Goldbach conjecture, 4 letters language, variables and invariants

Denise Vella-Chemla

21/04/2014

1 Introduction

Goldbach conjecture states that each even integer except 2 is the sum of two prime numbers. In the following, one is interested in decompositions of an even number n as a sum of two odd integers $p+q$ with $3 \leqslant p \leqslant n / 2, n / 2 \leqslant q \leqslant n-3$ and $p \leqslant q$. We call p a n 's first range sommant and q a n 's second range sommant.

Notations :

We will note by :

- a : an n decomposition of the form $p+q$ with p and q primes;
- b : an n decomposition of the form $p+q$ with p compound and q prime;
$-c$: an n decomposition of the form $p+q$ with p prime and q compound;
- d : an n decomposition of the form $p+q$ with p and q compound numbers.

Example :

40	3	5	7	9	11	13	15	17	19
	37	35	33	31	29	27	25	23	21
l_{40}	a	c	c	b	a	c	d	a	c

2 Main array

We designate by $T=(L, C)=\left(l_{n, m}\right)$ the array containing $l_{n, m}$ elements that are one of a, b, c, d letters. n belongs to the set of even integers greater than or equal to $6 . m$, belonging to the set of odd integers greater than or equal to 3 , is an element of list of n first range sommants.

Let us consider g function defined by :

$$
\begin{aligned}
g: \quad 2 \mathbb{N} & \rightarrow 2 \mathbb{N}+1 \\
x & \mapsto 2\left\lfloor\frac{x-2}{4}\right\rfloor+1
\end{aligned}
$$

$g(6)=3, g(8)=3, g(10)=5, g(12)=5, g(14)=7, g(16)=7$, etc.
$g(n)$ function defines the greatest of n second range sommants.

As we only consider n decompositions of the form $p+q$ where $p \leqslant q$, in T will only appear letters $l_{n, m}$ such that $m \leqslant 2\left\lfloor\frac{n-2}{4}\right\rfloor+1$ in such a way that the T array first letters are $: l_{6,3}, l_{8,3}, l_{10,3}, l_{10,5}, l_{12,3}, l_{12,5}, l_{14,3}, l_{14,5}, l_{14,7}$, etc.

Here are first lines of array T.

C	3	5	7	9	11	13	15	17
L								
6	a							
8	a							
10	a	a						
12	c	a						
14	a	c	a					
16	a	a	c					
18	c	a	a	d				
20	a	c	a	b				
22	a	a	c	b	a			
24	c	a	a	d	a			
26	a	c	a	b	c	a		
28	c	a	c	b	a	c		
30	c	c	a	d	a	a	d	
32	a	c	c	b	c	a	b	
34	a	a	c	d	a	c	b	a
36	c	a	a	d	c	a	d	a
\cdots								

Figure 1 : words of even numbers between 6 and 36

Remarks :

1) words on array's diagonals called diagonal words have their letters either in $A_{a b}=\{a, b\}$ alphabet or in $A_{c d}=\{c, d\}$ alphabet.
2) a diagonal word codes decompositions that have the same second range sommant.

For instance, on Figure 4, diagonal letters aaabaa that begin at letter $l_{26,3}=a$ code decompositions $3+23,5+23,7+23,9+23,11+23$ and $13+23$.
3) let us designate by l_{n} the line whose elements are $l_{n, m}$. Line l_{n} contains $\left\lfloor\frac{n-2}{4}\right\rfloor$ elements.
4) n begin fixed, let us call $C_{n, 3}$ the column formed by $l_{k, 3}$ for $6 \leqslant k \leqslant n$.

In this column $C_{n, 3}$, let us distinguish two parts, the "top part" and the "bottom part" of the column.
Let us call $H_{n, 3}$ column's "top part", i.e. set of $l_{k, 3}$ where $6 \leqslant k \leqslant\left\lfloor\frac{n+4}{2}\right\rfloor$.
Let us call $B_{n, 3}$ column's "bottom part", i.e. set of $l_{k, 3}$ where $\left\lfloor\frac{n+4}{2}\right\rfloor<k \leqslant n$.

