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 MATHEMATICS OF COMPUTATION, VOLUME 33, NUMBER 148

 OCTOBER 1979, PAGES 1361-1 372

 On the Zeros of the Riemann Zeta Function

 in the Critical Strip

 By Richard P. Brent

 Abstract. We describe a computation which shows that the Riemann zeta function c(s)

 has exactly 75,000,000 zeros of the form a + it in the region 0 < t < 32,585,736.4;

 all these zeros are simple and lie on the line a = 1/2. (A similar result for the first

 3,500,000 zeros was established by Rosser, Yohe and Schoenfeld.) Counts of the num-

 ber of Gram blocks of various types and the number of failures of "Rosser's rule" are

 given.

 1. Introduction. The Riemann zeta function v(s) is the analytic function of s =

 a + it defined by

 00

 T(S)= -S

 n= 1

 for a > 1, and by analytic continuation for u < 1, s = 1. Apart from "trivial" zeros

 at the negative even integers, all zeros of t(s) lie in the critical strip 0 < a < 1. The

 Riemann hypothesis is the conjecture [22] that all nontrivial zeros of v(s) lie on the

 critical line u = ?2. For the number-theoretic significance of the Riemann hypothesis

 see, for example, Edwards [6] or Ingham [10].

 Since t() = t (s), we need only consider zeros p1 = u1 + it, with tj > 0. We as-

 sume that the zeros p1 are counted according to their multiplicities and ordered so that

 0 < tj < ti+ (and a, < ?j+l if tj = t+ 1) for j > 1. By "the first n zeros of v(s)" we

 mean P1, . .. , Pn. For brevity we let H(n) denote the statement that the first n zeros

 of v(s) are simple and lie on the critical line. Thus, H(n) holds for arbitrarily large n if

 and only if the Riemann hypothesis is true and all zeros of v(s) are simple.

 In the era of hand computation, Gram [7], Backlund [2], Hutchinson [9], and

 Titchmarsh and Comrie [26] established H(10), H(79), H(138) and H(1,041), respec-

 tively. For a description of these computations see Edwards [6].

 D. H. Lehmer [13], [14] performed the first extensive computation of zeros of

 v(s) on a digital computer and established H(25,000). Using similar methods, Meller

 [16], Lehman [11], and Rosser, Yohe and Schoenfeld [23] established H(35,337),

 H(250,000), and H(3,500,000), respectively.

 Using essentially the method introduced by Lehmer, we have established

 H(75,000,001). Moreover, there are precisely 75,000,000 zeros with 0 < t, <

 32,585,736.4. The computational method is outlined in Section 4, and additional
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 1362 RICHARD P. BRENT

 details are given in Section 5. In Section 6 the results are summarized and various sta-

 tistics regarding the distribution of the zeros are tabulated. Preliminary results are given

 in Sections 2 and 3.

 2. Properties of v(s). In this section we summarize some well-known properties

 of v(s) which form the basis for the computational method described in Section 4.

 2.1. The Functional Equation for T(s). v(s) satisfies a functional equation which

 may be written in the form

 t(s) = t(1 -s),

 where

 (s) = 7rSs2r(sI2) (s).

 It follows that, if

 (2.1) 0(t) = arg [17-1/2itr(1/4 + Y2it)] = I [ln r(P4 + ?1t)] - ?2t ln 7r,

 then

 (2.2) Z(t) = exp [i0(t)] (?h + it)

 is real for real t. Thus, simple zeros of v(s) on the critical line can be located by find-

 ing changes of sign of Z(t). (The first few zeros of Z(t) are t1 = 14.1347,t2 =

 21.0220, t3 = 25.0109, ...; see Haselgrove and Miller [8].)

 2.2. The Asymptotic Expansion for 0(t). From (2.1) and Stirling's formula for

 ln f(s/2), we obtain the following asymptotic expansion for the phase 0(t):

 t 7r n ~B2k( 1 -2l2k)12k

 (2.3) O(t) = ktln I -) -?t- ?8+ E 4k(2k - 1) t2k + r (t)

 where B2 = 1/6, B4 = - 1/30, ... are Bernoulli numbers, and

 Irn(t)t < (2n)! + exp(- rt)

 (27r)2 n+2 t2 n+ 1

 for all t > 0 and n > 0.

