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1 Introduction

Goldbach’s conjecture states that each even integer except 2 is the sum of two prime numbers. In the
following, one is interested in decompositions of an even number n as a sum of two odd integers p+ q with
3 6 p 6 n/2, n/2 6 q 6 n − 3 and p 6 q. We call p a n’s first range sommant and q a n’s second range
sommant.

Notations :

We will designate by :
– a : an n decomposition of the form p+ q with p and q primes ;
– b : an n decomposition of the form p+ q with p compound and q prime ;
– c : an n decomposition of the form p+ q with p prime and q compound ;
– d : an n decomposition of the form p+ q with p and q compound numbers.

Example :

40 3 5 7 9 11 13 15 17 19
37 35 33 31 29 27 25 23 21

l40 a c c b a c d a c

2 Main array

We designate by T = (L,C) = ( ln,m ) the array containing ln,m elements that are one of a, b, c, d letters.
n belongs to the set of even integers greater than or equal to 6. m, belonging to the set of odd integers
greater than or equal to 3, is an element of list of n first range sommants.

Let us consider g function defined by :

g : 2N → 2N + 1
x 7→ 2

⌊x− 2
4

⌋
+ 1

g(6) = 3, g(8) = 3, g(10) = 5, g(12) = 5, g(14) = 7, g(16) = 7, etc.

g(n) function defines the greatest of n first range sommants.

As we only consider n decompositions of the form p+q where p 6 q, in T will only appear letters ln,m such
thatm 6 2

⌊n− 2
4

⌋
+1 in such a way that T array first letters are : l6,3, l8,3, l10,3, l10,5, l12,3, l12,5, l14,3, l14,5, l14,7, etc.
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Here are first lines of array T .

C 3 5 7 9 11 13 15 17
L
6 a
8 a
10 a a
12 c a
14 a c a
16 a a c
18 c a a d
20 a c a b
22 a a c b a
24 c a a d a
26 a c a b c a
28 c a c b a c
30 c c a d a a d
32 a c c b c a b
34 a a c d a c b a
36 c a a d c a d a
. . .

Figure 1 : words of even numbers between 6 and 36

Remarks :

1) words on array’s diagonals called diagonal words have their letters either in Aab = {a, b} alphabet or
in Acd = {c, d} alphabet.

2) a diagonal word codes decompositions that have the same second range sommant.
For instance, on Figure 4, letters aaabaa of the diagonal that begins at letter l26,3 = a code decompositions
3 + 23, 5 + 23, 7 + 23, 9 + 23, 11 + 23 and 13 + 23.

3) let us designate by ln the line whose elements are ln,m. Line ln contains
⌊n− 2

4

⌋
elements.

4) n being fixed, let us call Cn,3 the column formed by lk,3 for 6 6 k 6 n.

In this column Cn,3, let us distinguish two parts, the “top part” and the “bottom part” of the column.

Let us call Hn,3 column’s “top part”, i.e. set of lk,3 where 6 6 k 6
⌊n+ 4

2

⌋
.

Let us call Bn,3 column’s “bottom part”, i.e. set of lk,3 where
⌊n+ 4

2

⌋
< k 6 n.
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6 :
8 :
10 :
12 :
14 :
16 :
18 :
20 :
22 :
24 :
26 :
28 :
30 :
32 :
34 :

a

a

a a

c a

a c a

a a c

c a a d

a c a b

a a c b a

c a a d a

a c a b c a

c a c b a c

c c a d a a d

a c c b c a b

a a c d a c b a

Za = 5
Zc = 2

Ya = 5
Yc = 3

← Xa = 4, Xb = 1, Xc = 2, Xd = 1

H34,3

B34,3

Figure 2 : n = 34

To better understand countings in next section, we will use projection P of line n on bottom part of first
column Bn,3 that “associates” letters at both extremities of a diagonal. If we consider application proj such
that proj(a) = proj(b) = a and proj(c) = proj(d) = c then, since 3 is prime, proj(ln,2k+1) = ln−2k+2,3.

We can also understand the effect of this projection (that preserves second range sommant) by analyzing
decompositions :

– if p+ q is coded by an a or a b letter, it corresponds to two possible cases in which q is prime, and
so 3 + q decomposition, containing two prime numbers, will be coded by an a letter ;

– if p + q is coded by a c or a d letter, it corresponds to two possible cases in which q is compound,
and so 3 + q decomposition, of the form prime+ compound will be coded by a c letter.

We will also use in next section a projection that transforms first range sommant in a second range sommant
that is combined with 3 as a first range sommant ; let us analyze the effect that such a projection will
have on decompositions :

– if p+ q is coded by an a or a c letter, it corresponds to two possible cases in which p is prime, and
so 3 + p decomposition, containing two prime numbers, will be coded by an a letter ;

– if p + q is coded by a b or a d letter, it corresponds to two possible cases in which p is compound,
and so 3 + p decomposition, of the form prime+ compound will be coded by a c letter.

3 Computations

1) We note in line n by :
– Xa(n) the number of n decompositions of the form prime+ prime ;
– Xb(n) the number of n decompositions of the form compound+ prime ;
– Xc(n) the number of n decompositions of the form prime+ compound ;
– Xd(n) the number of n decompositions of the form compound+ compound.

