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»
FACTORS OF TYPE IIT

MASAMICHI TAKESAKI

Today, the structure of a factor of type III is described

as follows:

THEOREM 1., Every factor I of type III is isomorphic to

*
the crossed product W (n, R,5) of & uniquely agsociated
covariant system {n,e] of a von Neumenn algebra h of type II

and & one parameter sutomorphism group {et : t €R}] such that

the restriction of o tfo the center C of n 1s ergodie, but
not isomorphic to the translations on L (R), and o transforms

some faithful semi-finite normal trace T on N in such a way

that T 9, = e'tr, t €IR. Here the uniqueness of {n,6} means

that if {n,, o) and {h, 92} are covariant systems satisfying

* *
the conditions for {n,6}, then W (hl, R, 91) W (h'&’ R, 92) is
equivalent to the conjugacy of {n), el} and {n,, 92} in the sense

that there exists an isomorphism of n_L onto hz guch that

gi =T o ei . 71"1, t ¢eR. cf. [2],(8],[12],{13],(28] and [29].

The aim of this paper is to present the background of the
above result together with some of further development. Although
it is lmpossible to elaborate here, I would like to emphasize
that the recent interaction between mathematics and theoretical

physics was indispensable in this achievement.

In 1967, ther were two very important achievements in the
theory of operator algebras: R, FPowers distinguished a continuum
of non-isomorphic factors of type III [23] and M. Tomita showed

that given a von Neumann algebra N on a Hilbert space § with

2 Net for Jorwad pullicakion.,
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FLher Vowers' work, a rapid progress in the classilication theory

of [aetors followsd: Arvakil and Woods olassified the factors
obtained a5 inidinite tensor product of finite factors of type I,
abbreviated as ITPFI factor, by introducing algebraic Invariants

[ 3] and MeDuff constructed continua of

r(m) and o) in

factors of type Ti; and IT_ in 1983, 1261, which was also

Feia

confirmed by Saks The developments along thils line was

treated in & new book, by Annstasio and Willig. [1]

A quiebt but steedy develoy

-

—

i~y Y u - . .
work, {30}, A serious ins vecting sepinar on Tomita®s work took

place and confirmed hizn result at the University of Pennaylvania
for 1968/(9, which was laber publisked as lestiure nehes [&¢
by the present aubhor., The major discovery in the seminar was
that the one paramster auvtomorpblsw sroeuw (3

) Wit A1t . \ , e
by Ut(x) =0 Tx S T, v R oand o x ooy, and the normal

ol W given

s, x By P i '~ { 5 s Lo
functional ¢ given by @lix) = §X3H § Eods 2 5, oatisfy the

Kubo-Martin-Sehwinger condition: {or any pair X,y ¢ W

there exis coptinuous bounded function P(x) on 0 «Imz < 1

holomorpbice inside the shrip such that

Pt} = olo (x)y} and F(v+ 1) = olye ()
L

15

s 3



(3)

and that {Ut} is uniquely determined by o subject to the KMS
condition; hence it is denoted by {U%} and called the modular

gubomorphism group. The notion of the KMS-condition came from
physics as the name suggests. Haag, Hugenholtz and Winnink

showed in 1947, [16], that the eyclic representation W¢ of a
C*~algebra A induced by a state ¢ satisfylng the KMS-~condition
with respect to & given one parameter automorphism group {Gf}

on A iz standerd: there exists a unitary involution J such
that I (A) 3 =7 (A) end JaT - a, 8 em(A) nmA). It

is widely believed that an equilibrium state in guantum statisiical

mechanics is characterized by the KMS-condition.