 0(t) has a minimum of approximately -3.53 near t = 2ir, and is monotonic in-

 creasing for t > 7. For m > - 1, we define the mth Gram point gm to be the unique

 solution in [7, oo) of

 (2.4) 0(gm) = mi7.

 Thus, g_1 =9.6669, go = 17.8456, g1 = 23.1703,.

 2.3. The Euler-Maclaurin Formula for v(s). v(s) may be calculated to any de-

 sired accuracy by taking m and n large enough in the Euler-Maclaurin formula

 n-I 1-s m

 (2.5) T(S) = Z j-s + ?2n-s +? n (s) + Em?n(s),

 j=l *=1

 where

 Tn (s) B2k n152k nJ (S +J

 (2k)!~~~~
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 ZEROS OF THE RIEMANN ZETA FUNCTION 1363

 and

 tEm,n(S)l < ITm+1,n(S)(s + 2m + 1)/(u + 2m + 1)l

 for all m > 0, n > 1, and a = R(s) > -(2m + 1).

 If (2.5) is used to obtain (?% + it) to within a specified absolute tolerance, then

 it is necessary to take n > t/(2ir). It is also sufficient to take n = 0(t) and m = 0(t).

 Thus, the computational work required is roughly proportional to t.

 2.4. The Riemann-Siegel Formula for Z(t). The Riemann-Siegel formula [5],

 [6], [25] is an asymptotic expansion for Z(t) (defined by (2.2)). The Riemann-Siegel

 formula is an improvement over the Euler-Maclaurin expansion for computing Z(t) if t

 is large, because the work required is 0(t'/2) instead of 0(t).

 Let r = t/(27r), m = [j'/2], and z = 2(Qr/2 - m) - 1. Then the Riemann-Siegel

 formula with n + 1 terms in the asymptotic expansion is

 m

 Z(t) = , 2kl"2 cos [t. ln(k) - 0(t)]

 k = 1

 (2.6) n

 + (_ 1)m +1l? 1/4 E (z)(-1)'jj/2 +Rn(),

 i=0

 where

 Rn(r) =( -(2n+3)14)

 for n > - 1 and r > 0. Here the 1?1(z) are certain entire functions which may be ex-

 pressed in terms of the derivatives of

 %O(z) -?(z) = cos [7r(4Z2 + 3)/8] /cos (7rz).

 Expressions for i ..i , F19 are given in the review of [5]. For our purposes it is

 sufficient to note that

 (D (Z) = 1(3)(z)/(127r2)

 and

 D2 (Z)- =(2)(z)/(167r2) + 'F(6)(z)/(2887r4).

 To establish changes of sign of Z(t) we need rigorous bounds on the error R"(r)

 Titchmarsh [27, p. 331] showed that

 1RO(r)I < 3 -/4 for r> 125,

 2

 and Rosser et al. [23] used the bound

 (2.7) tR2(r)t < 2.28r-7/4 for r > 2000.*

 This bound is extremely conservative; computation of maxz [ 1, 1 14tI (z) I for

 j = 3, 4, ... (and computation of R2(r) for small r) indicates that the constants 2.28

 and 2000 in (2.7) may be replaced by 0.006 and 10, respectively. In the computation

 described below we took n = 2 in (2.6) and used only the weak bound

 (2.8) 1R2(r)l < 3f-7/4 for r > 2000.

 *The number "2.88" appearing in [231 should have been "2.28".

This content downloaded from 129.96.252.188 on Wed, 02 Mar 2016 11:22:08 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


 1364 RICHARD P. BRENT

 The effect of rounding errors in accumulating the first sum in (2.6) was more of a

 problem than the inherent error (2.8); see Section 5.