Xa(n) +Xb(n) +Xc(n) +Xd(n) =
⌊n− 2

4

⌋
is the number of elements of line n.

Example n = 34 :
Xa(34) = #{3 + 31, 5 + 29, 11 + 23, 17 + 17} = 4
Xb(34) = #{15 + 19} = 1.
Xc(34) = #{7 + 27, 13 + 21} = 2
Xd(34) = #{9 + 25} = 1
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2) Let Ya(n) (resp. Yc(n)) being the number of a letters (resp. c) that appear in Bn,3. We recall that there
are only a and c letters in first column because it contains letters associated with decompositions of the
form 3 + x and because 3 is prime.

Example :
– Ya(34) = #{3 + 17, 3 + 19, 3 + 23, 3 + 29, 3 + 31} = 5
– Yc(34) = #{3 + 21, 3 + 25, 3 + 27} = 3

3) Because of P projection that is a bijection, and because of a, b, c, d letters definitions, Ya(n) = Xa(n) +
Xb(n) and Yc(n) = Xc(n) + Xd(n). Thus, trivially, Ya(n) + Yc(n) = Xa(n) + Xb(n) + Xc(n) + Xd(n) =⌊n− 2

4

⌋
.

Example :
Ya(34) = #{3 + 17, 3 + 19, 3 + 23, 3 + 29, 3 + 31}
Xa(34) = #{3 + 31, 5 + 29, 11 + 23, 17 + 17}
Xb(34) = #{15 + 19}

Yc(34) = #{3 + 21, 3 + 25, 3 + 27}
Xc(34) = #{7 + 27, 13 + 21}
Xd(34) = #{9 + 25}

4) Let Za(n) (resp. Zc(n)) being the number of a letters (resp. c) that appear in Hn,3.

Example :
– Za(34) = #{3 + 3, 3 + 5, 3 + 7, 3 + 11, 3 + 13} = 5
– Zc(34) = #{3 + 9, 3 + 15} = 2

Za(n) + Zc(n) =
⌊n− 4

4

⌋
.

Reminding identified properties

Ya(n) = Xa(n) +Xb(n) (1)

Yc(n) = Xc(n) +Xd(n) (2)

Ya(n) + Yc(n) = Xa(n) +Xb(n) +Xc(n) +Xd(n) =
⌊n− 2

4

⌋
(3)

Za(n) + Zc(n) =
⌊n− 4

4

⌋
(4)
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Let us add four new properties to those ones :

Xa(n) +Xc(n) = Za(n) + δ2p(n) (5)

with δ2p(n) equal to 1 when n is the double of a prime number and equal to 0 otherwise.

Xb(n) +Xd(n) = Zc(n) + δc−imp(n) (6)

with δ2c−imp(n) equal to 1 when n is the double of a compound odd number and equal to 0 otherwise
(when there exists k such that n = 4k (doubles of even numbers) or when n is the double of a prime
number).

Zc(n)− Ya(n) = Yc(n)− Za(n)− δ4k+2(n) (7)

with δ4k+2(n) equal to 1 when n is the double of an odd number and 0 otherwise.

Zc(n)− Ya(n) = Xd(n)−Xa(n)− δ2c−imp(n) (8)

4 Variables evolution

In this section, let us study how different variables change.

Za(n)+Zc(n) =
⌊n− 4

4

⌋
is an increasing function of n, it is increased by 1 at each n that is an even double.

Za(n+ 2) = Za(n) and Zc(n+ 2) = Zc(n) are constant when n is an even double.

Za(n) = Za(n− 2) + 1 when n− 2
2 is prime (ex : n = 24 or n = 28, look to values array page 13 : we will

express this abusively by “Za is increasing”) and Zc(n) = Zc(n− 2) + 1 when n− 2
2 is an odd compound

number (ex : n = 42 or 50, abusively, “Zc is increasing”).

Ya(n) + Yc(n) = Xa(n) +Xb(n) +Xc(n) +Xd(n) =
⌊n− 2

4

⌋
is an increasing function of n, it is increased

by 1 at each n that is an odd double.

Let us see now in details how Ya(n) and Yc(n) evoluate.

In case if n is an odd double, a number more is put in Hn,3 ; if this number n−3 is prime (resp. compound),
Ya(n) = Ya(n− 2) + 1 (abusively “Ya is increasing”, ex : n = 34) (resp. Yc(n) = Yc(n− 2) + 1, abusively
“Yc is increasing”, ex : n = 38).

In case if n is an even double, 4 cases are to be studied. Let us study the way decompositions set Hn,3
evoluates.