As an illustration, let us consider an example. A faithful
normal positive lineamr functicnal ¢ on the algebra () of all

bounded operators is given by

@(x) = Tr(xh), z ¢ £(9);

with some non-singular positive operator h of the trace class,
If dim@<+o and h = Al, X >0, then we have o{xy) = olyx)
for every x,y € §(®), that is, ¢ is a trace. If this is the
case, then the involution x - x* in (%) is & witary invol-
ution J in the Hilbert space structure in §(%) induced by ®,
which gives rise to a symmetry between the left multiplication
representation and the right multiplication representation of
(%) on this Hilbert spuce &(%). In general, olxy) # olyx)
because x h # hx. However, xh and hx are homotopic under

the homotopy: t ¢ [0,1] - nbantt, an analytic expression ¥



of this hemotopy is nobbing bub the E”Jvumom ition, that is, if
% g v s .}t "'i
we consider the one peremeter automoyphlsm group D+(Xj h™ "ah

then the $£{z)-valusd function £{t) = o (») is extended

analytically to the strip, 0 < Imz « ;3 and we have

Thus, we see that the KMS-condition or the modular automorphism
group measures end compensates the non-trace like behavior of .

As a matter of fact, we have the foullowing cheracterization:

THEOREM 2. A o-finite von Neumsrm algebra @ is semi-

finite if and only if the sodular autoporvhism group {Gg} of

g _feithful normal positive iinear functicnsl o on M is

implemented by & one parameter unitary group {[u(t)

LS
15
=4
I

the predusl Ty, 1is separable, then the imnnerness of each individual

eiot ot Sttt

gutomorphism 0?

is

for I to be semi-finite. (ef.

[22]) and [28]).

This reslt wildly indicates some conmection between the
algebraic structure of the von Neumann algebpra v in guestion

and the behaviecr of Lhe nmodular avtomorphism group.

There was another fortunate mature development in the theory
of operator algebras. In 1944, G. K., Pedersen proposed a
simultaneous generalizetion of positive linear Tunctionals and
Py 'y 2 ’X‘ - 1 i 2 - -~ MX«
seml-finite traces on & C -algebra under the terminology € -
integrals, which was furtber generalized by F. Combes to the
ke

notion of weights on & ¢ -aigebra. {cf. (5] and [21])., It

turne out that the combination of the theory of welights and the
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KMS~condition is very useful in the study of the structure of

von Neumann algebras.

DEFINITION 3. A weight on a von Neumann algebra W is a
map ¢ of the positive cone m+ to the extended positive reals

{0,] such that

cp(x + Y) = ‘P(x) + L?(:f)’ x, ¥ € m+;

o 2x) = Aplx), A >0,

with the usual convention O0(+ ) = 0. A weight ¢ is said to
be normal if ¢(sup xi) = Sup cp(xi) for every bounded increasing
net {xi} in m; semi-finite if n:p = {x : gp(x*x) <+ »} is
O~weakly dense in Iy faithful if :p(x) > 0 for every non-zero
X € n‘_;,_

A weight here means, however, always s faithful semi-finite
normal one. Through Tomita's theory of modular Hilbert algebras,
F. Combes showed, (6] » that any weight o on I gives rise to
a unique one parameter automorphism group {r{f} for which ¢
satisfies the KMS - condition in the sense that for any pair
X,y € n(p n n:; there exists a continuous bounded function F
on the strip, 0 < Im z <1, holomorphic inside such that F(t) =

gp(d_‘g(x)y) and F(t + 1)

:p(yof(x)) and that o o Gf = ¢, where

one should note that ¢ is extended to a linear functional,

denoted by ¢ again, on the linear span mcp of {x e : ¢x) <+ w}
* *

which agrees with ay Ty = fyx:x, ye “cpj' Ther, Theorem 2

holds for weights without the restriction of J-finiteness.



Investigating the relation betwesn ithe Araki-Woods classification

of ITPFI factors and the nM-conditions, A. Counnes showed in 1971

N

that the asymptotic ratio zet r (7 ITEFI factor W is

X

indeed thz interss=cition of the spectrum Sp(A&} of the sall possible

moduler wperators Qb: thug introduced s new algebreaic invariant,

the rmodular spechrum:
My o= (NS {5 ) ¢ g runs 2il weights on WM.