 3. Gram Blocks and the Littlewood-Turing Theorem. "Gram's law" is the obser-

 vation [7] that Z(t) usually changes sign in each "Gram interval" G. = [g1, gj+1), j

 - 1. A plausible explanation for this is that the leading (k = 1) term in (2.6) at t = g

 is 2(- 1)'. We call a Gram point g1 good if (- 1)'Z(gj) > 0, and bad otherwise. (The

 first bad Gram point is g126.) The concept of "Gram blocks" was introduced by Ros-

 ser et al. [23]. A "Gram block of length k" is an interval B, = [g1, gj+k) such that g,

 and gi+k are good Gram points, g1+1, ... I gi+k-I are bad Gram points, and k > 1. We

 say that B, satisfies "Rosser's rule" if Z(t) has at least k zeros in B1. Rosser's rule fails

 infinitely often [12], but it is still an extremely useful heuristic. The first exception is

 B13,999,525 (see Table 3), so Lehman's conjecture [12] that Rosser's rule holds up to

 9l0,O00,000 is correct.

 Let N(T) denote the number of zeros (counted according to their multiplicities)

 of v(s) in the region 0 < I(s) < T, and

 (3.1) S(t) = N(t) - 1 - 0(t)/r.

 It is easy to show that Gram's law holds in regions where IS(t)l < 1, and Rosser's

 rule holds in regions where IS(t)l < 2. Thus, the success of these heuristics is closely

 related to the distribution of values of S(t); see Lehman [12].

 Turing [28] showed that the following theorem, based on an idea of Littlewood

 [151, could be used to bound N(t) for certain values of t. We give Lehman's version

 [12] of the theorem, as Turing's constants A and B are larger than necessary, and his

 proof is incorrect.

 THEOREM 3.1. If A =0.114,B= 1.71,C= 168ir,andC<u<v, then

 ||S(t) dt < A.l n(v) +B.

 Since our program works with Gram blocks, the following consequence of Theo-

 rem 3.1 is extremely convenient.

 THEOREM 3.2. If K consecutive Gram blocks with union [ga, gp) satisfy Rosser's

 rule, where

 (3.2) K > 0.0061 [ln (gp)] 2 + 0.08 ln (gp),

 then

 (3.3) N(gn) S n + 1

 and

 (3.4) N(gp) > P+ I

 Proof If g,n A 168ir then (3.3) certainly holds [8], and (3.4) holds because

 Rosser's rule is valid in (g-, gj). Thus, assume that gn > 168ir.
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 ZEROS OF THE RIEMANN ZETA FUNCTION 1365

 Since p - n > K, it follows from (3.2) that

 (3.5) K + Vz(p - n) > 0.152 ln (gp/(27r)) + 0.0091 [ln (gp/(27r))] 2.

 The result now follows from Theorem 4 of Lehman [12] (which is itself a consequence

 of Theorem 3.1).

 4. The Computational Method. The first (and most expensive) part of the com-

 putational verification of H(n + 1) is the location of n + 1 sign changes of Z(t) in

 (g- I, gn). Our program works in the following way. Suppose that i + 1 sign changes

 have been found in (g_ 1, g,), where gj is a good Gram point. Then Z(g+ O1) Z(gj+ 2) . . .

 are evaluated until the next good Gram point g1+k is found. The program then

 evaluates Z(t) for various t E Bj = [g1, gj+0) until either

 (a) k sign changes are found in Bj, when j is replaced by j + k and the process

 continues; or

 (b) after a large number of evaluations of Z(t) the program gives up and calls

 for help.

 Case (b) could arise because of a pair of very close zeros of Z(t) in B, (or a mul-

 tiple zero), or because B, does not satisfy Rosser's rule. In fact, during the computa-

 tion to n = 75,000,000, case (b) occurred only 15 times. In each case B1 contained

 k - 2 zeros of Z(t), and the preceding or-following Gram block of length k' contained

 k' + 2 zeros of Z(t); see Table 3.

 In this way we found the required n + 1 sign changes, establishing that N(gn) >

 n + 1. By running the computation a little further we also showed that there are

 4 Gram blocks in [gnI gn + 5), and all of them satisfy Rosser's rule. Applying Theorem

 3.2 gives N(gn) < n + 1. Thus, N(gn) = n + 1, and H(n + 1) holds. By locating the

 nth and (n + I)th zeros, it may be shown that N(32,585,736.4) = n = 75,000,000, as

 claimed in the abstract.