– if n − 3 and n− 2
2 are both primes, there is a decomposition that is taken out in the bottom and

another decomposition that is put in in the top ofHn,3 and those two decompositions have two letters
of the same type, so Ya(n) = Ya(n−2) and Yc(n) = Yc(n−2) (abusively “Ya and Yc constants” (ex :
n = 40) ;

– if n − 3 is prime and n− 2
2 is compound then Ya(n) = Ya(n − 2) + 1 and Yc(n) = Yc(n − 2) − 1

(abusively, “Ya is increasing and Yc is decreasing” (ex : n = 32) ;

– if n − 3 is compound and n− 2
2 is prime then Yc(n) = Yc(n − 2) + 1 and Ya(n) = Ya(n − 2) − 1

(abusively, “Ya is decreasing and Yc is increasing”) (ex : n = 48) ;

– if n − 3 and n− 2
2 are both compound, there is a decomposition that is taken out in the bottom

and another decomposition that is put in in the top of Hn,3 and those two decompositions have
two letters of the same type, so Ya(n) = Ya(n − 2) and Yc(n) = Yc(n − 2) (abusively, “Ya and Yc

constants” (ex : n = 52).

In annex 1 is provided an array containing different variables values for n between 14 and 100.
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5 Use gaps between variables

We are going to show in the following that Xa(n) can never be equal to 0 for n > C, C being a constant
to be defined, i.e. to show that each even integer n > C can be written as a sum of two primes, or in other
words verifies Goldbach’s conjecture.

We saw that at δ4k+2(n) and δ2c−imp(n) near (δ4k+2(n) and/or δ2c−imp(n) being equal to 1 in certain
cases), we have following equalities :

Zc(n)− Ya(n) = Yc(n)− Za(n)− δ4k+2(n) (7)

Zc(n)− Ya(n) = Xd(n)−Xa(n)− δ2c−imp(n) (8)

We remind that
– Ya(n), counting number of primes that are between n

2 and n is equal to π(n)− π
(n

2

)
;

– Za(n) counting number of primes lesser than or equal to n

2 is equal to π
(n

2

)
;

– Zc(n) counting number of odd compound numbers lesser than or equal to n2 is equal to n4 −π
(n

2

)
;

– Yc(n) counting number of odd compound numbers that are between n

2 and n is equal to
n

4 − π(n) + π
(n

2

)
.

Rosser and Schoenfeld [1] note provides formula 3.5 of corollary 1 of theorem 2 that π(x) > x

ln x
for every

x > 17, and as formula 3.6 of the same corollary of the same theorem that π(x) < 1, 25506x
ln x

for every x > 1.

5.1 Zc(n) > Za(n) inequality study

To show that Zc(n) > Za(n), one can simply use the fact that Zc(n) is increasing “many more times” than
Za(n) (each time n− 2

2 is an odd compound number for Zc(n) and each time n− 2
2 is a prime number

for Za(n) as it was shown in section 4).

To find from which value of n, Zc(n) > Za(n), one uses the fact that Zc(n) − Za(n) gap is equal to
n

4 − 2 π
(n

2

)
.

From formula 3.6 of corollary 1 of theorem 2 of [1], we have 2 π
(n

2

)
< 2 1, 25506 n

2 (ln n+ ln 0.5) for every n > 2.

We deduce from this −2 π
(n

2

)
>
−1, 25506 n
ln n+ ln 0.5 for every n > 2.

Zc(n)− Za(n) gap is so minorable by n (ln n+ ln 0.5)− 5, 02024n
4 (ln n+ ln 0.5) . It is strictly greater than 0 for every

n > 304 (denominator is greater or equal to 0 for every n > 2, numerator is strictly greater than 0 for
every n > 2e5.02024).

5.2 Za(n) > Ya(n) and Yc(n) > Zc(n) inequalities study

To show that Za(n) > Ya(n), one can use once more the analysis of variables evolution provided in section
4 : when “Za is increasing”, “Ya is constant or is decreasing” ; and when “Ya is increasing” without “Za

is also increasing” (when n− 3 is prime and n− 2
2 is compound), Ya is increased only by 1 although its
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gap to Za is very quickly very greater than 1.

To show that Yc(n) > Zc(n), one can use once more the analysis of variables evolution provided in section
4 : Yc is increasing when n − 3 is compound while Zc is increasing when n− 2

2 is compound. Zc is an
increasing function, there are times when Yc is decreasing but not so often, and this has as consequence
that over a rather small value, Zc never catches Yc again.

To know precisely from which values of n wished inequalities are verified, we use once more gaps values
and minorations/majorations provided in [1].

To show that Za(n) > Ya(n) (resp. Yc(n) > Zc(n)), we show that the gap

Za(n)− Ya(n) = Yc(n)− Zc(n) = 2π
(n

2

)
− π(n)

is always strictly greater than 0.

We use formula 3.9 of corollary 1 of theorem 2 of Rosser and Schoenfeld that states that π(x)− π
(x

2

)
<

7x
5 ln x for every x > 1.

We use the fact that 2π
(n

2

)
− π(n) =

(
π
(n

2

)
− π(n)

)
+ π

(n
2

)
So we have

2π
(n

2

)
− π(n) >

−7n
5 ln n + π

(n
2

)
>
−7n

5 ln n + n

2 (ln n+ ln 0.5) (because of formula 3.5 of corollary 1 of theorem 2 in [1])

that is strictly greater than 0
n(5 ln n− 14 (ln n+ ln 0.5))

10 ln n(ln n+ ln 0.5) > 0

that is equivalent to
5 ln n− 14 (ln n+ ln 0.5) > 0

that is always true when n > 6.