He and Van Daele then showed in 1972 that S{m)\[0] 1is a closed
gubgroup of the multipilealions group IRi if | is a factor;

thus a new classification of factors of type ITI. A factor 0

is said to be of type IIT,, 0 < A < 1, if 8(n) = (2" : n+&} U [0);
of type III, if s(m) = {0,1}; of type 111, if s{m

Therefore, the factors distinguished by R. Powers were indeed

faetors of type IIIA; 0 ¢ X <l, with X = Ty Where i,

0 <« %3 is & number defining a state kh on the 2 X 2 matrix

slgebras by

In 1971, A. Connes further proved that the Araki-Woods invariant
p(n) for an ITPFI factor I is giver nunder a trivial change of
scale by the medalar period group:

& . 43 o~ .
o= {2 oo = ¢ for some weight qﬁﬁ

and that . T(n) is & subgroup of the additive group IR, The



(7

formila between p{in} and T(1n) for an ITPFI factor W 1is

given by
oy = {etliw :toe eyl

By definition, T(1) is an algebraic invarient for a factor M
If Wy, is separable, the semi-finiteness of W is equivalent
to T(m) =R.

Besides these algebraic inveriants, he showed the following:

THEOREM 4. [8) If ¢ and V are weights on a von Neumann

algebra M, then there exists a unique o-weakly continuous ons

parameter family {us} of unitaries in M such that

)

o
[~

= 11 (Y
us+t’ — \J,S oot

R . s .
o' = Ad u, e U, t cIR;
2 T 7 5

* ¥
it
¢

for any X € 0 N y and y < u

continuous function ¥ on the strip, 0 < Imz <1, holomolophic

N ﬂm there is & bounded

inside the strip such that

F(t) = o{ol(xuyy), #(t + 1) = y(yof(x)u,).

b

t)’

the weight X on the tensor product § = R;g@ﬁg of M and the

The construction of {u is surprisingly simple. Consider

2 X 2 matrix algebra B, defined by:



It is then shown that

It T is abelian; then ¢ and ¢ are given by measures

M and Vv on a Borel space O, and mubually absolutely continuous
qav

with respect 4o each other, let h = i be the Radon derivative
of v with respect to n. Then {ut} is nothing but [hlt}.

With this evidence, {ut} iz called the cocycle Radon-Nikodym

derivative of § with respect Lo ¢ and denoted by

= (Dy : D)., t ¢IR.

% 42

Considering the 2 X J-matrix algsbre over [, he showed the

chain rule:

{Dy : Dol = (Dy = Dw)

for any three weights o, w and 4.

It is clear from Connes' Radon-Nikodym theorem that

T{m) = {t eR 1 o¥ & Int(m)},

a

where Int(ln) denotes the group of irner sutomerphisms; hence



(9)

T(m) is & subgroup of IR. He then showed ithat for any fixed

welght ¢ on a factor Iy

S n} = ] FAN \\'1
( ) ﬂmp( {Pe/.

where e runs over the central projections of the fixed point
subalgebra W& of M under of ana §, weans the restriction

of ¢ to eite. We call K% the centralizer of ¢
hd

In order to get some idea about the structure of a factor
of type III, let us consider a very special case. Suppose that a
factor M admits a faithful normal state ¢ such that ﬂb is a
factor and Gf =, for some T » 0. The smallest such T >0
is called the period of . Connes proved, however, that every
factor of type III,, 0 <« A <l, with separable predual admits

. v. - ~ar/T

such a state with T = -2r/log A\ [81). Let A =e and

int

mn = {x e¢Mm: O;f(x) = A x}.

Of course, Wy = m@. Clearly, we have

*

Wy Ty & Ty Ty = T 1, € 2.

Hence each Hh is & two~sided module over nb. it is not hard

to see that Wy # {0}. Let a =uh be the polar decomposition
¥ X

of an 8 € “ﬁ' Then we have u 1y = e € nb and uwu =1°f ¢ nb

and

" *
pluxu’ ) = Aglom u), x ¢ Iy,
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real line IR with respect to the Lebesgue measure. We define
then one varameter unitary groups (U(t)} and {V(s)] in 8

by the following:

Ult) &(s) = (s + t);

v(t) £(s) = it t(s), & ¢ L R), 5, t ¢R.

fias

It follows then that
¥ * is
u(s) V(%) uls) v(t) =e* b 1, s, t €R.