 5. Computational Details. In Section 4 we glossed over an essential point: how

 can the sign of Z(t) be determined with certainty? If Z(t) is evaluated numerically

 from the Riemann-Siegel formula (2.6), the effect of rounding errors must be considered

 as well as the inherent error R"(r).

 5.1. Methods for Evaluating Z(t). It is desirable to have at least two methods

 for evaluating Z(t): a fast method which usually determines the sign of Z(t) unambig-

 uously, and a slower but more accurate method which may be used if the fast method

 fails. We used the Euler-Maclaurin formula (2.5) both for small t and for checking pur-

 poses, but for brevity we shall only analyze the use of the Riemann-Siegel formula

 (2.6). We shall also assume that n = 2 in (2.6), and that t > 20,000XT. Our program

 uses the following two methods to evaluate the Riemann-Siegel sum

 (5.1) s(t) = E 2k- cos [t.ln(k) - 0(t)].

 k-1

 Method A: The constants ln (k), k = 1, 2, ... , are precomputed (using double-

 precision) and stored in a table. For each value of k, f = frac{(l/2iT)[t.1n(k) - 0(t)] }

 is computed using double-precision, then truncated to single-precision. (Here frac.(x)
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 1366 RICHARD P. BRENT,

 denotes the fractional part of x.) Then cos (2-rf) = cos [t.ln(k) - 0(t)] is approximated

 by a precomputed piecewise linear approximation, the result multiplied by the precom-

 puted single-precision constant 2k-?, and the sum (5.1) accumulated in double precision.

 Method B: The same as for Method A except that all computations are done

 using double-precision arithmetic, and cos(2irf) is evaluated as accurately as possible.

 All computations were performed on a Univac 1100/42 computer, which has a

 36-bit word and hardware single- and double-precision floating-point arithmetic (using

 27- and 60-bit binary fractions, respectively).

 5.2. Rounding Error Analysis of Methods A and B. The analysis is similar to

 that of Lehman [11] and Rosser et al. [23] so we shall omit detailed (and tedious)

 proofs of the following results. Recall that m = Lrl/21 > 100. Lemmas 5.1 and 5.2

 are elementary, and Lemma 5.3 follows easily from them.

 LEMMA 5.1.

 E I-l/2<2mm/2?2r4

 and

 m

 V -/2 ln (k) < 2m1/2 In (m) < r1/4 In (r).

 k=1

 LEMMA 5.2.

 0(t) < rr ln (r).

 LEMMA 5.3. Suppose that

 {L(k) - ln(k)I < 1 ln(k) for k = 1, 2, ..., m,

 10(t) - 0(t)l < 620(t),

 Ic(x) -cos(x)I<?3 forOSx<2Tr,

 and

 s(t) = , 2-l c[t.L(k)- 0().

 k=1

 Then

 Iis(t) - s(t)I < 41Tr 5/4 In(r)(51 + 2) + 4'3/4.3'

 Lemma 5.3 accounts for the error in the computed value of s(t), given bounds on

 the relative errors in the evaluation of ln (k) and 0(t) and on the absolute error in the

 evaluation of cos(x). By the techniques of backward error analysis [29], we can ac-

 count for errors caused by the computation of t. L(k) - 0 (t), the computation of 2k-/2

 and multiplication by c(x), and the final summation, by increasing 5, + 2 slightly.

 Since the required change in 1 + 5 2 is small, we shall omit details of the analysis.

 For both Methods A and B, analysis of the algorithm used to compute double-

 precision logarithms and 0(t) gives the (conservative) bounds 5 ? 2-59 and 52 < 3 x

 2-59. (We assume here that r is exactly representable as a floating-point number. This

 is true in our program, where r is used rather than t in the critical computations.)
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 ZEROS OF THE RIEMANN ZETA FUNCTION 1367

 For Method A we approximate cos (2rx) for 0 < x < 1 using piecewise linear ap-

 proximations on the intervals [Uh, (1 + 1)h) for j = 0, ..., 1023 and h 2-1o. It is

 easy to show that, with exact arithmetic, the approximation error is bounded by 222X2

 < 2.36 x 10-6. Allowing for rounding errors in evaluating the linear approximations

 a + bx (with lal < 3ir/2, Ibl < 27r, 0 < x < 1) increases this bound slightly, giving 53

 S2.6 x 10-6.