5.3 Strict order on Ya(n), Yc(n), Za(n) and Zc(n) variables

Ya(n), Za(n), Zc(n) and Yc(n) variables are so strictly ordered in the following way :

Ya(n) < Za(n) < Zc(n) < Yc(n)

for every n > 304.

A graphical representation of gaps between variables can be found above, that shows their entanglement :

π(n)− π(n/2) π(n/2) n/4− π(n/2) n/4− π(n) + π(n/2)

Y a Za Zc Y c

Xa Xd

< < <

Zc(n)− Ya(n), Yc(n)−Za(n) and Xd(n)−Xa(n) gaps are strictly greater than 0 and equal to n

4 − π(n).
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5.4 Xa(n) > 0 inequality study

To be ensured that Xa(n) is never equal to 0, one has to minorate Xd(n) by n

4 − π(n), i.e. the value of
Xd(n)−Xa(n) gap.

But Xd(n) = Yc(n)−Xc(n).

To minorate Xd(n), one has to minorate Yc(n) and to majorate Xc(n).

Yc(n) is the number of odd compound numbers that are between n/2 and n (associated to 3).

To minorate Yc(n), we use the fact that the number of odd compound numbers that are between n/2 and
n is equal to n

4 − π(n) + π
(n

2

)
.

Xc(n), which is the number of n’s decompositions of the form prime+compound is majorable by the total
number of odd compound numbers that are between n/2 and n, that is itself majorable by the number of
odd compound numbers that are between n and 3n

2 .

Xc(n) is so majorable by n4 −
(
π

(
3n
2

)
− π(n)

)
(the number of odd compound numbers from the interval

from n to 3n
2 is n4 , the number of prime numbers in this interval is π

(
3n
2

)
− π(n), the number of odd

compound numbers in this interval is the difference of those two numbers).

Yc(n)−Xc(n) is thus always greater than the difference between Yc(n)’s minoration and Xc(n)’s majora-
tion, that will give

Yc(n)−Xc(n) > n

4 − π(n) + π
(n

2

)
− n ((ln n+ ln 1.5)(ln n− 4× 1.25506)− 1.25506× 6× ln n)

4 (ln n+ ln 1.5) ln n .

Yc(n) −Xc(n) = Xd(n) is always greater than n

4 − π(n) when n > 0 (we also make this constatation by
computing all this by program).

Indeed, Yc(n)−Xc(n) > n

4 − π(n) when

π
(n

2

)
− n ((ln n+ ln 1.5)(ln n− 4× 1.25506)− 1.25506× 6× ln n)

4 (ln n+ ln 1.5) ln n > 0.

We replace π
(n

2

)
by its minoration provided by formula 3.5 of corollary 1 of theorem 2 in [1] (that is

n

2(ln n+ ln 0.5)), we reduce to same denominator, that is always greater than 0 when n > 2 and that

we forget, we are looking for condition that ensures that numerator is always strictly greater than 0,
numerator that is equal to :

n[(2(ln n+ ln 1.5)ln n)− (ln n+ ln 0.5)((ln n+ ln 1.5)(ln n− 5.02024)− 7.53036 ln n)]

After several computations, we obtain that numerator, with unknown ln n, is equal to polynom

−(ln n)3 + 14.6755387366(ln n)2 − 2.48889541216(ln n)− 0.26611665186

The biggest root of this polynom is nearly equal to 14.502656936497 from which exponential is equal
to 1988034.33365. Difference between Xd(n) and Xa(n) is thus always greater than n

4 − π(n) for every
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n > 1988034.33365.

We can thus conclude that for every n > 1988034.33365 (necessary condition to have Xd(n) − Xa(n) >
n

4 − π(n)), Xa(n) (number of n’s decompositions as a sum of two primes) is strictly greater than 0.

In annex 2 are provided graphic representations of sets bijections for cases n = 32, 34, 98 and 100.

The file http : //denise.vella.chemla.free.fr/annexes.pdf contains
– an historical recall of a Laisant’s note in which he presented yet in 1897 the idea of “strips” of odd
numbers to be put in regard and to be colorated to see Goldbach decompositions ;

– a program and its execution that implement ideas presented here.

6 Demonstrations

6.1 Utilitaries

Let us demonstrate that if n is an odd number double (i.e. of the form 4k+2), then
⌊n− 2

4

⌋
=
⌊n− 4

4

⌋
+1.

Indeed, the left part of the equality is equal to
⌊ (4k + 2)− 2

4

⌋
=
⌊4k

4

⌋
= k.

The right part of the equality is equal to
⌊ (4k + 2)− 4

4

⌋
+ 1 =

⌊4k − 2
4

⌋
+ 1 = (k − 1) + 1 = k.

Let us demonstrate that if n is an even number double (i.e. of the 4k), then
⌊n− 2

4

⌋
=
⌊n− 4

4

⌋
.⌊4k − 2

4

⌋
= k − 1 and

⌊4k − 4
4

⌋
= k − 1.

We can also express this by the following way : if n is an odd number double,
⌊n− 2

4

⌋
= n− 2

4 =⌊n− 4
4

⌋
+ 1 although if n is an even number double,

⌊n− 2
4

⌋
= n− 4

4 =
⌊n− 4

4

⌋
.