Hence the one parameter automorphism groups {Ad U(s)} and

{Ad V{t)] of B commute. Now, let W be a properly infinite
von Neumann algebra. It is easily seen almost by definition
that M= M® K. For a weight ¢ on 0, we consider the one
parameter avtomorphism groups {Gt} and {et} of m®aK given

by:

cv;f’ ®% Ad U(t), t eTR;

toninnn,
[
d—
i

7 = Ad V(t).

,___.../'\
o+
i

Clearly {61,} and {6} commute, so that {e_ ] gives rise to a

4]

one parameter automorphism group, denoted by {6.} again, of the

D

fixed point algebra nh of l;;f}t}. It is not hard to see that n

is generated by 1 ® U(t) and the operators:

1¥x) 6(t) = ¥ (x) E{t), t ¢R, x e m £ € L5 R)



where § denobtes o Hilbort

¥* .
nEWw(n R, He b

LEMMA 5. The von Heumaon slgebea N adwits a faithful

semi-finite normal Lrace 7 such fhat v , 8 = e v, s = H.

The von Neumann al N T
crossed product W {n. ®.0) of n by B
action f of Ik,
THEOREM €, [#2]. 1f § is =z von Heumenn algebra equipped

with a one parameter avtomorphism group 1§ and a faithful semi-

-3

finite normal trace ¢ such that 7T . g = e T, then (i) the

*
crossed product =W (1, IR, 6} is vroperly infinite; (ii) the

center CH\ of W is precisely the fixed poipt sulalgebra Gﬁ of
i

-y

the center . o n: hence N is a
e e e P i M|

n 2= oElE

is ergodic on the center Cﬁ iy Lidit) W dg semi~finite if

3

and only if C1 containg & continuous ons paremeter unitary group

Y

(v(t)} such that o {v{t)) = =« 7" v(t}, s, v+ <Ry (iv) if I

is of type ILII, then n  io of Swvp: I and fﬁhfg} has no direct

sumnand isomorphic to a multiple of T [ R) aivved with the

translation; (v) if |

v o= ¢ with
n

Az o direct conse

ry
%
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o
7
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LEMMA (. Suppose that N, ,00




(13)

infinite von Neumann algebras equivped with one parameter

avtomorphism groups and failthfil semi-finite traces nd 1,
respectively such that T, . o= cm”xl and T, e “Tg,
o B e

s €¢R. Then the following two stalements are equivalent

.o

¥ 2.
(1) win,. ® L8 W (n, B, )

(1i) There exist an isomorphism 7 of 1, ounto N, and

-

a continucus one parameter family {v_} in n, such that

1,
s+t s s

¥

. 1
6 = U e Ad(vs) c g, 0T

L75

However, the next result, together with the above lemms.,

yields the unigueness criteria in Theorem 1:

THEOREM 8. [13]. (i) If o is an automorphism of N

such that T « @ < AT for seme A >0 and a Taitnful semi-Tinite

normal trace ;. Then every unitary w ¢ n is of the form

v e{v) for some unitary v = N

(i1) If {o ] is a one parameter automorphism group of n

; = . - 4 s —. :
such that 7 - ¢_= 2"1 for some A # 1 and o faithful semi-

finite normal trace 7T, then for every @-cne cceycle {u ),
a

that is, a continuous one parameter fanily of unitaries in N

with w . =u_ gg{ut), there exists o unitary v < T such that
*
u_ =V gs(“), s e IR,

Here a natural question is how this structwre theorem and
the discrete decomposition described above are related. The

answer is quite simple: If M is of type III,, 0 « X <« 1, then


http://ii.mr.imni

{Cn,Gﬁ iz periodic with the period % = <27/Logh. Hence, con-

sidering the central decomposition
ik - A f
iy )iy ),

6 induces an antomorphism of each fibre algebra n{vy). The

&
&

covariant systems {n(v).s,! are eguivalent to that appearing

in the above discrete decomposition., In the type 1110 case,

A. Connes proved the folliowing:

THECREM 9. [8]. If n is & von Neumann algebra with non-

Ly

atomic center and eguipped with an automorphism ¢ and a faithful

semi-finite normal trace © such that 7 ¢ € < At for some
D<X«<l and g isg ergodic on the center Ch of h, then the
crossed product M =W (n. o) of nh by » is a factor of type

IIIO. Every factor of type IIIO iz of this form for some

{n,nj.