 For Method B it turns out that 5 3 is negligible, because the errors in the cosine

 and logarithm evaluation are the same order of magnitude; but the error in the evalua-

 tion of ln (k) contributes much more to the bound on the error in is(t) because it is

 amplified by the factor t > 20,000XT.

 It is possible to allow for errors in evaluating r/2 (and hence m) and the '11(z) in

 (2.6), but as these contribute little to the final error bound we shall omit the details.

 Collecting the results, and including the inherent error (2.8), we have the following

 bounds for the error in the computed value Z(t) (rounded to single-precision) of Z(t):

 (5.2)IZ(t -Z(t)I ~ (2 x 10-5 + 5 x 10-16r ln(r) + 3r-2)rl?4 for Method A,

 (5.2) 1Z (t)- Z(t) I <

 (5 x 10'16rIn(r) + 3r-2)r?'4 + 8 x 10-91Z(t)I for Method B.

 These are the bounds actually used in the program, and are weaker than could be justi-

 fied by the analysis sketched above.

 5.3. Efficiency Considerations. When evaluating Z(t) our program always tries

 Method A first. If the computed IZ(t)l is smaller than the bound (5.2), the sign of

 Z(t) cannot be guaranteed, so Method B is used. (Method B is also used once in 1000

 evaluations to give a dynamic check on the consistency of the error bounds (5.2).) Oc-

 casionally Method B is unable to guarantee the sign of Z(t). If we are searching for

 sign changes in a Gram block and t is not a Gram point, we simply discard t and try

 another nearby point. If t is a Gram point the sign of Z(t) must be determined to en-

 sure the accuracy of Tables 1-4 below. Thus, we occasionally use a multiple-precision

 arithmetic package [4] to evaluate Z(t) accurately at Gram points. (Actually, Method

 B always gives the correct sign of Z(gn) for n S 75,000,000, even though the bound

 (5.2) is too weak to guarantee this.)

 Nearly all the computation time is spent in the inner loop of Method A, so not

 much would be gained by speeding up Method B or increasing the accuracy of Method

 A. It also seems unlikely that the inner loop could be speeded up much without using

 a faster machine, as the loop compiles into only 19 machine instructions which execute

 in about 22 ,u sec. (The double-precision evaluation of cos (2irx) using the standard li-

 brary routine [1] takes about 79 ,usec, and the inner loop of Method B takes about

 150 ,usec.)

 To separate the first 75,000,000 zeros our program evaluated Z(t) at about

 106,000,000 points. Thus, the heuristic of using Rosser's rule is very efficient-the

 number of evaluations of Z(t) could not be reduced by more than 29 percent.

 Our program requires about 35 [n/ln(n)] /2 ,usec of CPU time per Gram point near

 n nS 108. Thus, the time required to verify H(n) is about 6.5 x 10-9n [n/ln (n)] 1/2
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 1368 RICHARD P. BRENT

 hours. Our program is about 3.6 times faster than the CDC 3600 program of Rosser

 et al. [23], and about 11 times faster than the IBM 7090 program of Lehman [11].

 This is roughly what one would expect, given the relative speeds of the different ma-

 chines. (The times given for our program are approximate because of the variability of

 factors such as the ratio of primary to extended memory references, system load, etc.)

 6. Summary of the Computational Results. During the course of the verification

 of H(75,000,001) we accumulated various statistics which are summarized in Tables 1

 to 4. Table 1 gives the number J(k, n) of Gram blocks B, = [g1, gi+k) of length k <

 7 with 0 S j < n and various n S 70,000,000. (Note that B-1 = [g_1, go) and the

 zero t, E B-1 are excluded from the statistics given in Tables 1 to 4.) No Gram

 blocks of length greater than 7 were found.** The average block length up to n -

 70,000,000 is 1.1873, and increases slowly with n. If the Z(g,) had random indepen-

 dently distributed signs, then the average block length would be 2, so we conjecture that

 the average block length tends to a limit X < 2 as n -* oo.