6.2 5, 6 and 8 properties

5, 6 and 8 properties follows directly from variables definitions.

6.2.1 Property 5

Property 5 states that Xa(n) +Xc(n) = Za(n) + δ2p(n) with δ2p(n) that is equal to 1 in the case if n is a
prime number double and that is equal to 0 otherwise.

By definition,Xa(n)+Xc(n) counts number of n’s decompositions of the form prime+x with prime 6 n/2.
But by the fact that Za(n) counts on its side number of decompositions of the form 3 + prime with
prime < n/2, adding δ2p to Za(n) permits to ensure the equality’s invariance in all cases and in particular
when n is a prime number double.

6.2.2 Property 6

Property 6 states that Xb(n) + Xd(n) = Zc(n) + δ2c−imp with δ2c−imp that is equal to 1 in the case if n
is a compound odd number, and is equal to 0 otherwise.

By definition, Xb(n) + Xd(n) counts the number of decompositions of the form compound + x with
compound 6 n/2. But by the fact that Zc(n) counts on its side number of decompositions of the form
3 + compound with compound < n/2, adding δ2c−imp to Zc(n) permits to ensure the equality’s invariance
in all cases and in particular when n is an odd compound double.
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6.2.3 Property 8

Property 8 states that Zc(n)−Ya(n) = Xd(n)−Xa(n)− δ2c−imp with δ2c−imp that is equal to 1 if n is an
odd compound double and is equal to 0 otherwise.

By definition, Zc(n) counts the number of odd compound numbers strictly lesser than n/2. It counts also
the number of n’s decompositions of the form compound + x with compound < n/2 (let us call E this
decompositions set).

By definition, Ya(n) counts the number of prime numbers strictly greater than n/2. It counts also the
number of n’s decompositions of the form x+ prime with prime > n/2 (let us call F this decompositions
set).

n’s decompositions of the form compound + prime are at the same time in E and in F . By computing
Zc(n)− Ya(n), we are computing the cardinality of a set that is equal to Xd(n)−Xa(n) by definition of
what Ya(n), Zc(n), Xd(n) and Xa(n) variables count.

6.2.4 Property 7

Let us demonstrate that Zc(n) − Ya(n) = Yc(n) − Za(n) − δ4k+2 with δ4k+2 that is equal to 1 if n is an
odd double (there exists some k > 3 such that n = 4k + 2) and is equal to 0 otherwise.

One uses a recurrence reasoning :

i) One initialises recurrences according to the 3 sorts of numbers to be envisaged : even doubles (of the
form 4k, like 16), odd doubles (of the form 4k + 2) that are prime (like 14) or that are compound (like
18).

Property 7 is true for n = 14 because Zc(14) = 0, Ya(14) = 2, Yc(14) = 1, Za(14) = 2 and δ4k+2(14) = 1
and thus Zc(14)− Ya(14) = Yc(14)− Za(14)− δ4k+2(14) ;
Property 7 is true for n = 16 because Zc(16) = 0, Ya(16) = 2, Yc(16) = 1, Za(16) = 3 and δ4k+2(16) = 0
and thus Zc(16)− Ya(16) = Yc(16)− Za(16)− δ4k+2(16) ;
Property 7 is true for n = 18 because Zc(18) = 0, Ya(18) = 2, Yc(18) = 2, Za(18) = 3 and δ4k+2(18) = 1
and thus Zc(18)− Ya(18) = Yc(18)− Za(18)− δ4k+2(18) ;

ii) We rewrite property in the following form Za(n) + Zc(n) + δ4k+2 = Ya(n) + Yc(n).
Four cases must be considered : two cases in which n is an odd double (prime or compound) and n+ 2 is
an even double and two cases in which n is an even double and n+ 2 is an the double of an odd number
(that is prime or compound).

iia) n even double and n+ 2 prime double (ex : n = 56) :

n δ2p δ2c−imp δ4k+2
n 0 0 0

n+ 2 1 0 1

One states the hypothesis that property 7 is verified by n,

Za(n) + Zc(n) + δ4k+2(n) = Ya(n) + Yc(n) (H)

Let us demonstrate the property is true for n+ 2,

Za(n+ 2) + Zc(n+ 2) + δ4k+2(n+ 2) = Ya(n+ 2) + Yc(n+ 2) (Ccl)

One has Za(n+ 2) = Za(n) and Zc(n+ 2) = Zc(n).
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Recall property 3 concerning Ya(n) and Yc(n) :

Ya(n) + Yc(n) =
⌊n− 2

4

⌋
(3)

In (Ccl), we can, by recurrence hypothesis and by proprerty (3), replace the left part of the equality by
Za(n) + Zc(n) + 1 and than by Ya(n) + Yc(n) + 1 (because (H)) and then by

⌊n− 2
4

⌋
+ 1 (because (3))

that is equal to
⌊n

4

⌋
.

But in (Ccl), we can also replace the right part of the equality by
⌊n

4

⌋
because of property (3).