The unigueness criteria for factorz of type II'O requires
more preparations; zo wo omit the detail., Bubt e did give the

unigueness of this drcomposition wilivin zome eqguivalence.
Once again examining the way the 1T -von Heumann algebra
N was constructed, one roalizes thal the algebra n iz the

centralirzer of the weivht = on 2w on Me 4 where the welght

W oon B is given by

At

wlx) = Tr(lx), € ¢ @3

' d.\
o= f:}&f}f)&”gf’;,



i.e. (Dw : DTr}t =U{t)y, t ¢®., A, Connes proved inde=d, in
the course of proving the converse of the cocycle Hadon~Nikodym

theorem, that for any one-cocycle {u Join W, there exists

a unitary v £ MR K such that

Uy 2 Ult) = ‘»f%c‘t(v‘), t ¢ R.
In other words, for any weights ¢ and § on T, § ® « and

p @ W are conjugate under the inner automorphism group Int(m 2 8).
This means then that on a properiy infinite von Newmann algebra
there is a unigque class of weights which describes the structure

of the algebra, The weights of this class 1s characterized by

the following:

THEOREM 10. [173]. Let MW be an infinite factor with

separable predual. For a weight « on W with properly infinite

centralizer, the following two conditions are equivalent:

(i) For any A > 0, there exists o unitary w ¢ I such

- - *
thet M(x) = wlww ), x ¢ My 3

(ii) ¥or sny weight p on W, there exisis an isomerphism

m of I onto Wm® @ such thet

K} = {Q’g 2wy o wlx), x e m,

where © 1s the weight on 8 defined ahove,

DEFINITION 11. [13]. The weight « satisfying the condition

in the above theorem iz called dominant.



(15)

In other words, a dominant weight is echsrsclericed a3z one
fixed, within unitary equivalence, under the mulbiplication by

bositive scelars.

Let Uﬁa denote the spuace of all weights on W and Iy the
space of all weights with propevly infinice centralizer., For
& pair @0, of weights on r, we write « < ¢ 1if there axists
an isometry w e M with w « % such that ol %) = h{uxui),
hd
X £ H#‘ If the above u is unitary, then we write o ~ y. We
gsee then that "~" is equivalence relation asscciated with the

A1)

, O .
rtial orderin <", The space W /"~ is then a U«complete
i

Boolean lattice which ig isomorphic to the lattice of all o-finite

projections of a unique abelian von Neumann algebra ()., For
ey
‘ W0 o \ .
each o ¢ Eﬁ: there corresponds a unigque projection pPle) of
, T i

X
k

(M) sueh that
o < § o= pleg) < ply)

Since the multiplication by a positive scalar preserves the
ordering, to each X > 0 ‘there corrosponds a upique automorphism

7? of () such that

We call {#(M), p, %] the global flow of weights. Theorem 10
4 .“

means then that there existe the only one o«finite projection

d ¢ p(m) dinvariant under 5&3 which is given by 4 = p(w),
o

Putting pleq) = p{p ® Tr) for the general ¢ « i, we have the
it

following:



(7

THEOREM 2. f{i2]. Let W be an infinile factor with

separable predusl. For any ¢ € B%f the following conditions

are eguivalent:

1) g o<W

, #* ) i )
ii) The map: A ey - ?Apiw) g g(W} is  vestirongly
continuous;
[\ s
131) The integrsl | J%(x)dt = Emﬂx)ﬁ x e, exists for
W i ¥

g-weskly dense x's in Hi’

DEFINITION 13. A welight ¢ 1s sald to be intepgrable 1f o
satisfies any of the above conditions.