Figure 2: $n=34$

To better understand computations in next section, we will use projection P of line n on bottom part of first column $B_{n, 3}$ that "associates" letters at both extremities of a diagonal. If we consider application proj such that $\operatorname{proj}(a)=\operatorname{proj}(b)=a$ and $\operatorname{proj}(c)=\operatorname{proj}(d)=c$ then, since 3 is prime, $\operatorname{proj}\left(l_{n, 2 k+1}\right)=l_{n-2 k+2,3}$.

We can also understand the effect of this projection (that preserves second range sommant) by analyzing decompositions :

- if $p+q$ is coded by an a or a b letter, it corresponds to two possible cases in which q is prime, and so $3+q$ decomposition, containing two prime numbers will be coded by an a letter;
- if $p+q$ is coded by a c or a d letter, it corresponds to two possible cases in which q is compound, and so $3+q$ decomposition, of the form prime + compound will be coded by a c letter.
We will also use in next section a projection that transforms first range sommant in a second range sommant that is combined with 3 as a first range sommant ; let us analyze the effect of such a projection will have on decompositions :
- if $p+q$ is coded by an a or a c letter, it corresponds to two possible cases in which p is prime, and so $3+p$ decomposition, containing two prime numbers will be coded by a a letter ;
- if $p+q$ is coded by a b or a d letter, it corresponds to two possible cases in which p is compound, and so $3+p$ decomposition, of the form prime + compound will be coded by a c letter.

3 Computations

1) We note in line n by :

- $X_{a}(n)$ the number of n decompositions of the form prime + prime;
- $X_{b}(n)$ the number of n decompositions of the form compound + prime;
- $X_{c}(n)$ the number of n decompositions of the form prime + compound;
- $X_{d}(n)$ the number of n decompositions of the form compound + compound.
$X_{a}(n)+X_{b}(n)+X_{c}(n)+X_{d}(n)=\left\lfloor\frac{n-2}{4}\right\rfloor$ is the number of elements of line n.

Example: $n=34$:
$X_{a}(34)=\#\{3+31,5+29,11+23,17+17\}=4$
$X_{b}(34)=\#\{15+19\}=1$.
$X_{c}(34)=\#\{7+27,13+21\}=2$
$X_{d}(34)=\#\{9+25\}=1$
2) Let $Y_{a}(n)$ (resp. $\left.Y_{c}(n)\right)$ being the number of a letters (resp. c) that appear in $B_{n, 3}$. We recall that there are only a and c letters in first column because it contains letters associated with decompositions of the form $3+x$ and because 3 is prime.
Example :

$$
\begin{aligned}
& -Y_{a}(34)=\#\{3+17,3+19,3+23,3+29,3+31\}=5 \\
& -Y_{c}(34)=\#\{3+21,3+25,3+27\}=3
\end{aligned}
$$

3) Because of P projection that is a bijection, and because of a, b, c, d letters definitions, $Y_{a}(n)=X_{a}(n)+$ $X_{b}(n)$ and $Y_{c}(n)=X_{c}(n)+X_{d}(n)$. Thus, trivially, $Y_{a}(n)+Y_{c}(n)=X_{a}(n)+X_{b}(n)+X_{c}(n)+X_{d}(n)=$ $\left\lfloor\frac{n-2}{4}\right\rfloor$.
Example :

$$
\begin{aligned}
& Y_{a}(34)=\#\{3+17,3+19,3+23,3+29,3+31\} \\
& X_{a}(34)=\#\{3+31,5+29,11+23,17+17\} \\
& X_{b}(34)=\#\{15+19\} \\
& \\
& Y_{c}(34)=\#\{3+21,3+25,3+27\} \\
& X_{c}(34)=\#\{7+27,13+21\} \\
& X_{d}(34)=\#\{9+25\}
\end{aligned}
$$

4) Let $Z_{a}(n)\left(\right.$ resp. $\left.Z_{c}(n)\right)$ being the number of a letters (resp. c) that appear in $H_{n, 3}$.