There is also, for n + 2, equality between left and right parts of the equality, i.e. property 7 is verified
by n+2. From the hypothesis that property is verified by n, we demonstrated that property is true for n+2.

iib) n even double and n+ 2 odd compound double (ex : n = 48) :

n δ2p δ2c−imp δ4k+2
n 0 0 0

n+ 2 0 1 1

One states the hypothesis that property 7 is verified by n,

Za(n) + Zc(n) + δ4k+2(n) = Ya(n) + Yc(n) (H)

Let us demonstrate the property is verified by n+ 2,

Za(n+ 2) + Zc(n+ 2) + δ4k+2(n+ 2) = Ya(n+ 2) + Yc(n+ 2) (Ccl)

One has Za(n+ 2) = Za(n) and Zc(n+ 2) = Zc(n).

And one has also Ya(n+ 2) = Ya(n) + 1 and Yc(n+ 2) = Yc(n).

Let us recall property 3 concerning Ya(n) and Yc(n) :

Ya(n) + Yc(n) =
⌊n− 2

4

⌋
(3)

In (Ccl), we can, by recurrence hypothesis and property (3), replace the left part of the equality by
Za(n) + Zc(n) + 1 and the by Ya(n) + Yc(n) + 1 (by (H)) and then by

⌊n− 2
4

⌋
+ 1 (by (3)) that is equal

to
⌊n

4

⌋
.

But in (Ccl), we can also replace the right part of the equality by
⌊n

4

⌋
because of evolutions of Ya(n) and

Yc(n).

There is also, for n+ 2, equality between left and right parts of the equality, i.e. property 7 is verified by
n+2. From the hypothesis that property is verified by n, we demonstrated that property is verified by n+2.

iic) n prime double and n+ 2 even double (ex : n = 74) :

n δ2p δ2c−imp δ4k+2
n 1 0 1

n+ 2 0 0 0

One states the hypothesis that property 7 is verified by n,

Za(n) + Zc(n) + δ4k+2(n) = Ya(n) + Yc(n) (H)

11



Let us demonstrate that property is verified by n+ 2,

Za(n+ 2) + Zc(n+ 2) + δ4k+2(n+ 2) = Ya(n+ 2) + Yc(n+ 2) (Ccl)

One has Za(n+ 2) = Za(n) + 1 and Zc(n+ 2) = Zc(n).

Let us recall property 3 concerning Ya(n) and Yc(n) :

Ya(n) + Yc(n) =
⌊n− 2

4

⌋
(3)

In (Ccl), we can, by recurrence hypothesis and property (3), replace the left part of the equality by
Za(n) + Zc(n) + 1 and then by Ya(n) + Yc(n) (because (H)) and then by

⌊n− 2
4

⌋
(by (3)) that is equal

to
⌊n

4

⌋
.

But in (Ccl), one can also replace the right part of the equality by
⌊n

4

⌋
because of property (3).

There is once more, for n+2, equality between left and right part of the equality, i.e. property 7 is verified
by n+2. From the hypothesis that property is true for n, we demonstrated that property is verified by n+2.

iid) n odd compound double and n+ 2 even double (ex : n = 70) :

n δ2p δ2c−imp δ4k+2
n 0 1 1

n+ 2 0 0 0

We state the hypothesis that property 7 is true for n,

Za(n) + Zc(n) + δ4k+2(n) = Ya(n) + Yc(n) (H)

Let us demonstrate that it is true for

Za(n+ 2) + Zc(n+ 2) + δ4k+2(n+ 2) = Ya(n+ 2) + Yc(n+ 2) (Ccl)

One has Za(n+ 2) = Za(n) and Zc(n+ 2) = Zc(n) + 1.

Let us recall property 3 concerning Ya(n) and Yc(n) :

Ya(n) + Yc(n) =
⌊n− 2

4

⌋
(3)

In (Ccl), we can, by recurrence hypothesis and property (3), replace the left part of the equality by
Za(n) +Zc(n) + 1 and then by Ya(n) +Yc(n) (by (H)) and then by

⌊n− 2
4

⌋
(by (3)) that is equal to

⌊n
4

⌋
.

But in (Ccl), one can also replace the right part of the equality by
⌊n

4

⌋
because of property (3).

There is once more, for n+2, equality between left and right parts of the equality, i.e. property 7 is verified
by n+2. From the hypothesis that property is verified by n, we demonstrated property is verified by n+2.

12



Annex 1 : variables values array for n between 14 and 100

n Xa(n) Xb(n) Xc(n) Xd(n) Ya(n) Yc(n)
⌊n− 2

4

⌋
Za(n) Zc(n)

⌊n− 4
4

⌋
δ2p(n) δ2c−imp(n) δ4k+2(n)