Therefore, (fp}d is the continucus part of the flow 5?.
v 1) /

-

The restriction of {??} Lo (Pm)_1 = ﬁns is called the smooth
£ ~witf © —————————

\ T . , .
flow of welghts on 0, and dencted by iF)ﬁ. Since there is no

non-trivial invariant projection properly majorized by 4, the

smooth flow of weights iz ergodic. By nonstruciion, the assoclation:

Ty~ Fm of the smooth flow of weights to each infinite factor I
in

is e functor., The relation between this function F and the

structure theorem, Theorew &, 1s deseribed as follows:

THEGREM 1%, [12), Let W be an infinite factor with

,

separeble vredual and {Nh,s] be the coveriant system over R

- oy

. *
in Theorem 6 such that =W (n, R,s).

Therefore, the slgebraic invariant S(m), the modular

spectrum, of M is essentially the kernel of the smooth flow



of weights. One should note here that the smootl Clow  F

[

of weights 1s defined dirsctly, hence funcitionally, Trom In

u

We then determine this flow for a facbor given by the so-called

A

group measure space coustructicon.

Let € be an abelian von Neumann algebra with separable

al equipped with & continuous action @& of a separable
locally cowpact group G. This is equivalent 1o having a stendard
measure space (U,u] equipped with a Borel action of G, and

o R 5\ -1 . “ .
Q=1L (u), ug(a)(v, =alg ), &« ¢ g G,y [, For
simplicity, we assume that the action of G is free in the sense
that N = {y : gy = v} 1is & null set for =very g # e, although

g
s *

this restriction is not necessary, cf [17]. Let =W (QG,x).
If the action of G 1is ergodic, then @ is a factor. We have

then the following

[
0

(i) m of type 1 #=> The zciion of ¢ on ' is transitive;

(ii) n is of type IT, <=r The mction of & on [ 1is not
transitive, and admits a finite invariant nmeasure;

(i1i) m is of type TII_<=: The action is not transitive and
admits an infinite invariant measure;

(iv) M 1s of type III = The action doe: not admit any

invariant measure,

where the measures here are absolutely continuous with respect

to the original measure u, Let p be a positive Borel function

on G xXI' such thet

a

/ tlevole,auly) - | i)

W

olaygsv) = eleg,eaydole,),



{199

\Af’"‘,' N -y L E A .
name Ly g(bsak a.M%Tgkga, Consider the oredust measure space
- ‘ Lt t . "
* x
.l . By . . -
P xR, where IR; i zguipped wiith the Lebesgue measure m. 3By
+ n
setting

G and R, act on [ IR~ and commte. Hence we get a sbellan

L U i *
von Neumann algebra L (I IR, i X m) on which G and IB* ach.

THEOREM 15. {13]. In *he above gitustion, the smooth flow

Fm of weights on M is isumorphic to the sction of IZ on the

o, ¥ 0

fixed point subalgebra L (I xIR )7 induced naturally by {QK}‘

This construction is skew product, or the

closure of the range of the W. Meckey [18].
A recent result of W. Krisger, [171, can be interpreted in the

following way:

THECREM 16, [17). In the same wituabtion as above, if G

ig the additive ipteger group &, or eguivalently if the action

is given by a single crgodic transformation, then the smooth flow

m L o . . ! ,
F7oof welghts on W is o complete Invariant for the algebralc

shructure of I

Thug, we have the foliowing sguivalence in different problems

"Phe weak equivalence classification of the ergodic transformations”
~ "The classifieation of the factors given by the group measure
space construction Pfrowm an ergodic bransformation”

~ "Ihe conjugacy classiftication of the ergodic flows™,



The weak enuivalence clessiflicabticn of ergodic transformation
grovps was Uirst introduced by H. A. Dye 115, and he proved in
fact thal 2ll countable abelian ergodic transformation groups with
finite dinvariant mesaure are weskly cguivelent snd glve rise to
hyperfinite lj ~factors.  This eclassification wasg later reformulated
by G, W. Mackey as the fpomorphizm classification of virtual
subgroups. The relation belweorn the weak egulvalence classification
of ergodic transformation groups and the isomerphism classification
of the asscelated factors has been puzzled since Dye's work. In
faet, H. Choda showed that 1f an isomorphism of the two factors
agsocisted with ergodic transformation groups preserves the maximal
abelian subalgebras canonically atfached te the censtructions,

then the groups are indeed weakly squivalent. [h],

The conjugacy classiflcation of ergedic transformations and
flows is, of courze, one of the central problems in ergodic theory.
Apparently, the weak equivalence clasgification looks wuch coarser
than the conjugacy olasszification. Bul the above menticned fact

says thel they are indeed the sane rroblem.