 In Table 2 we give the number of Gram intervals G, = [g,, g+ 1), 0 Sj < n,

 which contain exactly m zeros of Z(t), 0 < m S 4. About 74 percent of the Gram

 intervals up to n = 70,000,000 contain precisely one zero, and this percentage decreases

 slowly with n. We found only one Gram interval (G61,331,768) which contains more

 than three zeros.

 TABLE 1

 Number of Gram blocks of given length

 n J(1,n) J(2,n) J(3,n) J(4,n) J(5,n) J(6,n) J(7,n)

 100 100

 200 194 3

 500 474 13

 1,000 916 42

 2,000 1,766 117

 5,000 4,283 348 7

 10,000 8,374 780 22

 20,000 16,404 1,680 76 2

 50,000 39,911 4,545 325 6

 100,000 78,694 9,445 779 19 1

 200,000 155,327 19,338 1,928 52 1

 500,000 382,162 49,374 6,040 230 10

 1,000,000 755,132 100,203 13,822 709 32

 2,000,000 1,493,597 202,964 30,659 2,018 84 1

 5,000,000 3,683,812 513,502 85,804 7,559 294 11

 10,000,000 7,297,808 1,034,545 184,107 19,115 821 36

 20,000,000 14,468,638 2,079,342 390,564 46,989 2,422 151 2

 30,000,000 21,596,795 3,126,675 604,103 78,370 4,491 264 4

 40,000,000 28,697,661 4,176,596 821,276 112,050 6,951 387 6

 50,000,000 35,780,082 5,227,670 1,041,204 147,419 9,623 514 13

 60,000,000 42,844,351 6,280,945 1,263,391 184,290 12,450 668 24

 70,000,000 49,898,904 7,333,132 1,487,914 222,034 15,530 849 30

 *Blocks of length 8, e.g. B1,801,894,493, have been found by a different method (mentioned

 at the end of Section 6).
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 ZEROS OF THE RIEMANN ZETA FUNCTION 1369

 TABLE 2

 Number of Gram intervals containing exactly m zeros

 n m = 0 m =1 m = 2 m = 3 m= 4

 100 0 100

 200 3 194 3

 500 13 474 13

 1,000 42 916 42

 2,000 117 1,766 117

 5,000 358 4,287 352 3

 10,000 808 8,390 796 6

 20,000 1,770 16,472 1,746 12

 50,000 4,915 40,209 4,837 39

 100,000 10,330 79,427 10,157 86

 200,000 21,528 157,153 21,110 209

 500,000 56,236 388,110 55,072 582

 1,000,000 116,055 769,179 113,477 1,289

 2,000,000 238,441 1,525,833 233,011 2,715

 5,000,000 614,253 3,778,577 600,087 7,083

 10,000,000 1,253,556 7,507,820 1,223,692 14,932

 20,000,000 2,550,785 14,929,745 2,488,155 31,315

 30,000,000 3,861,692 22,324,402 3,766,121 47,785

 40,000,000 5,181,785 29,700,949 5,052,747 64,519

 50,000,000 6,507,746 37,065,811 6,345,140 81,303

 60,000,000 7,839,959 44,418,273 7,643,577 98,191

 70,000,000 9,174,803 51,765,709 8,944,174 115,313 1

 TABLE 3

 Exceptions to Rosser's rule

 n Type Extreme S(t)

 13,999,525 1 -2.004138

 30,783,329 1 -2.002594

 30,930,927 2 +2.050625

 37,592,215 1 -2.076426

 40,870,156 1 -2.003797

 43,628,107 1 -2.024243

 46,082,042 1 -2.031132

 46,875,667 1 -2.004600

 49,624,541 2 +2.001841

 50,799,238 1 -2.028778

 55,221,454 2 +2.024216

 56,948,780 2 +2.017714

 60,515,663 1 -2.008143

 61,331,766 3 -2.054298

 69,784,844 2 +2.063683

 Type 1 is block Bn of length 2 with no zeros, immediately followed by

 block B +2 of length 1 with 3 zeros.

