : premier exemple : $n=32$

Figure 4 : second example : $n=34$
Following constraints are always satisfied :

$$
\begin{aligned}
& Y_{a}=X_{a}+X_{b} \\
& Y_{c}=X_{c}+X_{d} \\
& T_{a}+T_{c}+Y_{a}+Y_{c}+\epsilon=2\left(X_{a}+X_{b}+X_{c}+X_{d}\right)
\end{aligned}
$$

$\epsilon=1$ if n is an odd double, $\epsilon=0$ otherwise.

We saw that constraints above can be easily understood if we come back to numbers of decompositions they represent and if we use "Cantor-like" one-toone mappings.

Different words letters are thus very intricated and those intrications have as consequence that every word contains at least one a letter.

We are going to prove this using a reductio ad absurdum reasoning in section 7 .

6 Cantor one-to-one mappings visualization

We provide above Cantor one-to-one mappings for cases $n=32$ and $n=34$.
One-to-one mapping f that permits to pass from line 2 to line 1 is such that $f(a)=f(c)=a$ et $f(b)=f(d)=c$.

One-to-one mapping g that permits to pass from line 2 to line 3 is such that $g(a)=g(b)=a$ et $g(c)=g(d)=c$.

It's the double decomposition $3+n / 2$ in the case where n is an odd's double that necessitates introduction of the variable ϵ that is equal to 1 in that case and equal to 0 otherwise.

- One-to-one mappings if $n=32$

1	3	3	3	3	3	3	3
1	a	a	a	c	a	a	c
	3	5	7	9	11	13	15
	3	5	7	9	11	13	15
2	a	c	c	b	c	a	b
	29	27	25	23	21	19	17
	29	27	25	23	21	19	17
3	a	c	c	a	c	a	a
	3	3	3	3	3	3	3

- One-to-one mappings if $n=34$

	3	3	3	3	3	3	3	3
	a	a	a	c	a	a	c	a
	3	5	7	9	11	13	15	17
2	3	5	7	9	11	13	15	17
	a	a	c	d	a	c	b	a
	31	29	27	25	23	21	19	17
3	31	29	27	25	23	21	19	17
	a	a	c	c	a	c	a	a
	3	3	3	3	3	3	3	3

7 Looking for a contradiction

Let us imagine that a word m_{n} is associated to an even number n that contradicts Goldbach conjecture, i.e. m_{n} doesn't contain any a letter (we remind that a letter symbolizes sum of two primes).
m_{n} containing no a, we have $X_{a}=0$. But since $Y_{a}=X_{a}+X_{b}$, we deduce $Y_{a}=X_{b}$. Identifying Y_{a} to X_{b} and Y_{c} to $X_{c}+X_{d}$ in the last constraint always satisfied provided in the paragraph above, one obtains the following equalities :

$$
\begin{aligned}
& T_{a}+T_{c}+Y_{a}+Y_{c}+\epsilon=2\left(X_{a}+X_{b}+X_{c}+X_{d}\right) \\
& T_{a}+T_{c}+X_{b}+X_{c}+X_{d}+\epsilon=2 X_{a}+2 X_{b}+2 X_{c}+2 X_{d} \\
& T_{a}+T_{c}+\epsilon=X_{b}+X_{c}+X_{d} \\
& T_{a}+T_{c}+\epsilon=X_{b}+Y_{c}
\end{aligned}
$$

We must now remember what those variables represent :
$-T_{a}+T_{c}=(n-4) / 4 ;$

- X_{b} counts the number of n decompositions of the form of a sum of two odd numbers $p+q$ with $p \leqslant n / 2$ compound and q prime;
- Y_{c} counts the number of compound odd numbers between $n / 2$ and $n-3$.

Number X_{b} of n decompositions of the form of a sum of two odd numbers $p+q$ with $p \leqslant n / 2$ compound and q prime being necessarily lesser than the number of primes between $n / 2$ and $n-3$, we have $X_{b}<Y_{a}$ (we used here a sort of inverted "pigeonhole principle" : if one puts 0 or 1 object in k holes, there can't be more objects than holes, i.e. more than k objects). But the number of prime numbers contained in an interval $[2 k+3,4 k+1]$ is always lesser than the number of compound odd numbers contained in this interval for $k>25$. In those cases, $Y_{a}<Y_{c}$ and $X_{b}+Y_{c}<Y_{a}+Y_{c}<2 Y_{c}$.

But, for all integers greater than a certain small integer (such that 100), $(n-4) / 4$ is greater than $2 Y_{c}$. This ensures we never have $T_{a}+T_{c}+\epsilon=X_{b}+Y_{c}$ that should result from the absence of an a letter in a word.

We reached a contradiction that would be a consequence of the absence of an a letter in a word. This brings the impossibility that an even number contradict Goldbach conjecture. Rewriting rules intricate totally words letters in such a manner that their numbers must mandatory respect certain constraints. This work can be localized in a lexical theory of numbers, according to which numbers are words. This theory relies on the fact that letters order in words is primordial.