Example:

$$
\begin{aligned}
& -Z_{a}(34)=\#\{3+3,3+5,3+7,3+11,3+13\}=5 \\
& -Z_{c}(34)=\#\{3+9,3+15\}=2
\end{aligned}
$$

$Z_{a}(n)+Z_{c}(n)=\left\lfloor\frac{n-4}{4}\right\rfloor$.

Reminding identified properties

$$
\begin{gather*}
Y_{a}(n)=X_{a}(n)+X_{b}(n) \tag{1}\\
Y_{c}(n)=X_{c}(n)+X_{d}(n) \tag{2}\\
Y_{a}(n)+Y_{c}(n)=X_{a}(n)+X_{b}(n)+X_{c}(n)+X_{d}(n)=\left\lfloor\frac{n-2}{4}\right\rfloor \tag{3}\\
Z_{a}(n)+Z_{c}(n)=\left\lfloor\frac{n-4}{4}\right\rfloor \tag{4}
\end{gather*}
$$

Let us add two new properties to those ones :

$$
\begin{equation*}
X_{a}(n)+X_{c}(n)=Z_{a}(n)+\delta_{2 p} \tag{5}
\end{equation*}
$$

with $\delta_{2 p}$ equal to 1 in the case that n is the double of a prime number and equal to 0 either.

$$
\begin{equation*}
X_{b}(n)+X_{d}(n)=Z_{c}(n)+\delta_{\text {spec }} \tag{6}
\end{equation*}
$$

with $\delta_{\text {spec }}$ equal to 0 in the case that there exists k such that $n=4 k$, or in the case that n is the double of a prime number, and equal to 1 either.

4 Variables evolution

In this section, let us study how different variables change, in the aim to deduce that X_{a} (the number of an even number decompositions that are sums of two primes) can't never be null.
$Z_{a}(n)+Z_{c}(n)=\left\lfloor\frac{n-4}{4}\right\rfloor$ is an increasing function of n, it is increased by 1 at each n that is an even double. $Z_{a}(n)$ is increased by 1 when $\frac{n-2}{2}$ is prime and $Z_{c}(n)$ is increased by 1 each time when $\frac{n-2}{2}$ is compound. $Y_{a}(n)+Y_{c}(n)=X_{a}(n)+X_{b}(n)+X_{c}(n)+X_{d}(n)=\left\lfloor\frac{n-2}{4}\right\rfloor$ is an increasing function of n, it is increased by 1 each time when n is an odd number double.

Let us see now in detail how $Y_{a}(n)$ and $Y_{c}(n)$ change.

Dans le cas où n est un double d'impair, on ajoute un nombre à l'intervalle $H_{n, 3}$; si ce nombre ($n-3$) est premier (resp. composé), $Y_{a}(n)\left(\operatorname{resp} . Y_{c}(n)\right)$ est augmenté de 1 par rapport à $Y_{a}(n-2)\left(\operatorname{resp} . Y_{c}(n-2)\right)$.

If n is an even number double, there are 4 possible cases. Let us study how top decompositions belonging to $C_{n, 3}$'s top part (i.e. $H_{n, 3}$) evoluate.

- if $n-3$ and $n / 2-1$ are both primes, we remove at bottom and add at top of $H_{n, 3}$ two letters that are of the same type, thus $Y_{a}(n)$ and $Y_{c}(n)$ remain constant ;
- if $n-3$ is prime and $n / 2-1$ is compound then $Y_{a}(n)$ is increased by 1 and $Y_{c}(n)$ is decreased by 1 ;
- if $n-3$ is compound and $n / 2-1$ is prime then $Y_{c}(n)$ is increased by 1 and $Y_{a}(n)$ is decreased by 1 ;
- if $n-3$ and $n / 2-1$ are both compound, we remove at bottom and add at top of $H_{n, 3}$ two letters that are of the same type thus $Y_{a}(n)$ and $Y_{c}(n)$ remain constants.