14 2 0 1 0 2 1 3 2 0 2 1 0 1
16 2 0 1 0 2 1 3 3 0 3 0 0 0
18 2 0 1 1 2 2 4 3 0 3 0 1 1
20 2 1 1 0 3 1 4 3 1 4 0 0 0
22 3 1 1 0 4 1 5 3 1 4 1 0 1
24 3 0 1 1 3 2 5 4 1 5 0 0 0
26 3 1 2 0 4 2 6 4 1 5 1 0 1
28 2 1 3 0 3 3 6 5 1 6 0 0 0
30 3 0 2 2 3 4 7 5 1 6 0 1 1
32 2 2 3 0 4 3 7 5 2 7 0 0 0
34 4 1 2 1 5 3 8 5 2 7 1 0 1
36 4 0 2 2 4 4 8 6 2 8 0 0 0
38 2 2 5 0 4 5 9 6 2 8 1 0 1
40 3 1 4 1 4 5 9 7 2 9 0 0 0
42 4 0 3 3 4 6 10 7 2 9 0 1 1
44 3 2 4 1 5 5 10 7 3 10 0 0 0
46 4 2 4 1 6 5 11 7 3 10 1 0 1
48 5 0 3 3 5 6 11 8 3 11 0 0 0
50 4 2 4 2 6 6 12 8 3 11 0 1 1
52 3 3 5 1 6 6 12 8 4 12 0 0 0
54 5 1 3 4 6 7 13 8 4 12 0 1 1
56 3 4 5 1 7 6 13 8 5 13 0 0 0
58 4 3 5 2 7 7 14 8 5 13 1 0 1
60 6 0 3 5 6 8 14 9 5 14 0 0 0
62 3 4 7 1 7 8 15 9 5 14 1 0 1
64 5 2 5 3 7 8 15 10 5 15 0 0 0
66 6 1 4 5 7 9 16 10 5 15 0 1 1
68 2 5 8 1 7 9 16 10 6 16 0 0 0
70 5 3 5 4 8 9 17 10 6 16 0 1 1
72 6 2 4 5 8 9 17 10 7 17 0 0 0
74 5 4 6 3 9 9 18 10 7 17 1 0 1
76 5 4 6 3 9 9 18 11 7 18 0 0 0
78 7 2 4 6 9 10 19 11 7 18 0 1 1
80 4 5 7 3 9 10 19 11 8 19 0 0 0
82 5 5 7 3 10 10 20 11 8 19 1 0 1
84 8 1 4 7 9 11 20 12 8 20 0 0 0
86 5 5 8 3 10 11 21 12 8 20 1 0 1
88 4 5 9 3 9 12 21 13 8 21 0 0 0
90 9 0 4 9 9 13 22 13 8 21 0 1 1
92 4 6 9 3 10 12 22 13 9 22 0 0 0
94 5 5 9 4 10 13 23 13 9 22 1 0 1
96 7 2 7 7 9 14 23 14 9 23 0 0 0
98 3 6 11 4 9 15 24 14 9 23 0 1 1

100 6 4 8 6 10 14 24 14 10 24 0 0 0

n Xa(n) Xb(n) Xc(n) Xd(n) Ya(n) Yc(n)
⌊
n− 2

4

⌋
Za(n) Zc(n)

⌊
n− 4

4

⌋
δ2p δ2c−imp δ4k+2

999 998 4 206 32 754 37 331 175 708 36 960 213 039 249 999 41 537 208 461 249 998 0 1 1
1 000 000 5 402 31 558 36 135 176 904 36 960 213 039 249 999 41 537 208 462 249 999 0 1 0
9 999 998 28 983 287 084 319 529 1 864 403 316 067 2 183 932 2 499 999 348 511 2 151 487 2 499 998 1 0 1

10 000 000 38 807 277 259 309 705 1 874 228 316 066 2 183 933 2 499 999 348 512 2 151 487 2 499 999 0 1 0
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Annex 2 : sets bijections

