Quadratic residues numbers of prime or compound integers

Denise Vella-Chemla

28.8.2016

We would want to precise here the fact that it is possible to establish if a number is prime or not by counting the number (that we note R(n)) of its not null quadratic residues¹.

More precisely, we induce from countings for numbers until 100 the following hypothesis:

- If n is an odd number:
 - if R(n) is equal to (n-1)/2 then n is prime.
 - if R(n) is lesser than (n-1)/2 then n is compound;
- If n is an even number:
 - if R(n) is equal to n/2 then n is the double of a prime number;
 - if R(n) is lesser than n/2 then n is the double of a compound number.

Our hypothesis can be written:

(H1)
$$\forall n, \ n \geq 3,$$

$$R(n) = \# \left\{ y \text{ such that } \exists x \in \mathbb{N}^{\times}, \ \exists k \in \mathbb{N}, \ x^2 - kn - y = 0 \text{ with } 0 < y \right\} < \frac{n}{2}$$

$$\iff n \text{ is the double of a compound number if it is even and } n \text{ is compound if it is odd}$$

$$(H2) \ \forall n, \ n \geq 3,$$

$$R(n) = \# \left\{ y \ such \ that \ \exists x \in \mathbb{N}^{\times}, \ \exists k \in \mathbb{N}, \ x^2 - kn - y = 0 \ with \ 0 < y \ \right\} = \frac{n}{2}$$

$$\iff n \ is \ the \ double \ of \ a \ prime \ number \ if \ it \ is \ even \ and \ n \ is \ prime \ if \ it \ is \ odd.$$

To demonstrate our hypothesis, one should have to prove:

- 1) that it is true by elevating a prime number p to the power k;
- 2) that it is true by multiplying powers of primes.

We recall that the number of quadratic residues of a prime number p is equal to $\frac{p-1}{2}$.

Let us understand the hypothesis heuristically.

The number of quadratic residues of powers p^k of a prime number p is always strictly lesser than $\frac{p^k-1}{2}$ because all p's multiples can't be quadratic residues of powers of p.

The modular equivalence of differences $a^2 - b^2 \equiv (a - b)(a + b) \pmod{n}$ has as consequence a great redundancy of squares that can be obtained modulo n and this reduces the number of quadratic residues of products of powers, rendering this number always lesser than the half of the product considered.

¹We will omit this non nullity of quadratic residues considered.

Let us show this redundancy mechanism on a simple example (in annex, we will provide as another example squares redundancy in the case of $n = 175 = 5^2.7$).

Modulus n = 35 (R(35) = 11 and 11 < (35 - 1)/2)

34	33	32	31	30	29	28	27	26	25	24	23	22	21	20	19	18
		ı				ı					ı				16	l
1	4	9	16	25	1	14	29	11	30	16	4	29	21	15	11	9

Squares redundancy for modulus 35 are:

The quadratic residues number can be obtained by the following formulas :

$$\begin{array}{lll} R(2) & = 1, \\ R(4) & = 1, \\ R(p) & = \frac{p-1}{2} & \forall \ p \ prime \ > 2 \\ R(2p) & = p & \forall \ p \ prime \ > 2 \\ R(4p) & = p & \forall \ p \ prime \ > 2 \\ R(4p) & = \left(\frac{3}{2} + \frac{2^k}{6} + \frac{(-1)^{k+1}}{6}\right) - 1, & \forall \ k > 2 \\ R(p^k) & = \left(\frac{3}{4} + \frac{(p-1)(-1)^{k+1}}{4(p+1)} + \frac{p^{k+1}}{2(p+1)}\right) - 1 & \forall \ p \ prime \ > 2, \forall \ k \geq 2 \\ R\left(\prod_{i=1}^k p_i^{\alpha_i}\right) & = -1 + \prod_{i=1}^k (R\left(p_i^{\alpha_i}\right) + 1) \end{array}$$

It can be noticed that in the case of powers, 1 is substracted after the calculus between parentheses has been made to obtained an integer.

Bibliographie

- [1] Victor-Amédée Lebesgue, Démonstrations de quelques théorèmes relatifs aux résidus et aux non-résidus quadratiques, Journal de Mathématiques pures et appliquées (Journal de Liouville), 1842, vol.7, p.137-159.
- [2] Augustin Cauchy, Théorèmes divers sur les résidus et les non-résidus quadratiques, Comptes-rendus de l'Académie des Sciences, T10, 06, 16 mars 1840.