Unlike the discrete crossed product, the relative commutant
of the original algebra iv the crossed product behaves mysteriously

in general., We do have, howover, the following:

THREOREM 17. [1:l. If ¢ is an integrable weight on a

factor I with separable predual, then bhe relative commutant

W Nl of the cenferalizer Wb of @ s contained in W as
¢ o—— oy (Hpen

-
-5

the center C .

This result, together with the construction of antomorphisms

similar to that of [29], enables us to vrove the rollowing:


http://sin.ee

THEOREM 18. [13l. ot be an inbeprable welight on 2

e,

factor I with separable predual. There exists sn isomerphicm

.
st e it . . . o
op ZA{FY)  of unitary one co-cycles

TP of the multipiicative gro

of the smooth flow of weights on @I onto the group of all

sutomorphisme leaving the conberal h% alementwise fixed,
WS

i el Y Pl T r"id' .:T:*\ J R S S S e
such that G§ e Gt’ wheres L ¢ Z7{F"} means the coeycle given
_—— e g XETEE

J..T : ) wospg oty o T .. - R ) .
t( ) SR 0, and g1; ¢ o2 ZHFEYY,  is dipner if and only if is ecobundar
e Y. /3

i.e. there exists a unitary v ¢ P{m) such that ¢y = V%F?(V)! A >0,
Therefore, this extendsd modular aubomorphism group

{Ew s ¢ ¢ Zl(ng} ¢an he wviewed ay the Galeis group of N

relative to V& Furthermore, the co»cycle Radon-~-Nikodym derivative

{(Dy Dy), + t €IR} 1s extended to {(Dy : Dg), = ¢ e ZL(FR}}

c s . . Ty Pl
which behaves in the obvious wsy with respect o LU“} and Lcw}.

C (o3

Hence there existes an isomorphism C? independent of «q, of
i ’
I“fi.-m\ . | N
Hl(Fnb = 7 (W y (P dnto out{m = Aut{mw)/Tut{W). Fixing the
& » 'x' a N . r

decomposition M= W {h;j&?&) in Theorem O, we can obiain an
exact seQuence:

- —

IR
(1} =5 e P ooun(m - out, {n) = {1l

*

where OuﬁT e(n) = {ef{a) oo e Aut{n), © o o= o1, @p = o0} ond
2 5] o

¢ means the cancnical homomorphism of Aut{n) onto out{n}/Iut(n).

We should note hers thet the extendsd modular aubtomorphism

is, in some sense, "functional caleuwlus" of the 'generator”

0%

cf the modular sutomorphism group {cj}. The evidence for this is
. ; s s . . Wl
the following: If In is & semi-finite factor then PV is isomorphic

to L(T]R') wit T DI N )
o LAI{IR ) with tr&n:a._&.n.unb, hence LVeTy c 7 (f‘ } is of the

X

n ¥ R . .
form ¢, = f Fhkf ), F e L{R ) and if o = Tr{n-), then



a functor, each

B ol Wi

omorphiism mod{)  of the flow

determined by ¢ o« @« av. Thus we c2ll mod  the fundamentad

We leave the destaill

After all, the problem in understanding the structure of von
Neumonn slgebras iz roduced o the von Neumann zigebras of type

A, ¢onnes has been mnaking some substantisl

II, and type 1L .

4
1 ]

R e T Vs b Ay g T Y oes P A IS e T e
progress especlally in the nnalyolis of aghomorphism groups.

he able to

ef [¢] ang {20]. The auihor belie:

vndarstand much ebter the structure of

in the near future.
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