- Case n = 32

3 + 29
a

5 + 27
c

7 + 25
c

9 + 23
b

11 + 21
c

13 + 19
a

15 + 17
b

3 + 29
a

3 + 27
c

3 + 25
c

3 + 23
a

3 + 21
c

3 + 19
a

3 + 17
a

3 + 3
a

3 + 5
a

3 + 7
a

3 + 9
c

3 + 11
a

3 + 13
a

3 + 15
c

a, c→ a

b, d→ c

Za = Xa +Xc = 5

Zc = Xb +Xd = 2

Za + Zc =
⌊
n− 4

4

⌋
= 7

Ya = Xa +Xb = 4

Yc = Xc +Xd = 3

Ya + Yc =
⌊
n− 2

4

⌋
= 7

Xa = 2

Xb = 2

Xc = 3

Xd = 0

a, b→ a

c, d→ c

- Case n = 34

3 + 31
a

5 + 29
a

7 + 27
c

9 + 25
d

11 + 23
a

13 + 21
c

15 + 19
b

17 + 17
a

3 + 31
a

3 + 29
a

3 + 27
c

3 + 25
c

3 + 23
a

3 + 21
c

3 + 19
a

3 + 17
a

3 + 3
a

3 + 5
a

3 + 7
a

3 + 9
c

3 + 11
a

3 + 13
a

3 + 15
c

a, c→ a

b, d→ c

Za = Xa +Xc = 5

Zc = Xb +Xd = 2

Za + Zc =
⌊
n− 4

4

⌋
=7

Ya = Xa +Xb = 5

Yc = Xc +Xd = 3

Ya + Yc =
⌊
n− 2

4

⌋
= 8

Xa = 4

Xb = 1

Xc = 2

Xd = 1

a, b→ a

c, d→ c
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- Case n = 98

Y a = 9

Y c = 15

Za = 14

Zc = 9

Xa = 3

Xb = 6

Xc = 11

Xd = 4

19 + 79

31 + 67

37 + 61

21 + 77

33 + 65

35 + 63

49 + 49

9 + 89

15 + 83

25 + 73

27 + 71

39 + 59

45 + 53

3 + 95

5 + 93

7 + 91

11 + 87

13 + 85

17 + 81

23 + 75

29 + 69

41 + 57

43 + 55

47 + 51

3 + 3 3 + 5 3 + 7 3 + 11

3 + 13 3 + 17 3 + 19 3 + 23

3 + 29 3 + 31 3 + 37

3 + 41 3 + 43 3 + 47

3 + 9 3 + 15 3 + 21 3 + 25

3 + 27 3 + 33 3 + 35 3 + 39

3 + 45

3 + 53 3 + 59 3 + 61

3 + 67 3 + 71 3 + 73

3 + 79 3 + 83 3 + 89

3 + 49 3 + 51 3 + 55 3 + 57

3 + 63 3 + 65 3 + 69 3 + 75

3 + 77 3 + 81 3 + 85 3 + 87

3 + 91 3 + 93 3 + 95

- Case n = 100

Y a = 10

Y c = 14

Za = 14

Zc = 10

Xa = 6

Xb = 4

Xc = 8

Xd = 6

3 + 97

11 + 89

17 + 83

29 + 71

41 + 59

47 + 53

9 + 91

15 + 85

25 + 75

35 + 65

45 + 55

49 + 51

21 + 79

27 + 73

33 + 67

39 + 61

5 + 95

7 + 93

13 + 87

19 + 81

23 + 77

31 + 69

37 + 63

43 + 57

3 + 3 3 + 5 3 + 7 3 + 11

3 + 13 3 + 17 3 + 19 3 + 23

3 + 29 3 + 31 3 + 37

3 + 41 3 + 43 3 + 47

3 + 9 3 + 15 3 + 21 3 + 25

3 + 27 3 + 33 3 + 35 3 + 39

3 + 45 3 + 49

3 + 53 3 + 59 3 + 61

3 + 67 3 + 71 3 + 73

3 + 79 3 + 83 3 + 89 3 + 97

3 + 51 3 + 55 3 + 57

3 + 63 3 + 65 3 + 69 3 + 75

3 + 77 3 + 81 3 + 85 3 + 87

3 + 91 3 + 93 3 + 95
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Annex 3 : rewriting rules and automata theory
This annex studies variables Xa(n), Xb(n), Xc(n), Xd(n) evolution that we deduce from analyzing words rewriting rules,
presented from automata theory point of view.

If we consider each line of the global array as a word on alphabet A = {a, b, c, d}, n+ 2 even number’s word is obtained by
the following way from even number n’s word :

– first letter of n + 2’s word is a if n − 3 is prime and c otherwise (this first letter is the only one that introduces
indeterminism because it doesn’t belong to n’s word and it can’t be deduced from n’s word letters ;

– following letters of n+ 2’s word are obtained by applying parallely following rewriting rules to n’s word :

aa→ a (1)
ab→ b (2)
ac→ a (3)
ad→ b (4)
ba→ a (5)
bb→ b (6)
bc→ a (7)
bd→ b (8)
ca→ c (9)
cb→ d (10)
cc→ c (11)
cd→ d (12)
da→ c (13)
db→ d (14)
dc→ c (15)
dd→ d (16)

We can represent those rewriting rules by the two above deterministic automata, from which edges are labelled by
applicable rules to one given letter of n’s word :

1, 5

9, 13 3, 7

11, 15

2, 6

10, 14 4, 8

12, 16

a b

c d

– finally, one letter concatenation at the end of the word, in case if n is an even double (i.e. of the form 4k) obeys to
following rule :

– if n’s word has an a or b letter as last letter, after having obtained n+ 2’s word by applying rewriting rules, we
concatenate a letter a to it (at last position) ;

– if n’s word has a c or d letter as last letter, after having obtained n+ 2’s word by applying rewriting rules, we
concatenate a letter d to it (at last position).

If we take as convention to notate Xxy(n) occurences number of xy letters sequences in n’s word, the following equalities
provide a, b, c or d letters numbers evolution when passing from n’s word to n+ 2’s word.

Xa(n+ 2) = Xa(n)−Xca(n)−Xda(n) +Xac(n) +Xbc(n) + δn−3_is_prime(n) + δa(n)
Xb(n+ 2) = Xb(n)−Xcb(n)−Xdb(n) +Xad(n) +Xbd(n) + δn−3_is_prime(n)
Xc(n+ 2) = Xc(n)−Xac(n)−Xbc(n) +Xca(n) +Xda(n) + δn−3_is_prime(n)
Xd(n+ 2) = Xd(n)−Xad(n)−Xbd(n) +Xcb(n) +Xdb(n) + δn−3_is_prime(n) + δd(n)

with δa(n) that is equal to 1 if n is an even number (i.e. of the form 4k) and if n’s word last letter is an a or b letter, δd(n)
that is equal to 1 if n is an even number (i.e. of the form 4k) and if n’s word last letter is a c or d letter and finally with
δn−3(n) that is equal to 1 if n− 3 is prime and equal to 0 otherwise.
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