But we don't succeed in deducing from all those variables entanglement that $X_{a}(n)$ is always strictly positive. In annex 1 are provided in an array values of different variables for n between 14 and 100 .

5 Leading to a contradiction

However, let us try to reach a contradiction from the hypothesis that $X_{a}(n)=0$.

If $X_{a}(n)=0$, we have

$$
\begin{equation*}
X_{b}(n)+X_{c}(n)+X_{d}(n)=\left\lfloor\frac{n-2}{4}\right\rfloor \tag{3}
\end{equation*}
$$

This is equivalent to

$$
X_{c}(n)+X_{d}(n)=\left\lfloor\frac{n-2}{4}\right\rfloor-X_{b}(n)
$$

and thus, because of (2), to

$$
\begin{equation*}
Y_{c}(n)=\left\lfloor\frac{n-2}{4}\right\rfloor-X_{b}(n) \tag{7}
\end{equation*}
$$

Here, 2 cases have to be distinguished:

- case 1: If n is the double of an odd number (i.e. of the form $4 k+2$), then

$$
\begin{equation*}
\left\lfloor\frac{n-2}{4}\right\rfloor=\left\lfloor\frac{n-4}{4}\right\rfloor+1 \tag{a}
\end{equation*}
$$

- case 2: If n is the double of an even number (i.e. of the form $4 k$), then

$$
\begin{equation*}
\left\lfloor\frac{n-2}{4}\right\rfloor=\left\lfloor\frac{n-4}{4}\right\rfloor \tag{b}
\end{equation*}
$$

We replace $\left\lfloor\frac{n-2}{4}\right\rfloor$ by those two values in equality (7) above; we obtain :

$$
\begin{array}{ll}
\text { - case 1: } & Y_{c}(n)=\left\lfloor\frac{n-4}{4}\right\rfloor+1-X_{b}(n) \\
\text { - case 2 : } & Y_{c}(n)=\left\lfloor\frac{n-4}{4}\right\rfloor-X_{b}(n) \tag{7b}
\end{array}
$$

On the other part, from the hypothesis $X_{a}(n)=0$ and from $X_{a}(n)+X_{c}(n)=Z_{a}(n)+\delta_{2 p}(5)$, it results that

$$
\begin{equation*}
X_{c}(n)=Z_{a}(n)+\delta_{2 p} \tag{8}
\end{equation*}
$$

We rewrite (2) in

$$
X_{c}(n)=Y_{c}(n)-X_{d}(n)
$$

By identifying $X_{c}(n)$ in both (2') and (8), we obtain

$$
Z_{a}(n)+\delta_{2 p}=Y_{c}(n)-X_{d}(n)
$$

from which results

$$
Y_{c}(n)=Z_{a}(n)+\delta_{2 p}+X_{d}(n)
$$

that we rewrite

$$
X_{d}(n)=Y_{c}(n)-Z_{a}(n)-\delta_{2 p}
$$

From two equations (9') and (2) system :

$$
\left\{\begin{array}{l}
X_{d}(n)=Y_{c}(n)-Z_{a}(n)-\delta_{2 p} \\
Y_{c}(n)=X_{c}(n)+X_{d}(n)
\end{array}\right.
$$

results

$$
\begin{equation*}
X_{c}(n)=Z_{a}(n)+\delta_{2 p}-Y_{c}(n) \tag{10}
\end{equation*}
$$

Contradiction results from the fact that $Y_{c}(n)$ is always greater than $Z_{c}(n)$ (since $n \geqslant 24$), itself always greater than $Z_{a}(n), n$ being greater than a rather small value of n (since $n \geqslant 240$). Equation (10) that we reached under $X_{a}(n)=0$ hypothesis would provide a negative value for $X_{c}(n)$, that is clearly impossible, $X_{c}(n)$ counting, let us remind it, n decompositions of the form prime + compound.