 Type 2 is block B of length 2 with no zeros, immediately preceded by

 block B of length 1 with 3 zeros.

 n-i

 Type 3 is block B of length 2 with no zeros, immediately followed by

 n

 block Bn+2 of length 2 with 4 zeros.

 All exceptions to Rosser's rule up to B75,000,000 are included.
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 TABLE 4

 First occurrences of Gram blocks of various types

 j k n

 2 1 133

 2 2 125

 3 1 3,356

 3 2 2,144

 3 3 4,921

 4 1 83,701

 4 2 39,889

 4 3 18,243

 4 4 67,433

 5 1 1,833 ,652

 5 2 243 ,021

 5 3 601,944

 5 4 68,084

 5 5 455, 256

 6 1 20,046,223

 6 2 2, 656,216

 6 3 4,718,714

 6 4 1,181,229

 6 5 2,842,089

 6 6 19,986,469

 7 2 13,869,654

 7 3 17 ,121,221

 7 4 37,091,042

 7 5 20,641,464

 7 6 52,266,282

 B is the first Gram block of type (j,k)

 In Table 3 we list the 15 exceptions to Rosser's rule up to B75,000,000. Each

 exception is associated with a small region where IS(t)j exceeds 2, and the table gives

 the local extreme values of S(t). Selberg [24] has shown that

 S(t) = Q+ [(ln t)1 3(In ln t)-7/31]

 and, assuming the Riemann hypothesis, Montgomery [19] has shown that

 S(t) = Q+ [(ln t) /2?(n ln t)- /2] .

 Probably

 O < lim sup IS(t)l/(ln t)l? < o;

 see Lehman [12]. Unfortunately, it appears that the "interesting" region where IS(t)I

 greatly exceeds 2 is well outside the range of feasible computation by the Riemann-

 Siegel formula, even by the method suggested at the end of this section.

 Let Bm = [gm, gm +j) be a Gram block which satisfies Rosser's rule and has

 length i > 2. We say that Bm is of type (j, k) if 1 < k < j and [gm +k1 P gm +k) con-

 tains at least two zeros of Z(t). This is neither an unambiguous nor a complete classifi-

 cation, but it is sufficient to deal with all nontrivial Gram blocks up to B7o000o000,
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 except for those noted in Table 3. The first occurrences of Gram blocks of various

 types are noted in Table 4. No blocks of type (7, 1) or (7, 7) occur up to B75,000,000o

 Our program did not explicitly search for pairs of close zeros of Z(t), but we did

 detect some such pairs when the program had difficulty in finding the expected num-

 ber of sign changes in the Gram block containing them. For example,

 t +I- t < 0.00053 and max IZ(t)l < 0.00000248

 for n = 41,820,581. This is a more extreme example of the phenomenon first observed

 by Lehmer [13], [14]. See also Montgomery [17], [18], [201, [21].

 Our program regularly printed out the largest value of IZ(g1)j found so far. For

 example, Z(g70,354 406)> 79.6, and the first 72 terms in the Riemann-Siegel sum

 (5.1) are positive at this point !

 In all cases where an exception to Rosser's rule was observed, there was a large

 local maximum of IZ(t)l nearby. This suggests that "interesting" regions might be pre-

 dicted by finding values of t such that the first few terms in the Riemann-Siegel sum

 reinforce each other. Preliminary computations suggest that this is a promising ap-

 proach. To verify the feasibility of such computations for Gram numbers near 1010

 we ran our program (slightly modified) from gn_500 to gn+ 10100 where n = 1010.

 All 8622 Gram blocks in this region satisfy Rosser's rule and, using Theorem 3.2, we

 can show that Pn Pnrl * * *, Pn+1...0 are simple and lie on the critical line.

 Acknowledgement. I wish to thank Enrico Bombieri, John Coates, Harold Ed-

 wards, R. Sherman Lehman, Derrick H. Lehmer, Hugh Montgomery, Lowell Schoen-

 feld and Daniel Shanks for many useful suggestions, and the Australian National Uni-

 versity for the provision of computer time.

 Added in Proof By June 1, 1979 we had verified H(81,000,001) and discovered

 three exceptions to Rosser's rule in addition to those given in Table 3.
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