Annex 1 : Squares redundancy for modulus $175 = 5^2.7$

For modulus 175, we write as couples numbers that have the same square, we don't precise the difference equality $a^2 - b^2 = (a - b)(a + b)$ that is such that factorizations of numbers a - b and a + b "are containing" all factors of 175 = 5².7:

```
(16,9), (20,15), (23,2), (25,10), (30,5), (32,18), (37,12), (39,11), (40,5), (41,34), (44,19), \\ (45,10), (46,4), (48,27), (50,15), (51,26), (53,3), (55,15), (57,43), (58,33), (60,10), (62,13), \\ (64,36), (65,5), (66,59), (67,17), (69,6), (71,29), (72,47), (73,52), (74,24), (75,5), (76,1), \\ (78,22), (79,54), (80,10), (81,31), (82,68), (83,8), (85,15), (86,61), (87,38).
```

Moreover, 35 and 70 have their square that is null and we took as a convention not to count null quadratic residues.

R(175) = 43 and 43 < (175 - 1)/2.

Annex 2: Not null quadratic residues numbers for integers from 1 to 100

$1 \rightarrow 0$	$21 \rightarrow 7$	$41 \rightarrow 20$	$61 \rightarrow 30$	$81 \rightarrow 30$
$2 \rightarrow 1$	$22 \rightarrow 11$	$42 \rightarrow 15$	$62 \rightarrow 31$	$82 \rightarrow 41$
$3 \rightarrow 1$	$23 \rightarrow 11$	$ 43 \rightarrow 21 $	$ 63 \rightarrow 15 $	$83 \rightarrow 41$
$4 \rightarrow 1$	$24 \rightarrow 5$	$44 \rightarrow 11$	$64 \rightarrow 11$	$84 \rightarrow 15$
$5 \rightarrow 2$	$25 \rightarrow 10$	$45 \rightarrow 11$	$65 \rightarrow 20$	$85 \rightarrow 26$
$6 \rightarrow 3$	$26 \rightarrow 13$	$46 \rightarrow 23$	$66 \rightarrow 23$	$86 \rightarrow 43$
$7 \rightarrow 3$	$27 \rightarrow 10$	$47 \rightarrow 23$	$67 \rightarrow 33$	$87 \rightarrow 29$
$8 \rightarrow 2$	$28 \rightarrow 7$	$48 \rightarrow 7$	$68 \rightarrow 17$	$88 \rightarrow 17$
$9 \rightarrow 3$	$29 \rightarrow 14$	$49 \rightarrow 21$	$69 \rightarrow 23$	$89 \rightarrow 44$
$10 \rightarrow 5$	$30 \rightarrow 11$	$50 \rightarrow 21$	$70 \rightarrow 23$	$90 \rightarrow 23$
$11 \rightarrow 5$	$31 \rightarrow 15$	$51 \rightarrow 17$	$71 \rightarrow 35$	$91 \rightarrow 27$
$12 \rightarrow 3$	$32 \rightarrow 6$	$52 \rightarrow 13$	$72 \rightarrow 11$	$92 \rightarrow 23$
$13 \rightarrow 6$	$33 \rightarrow 11$	$53 \rightarrow 26$	$73 \rightarrow 36$	$93 \rightarrow 31$
$14 \rightarrow 7$	$34 \rightarrow 17$	$54 \rightarrow 21$	$74 \rightarrow 37$	$94 \rightarrow 47$
$15 \rightarrow 5$	$35 \rightarrow 11$	$55 \rightarrow 17$	$75 \rightarrow 21$	$95 \rightarrow 29$
$16 \rightarrow 3$	$36 \rightarrow 7$	$56 \rightarrow 11$	$76 \rightarrow 19$	$96 \rightarrow 13$
$17 \rightarrow 8$	$37 \rightarrow 18$	$57 \rightarrow 19$	$77 \rightarrow 23$	$97 \rightarrow 48$
$18 \rightarrow 7$	$38 \rightarrow 19$	$58 \rightarrow 29$	$78 \rightarrow 27$	$98 \rightarrow 43$
$19 \rightarrow 9$	$39 \rightarrow 13$	$59 \rightarrow 29$	$79 \rightarrow 39$	$99 \rightarrow 23$
$20 \rightarrow 5$	$40 \rightarrow 8$	$60 \rightarrow 11$	$80 \rightarrow 11$	$100 \rightarrow 21$