In annex 2 are provided graphic representations of sets bijections for cases $n=32,34,98$ and 100 .
The file http : //denise.vella.chemla.free.fr/annexes.pdf provides

- an historical recall of a Laisant's note that presented yet in 1897 the idea of "strips" of odd numbers to be put in regard and to be colorated to see Goldbach decompositions ;
- a program and its execution that implements ideas presented here.

Annex 1 : variables values array for n between 14 and 100

n	$X_{a}(n)$	$X_{b}(n)$	$X_{c}(n)$	$X_{d}(n)$	$Y_{a}(n)$	$Y_{c}(n)$	$\left\lfloor\frac{n-2}{4}\right\rfloor$	$Z_{a}(n)$	$Z_{c}(n)$	$\left\lfloor\frac{n-4}{4}\right\rfloor$
14	2	0	1	0	2	1	3	2	0	2
16	2	0	1	0	2	1	3	3	0	3
18	2	0	1	1	2	2	4	3	0	3
20	2	1	1	0	3	1	4	3	1	4
22	3	1	1	0	4	1	5	3	1	4
24	3	0	1	1	3	2	5	4	1	5
26	3	1	2	0	4	2	6	4	1	5
28	2	1	3	0	3	3	6	5	1	6
30	3	0	2	2	3	4	7	5	1	6
32	2	2	3	0	4	3	7	5	2	7
34	4	1	2	1	5	3	8	5	2	7
36	4	0	2	2	4	4	8	6	2	8
38	2	2	5	0	4	5	9	6	2	8
40	3	1	4	1	4	5	9	7	2	9
42	4	0	3	3	4	6	10	7	2	9
44	3	2	4	1	5	5	10	7	3	10
46	4	2	4	1	6	5	11	7	3	10
48	5	0	3	3	5	6	11	8	3	11
50	4	2	4	2	6	6	12	8	3	11
52	3	3	5	1	6	6	12	8	4	12
54	5	1	3	4	6	7	13	8	4	12
56	3	4	5	1	7	6	13	8	5	13
58	4	3	5	2	7	7	14	8	5	13
60	6	0	3	5	6	8	14	9	5	14
62	3	4	7	1	7	8	15	9	5	14
64	5	2	5	3	7	8	15	10	5	15
66	6	1	4	5	7	9	16	10	5	15
68	2	5	8	1	7	9	16	10	6	16
70	5	3	5	4	8	9	17	10	6	16
72	6	2	4	5	8	9	17	10	7	17
74	5	4	6	3	9	9	18	10	7	17
76	5	4	6	3	9	9	18	11	7	18
78	7	2	4	6	9	10	19	11	7	18
80	4	5	7	3	9	10	19	11	8	19
82	5	5	7	3	10	10	20	11	8	19
84	8	1	4	7	9	11	20	12	8	20
86	5	5	8	3	10	11	21	12	8	20
88	4	5	9	3	9	12	21	13	8	21
90	9	0	4	9	9	13	22	13	8	21
92	4	6	9	3	10	12	22	13	9	22
94	5	5	9	4	10	13	23	13	9	22
96	7	2	7	7	9	14	23	14	9	23
98	3	6	11	4	9	15	24	14	9	23
100	6	4	8	6	10	14	24	14	10	24

Annex 2 : sets bijections

- case $n=32$

- case $n=34$
$Z_{a}=X_{a}+X_{c}=5$
$Z_{c}=X_{b}+X_{d}=2$
$Z_{a}+Z_{c}=\left\lfloor\frac{n-4}{4}\right\rfloor=7$

- case $n=98$

- case $n=100$

