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1. THE object of this paper is to correct § 4.14 and § 5.8 of Eigen-
function Expansions associated with Second-order Differential Equations
by E. C. Titchmarsh. The example there given is inconsistent with the
general theorem, and actually both of them are incorrect.

I t is a question of the spectrum associated with the differential
equation

^ { A ( ) } £ (1.1)

in the case where q'(x) < 0, q(x) ->• — oo,

q'(x) = 0{\q(x)\°) (0 < c < f),

q"{x) is ultimately of one sign, and
CO

j\q(x)\~idx (1.2)

is convergent. (The condition q(x) ^ 0 imposed is not really relevant.)
The analysis given in § 5.8 is correct so far as positive values of A are
concerned, and the result stated, that the spectrum is discrete for A > 0,
is correct. The actual result, however, is that under the above conditions
the whole spectrum is discrete (and not that it is continuous in (—oo, 0),
as is stated in the book). The mistake arises in the first formula on
p. 109. This contains the function

f (0 = £(U) = J {A-f (*)}*&,
o

which may have a branch-point at A = q(0). The conclusion that /x(A)
is an integral function is therefore false, and the argument based on it
fails.

The result will be proved by an appropriate modification of the
method used in the book, although the proof may be shortened by
appealing to a theorem of Weyl.f which is to the effect that the spectrum
associated with (1.1) and certain boundary conditions is discrete when
the equation is of limit-circle type.

The main mistake in § 4.14 is that the discrete spectrum arising from
the zeros of sinfaWA) is ignored.

f H. Weyl, Math. Annalen, 68 (1910), 220-69, § 8 ; also E. C. Titchmarsh,
Quart. J. of Math. (Oxford), 12 (1941), 33-50, § 9.
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2. Let <£(x) = <l>(x,X) be the solution of (1.1) which satisfies the
boundary conditions

<£(0) = sina, «£'(0) = —cosa, (2.1)

where a is a given real number. Then <f>(x, A) is an integral function of A,
for each x.

As in the book, let

£{x,X) = f {\-q(t))i dt,

and let Pi%,X) — ft—q(x)}~*-

Let p be a real constant chosen so that p—q(x) > 0 for 0 ^ x < oo.
Then

Pi*, p)fe(9-A#(0sintf (*, p)~Ht, P)}

X

= Jp(t, pWit)sux{£(x, p)-£(t, P)} dt

= -piO,p)ViO)sin$(x,P)-
j
o

-Pit, />){/>-?(<)}* cos{^x, P)-t(t, p)}] dt

= p(0, p)cos a sin £(x, p)+<f>(x){p—q(x)}i +

+sincxp'{0, p)sin£(x, p)—sina{p—g(0)}i cos

X

+ j miP'i*. P)-Pi*, p){p-q(t)}]sin{{ix, p)-f(t, p)} dt-
o

-?W}*-i3>(«, P){p
{
q%}\\COS&x> P)-M> P$ dL

Hence

4-sin ac{p—qiO)}i cos £(x,

, _7 + ^ ( < p ) ) s i n ^ ( a : P)£(t P% dt (2-2)
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If p = A, this reduces to formula (5.4.5) of the book.
W r i t i n § W) = *(*){*-?(*)}*

we have | | JF2X(«) | dt < oo.
b

Then, as in § 5.5, (2.2) is of the form

faix) = A cos $(x,P) + B sin £(x,p)+

)ain{e(x,p)-f(t,p)}dt. (2.3)

It follows, as in § 5.6, firstly that ^(x) is bounded (uniformly in any
finite A-region), and secondly that, as x ->co,

faix) = A cos£(x, P) + Bsin£{

oo

+ J ^(OJR^Osintf(x, P)-£(t, P)} dt+o (1),
o

where A and B are independent of A, and the integral converges
uniformly over any finite A-region, and so represents an integral function
of A. We have, therefore, as x -> oo,

<f,(x){P-q(x)}i = y(\)cos£(x, P)+8(\)sin€(x, P)+o(l), (2.4)

where y(A) and S(A) are integral functions of A. (The difference between
this formula and formula (5.7.3) of the book lies, of course, in the fact
that here p is fixed, whereas in (5.7.3) £(x) = £(a;, A) with varying A.)

Similarly by using the differentiated form of (2.3) we obtain

4'(x){p-q(x)}-i = 8(A)oosf(*,p)-y(A)8in£(*,p)+o(l). (2.5)

Similarly, if 0(a;,A) is the solution of (1.1) such that

0(O,A) = cosa, 0'(O,A) = sin a,
we have

8(x){P-q(x)}i = y1(A)«*£(*>p)+S1(A)sin«*,/>)+o(l), (2.6)

8'(x){P-q(x)}-i = S^AJcos «x, p)-y1(A)sin f (*, P)+o (1), (2.7)

where y^A), 8X(A) are obtained from y(A) and 8(A) by replacing sin a,
—cos a, <f> by cos a, sin a, 6 respectively. Thus yj(A) and 8X(A) are also
integral functions of A.

We note that 6(x, A) and <f>(x, A) are both Z2(0,oo) for all values of A,
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so that we are in Weyl's limit-circle case. According to the general
theory, we have to consider the limit of

A = g(6,A)cot;3+fl'(6,A)
K ' #6,A)cot/H-f (6, A)

as b ->oo.
Substituting (2.4)-(2.7) on the right-hand side, and putting

j {
we obtain

, A = yi(A)cos#(6, p)+i3'}+8i(A)sinffl6, P)+j9'}+o (1)
V ' y(\)cos{W,P)+fi'}+8(\)Sin{£(b,p)+{}'}+o(l) '

Choosing /?' as a function of b so that £(6,.p)-fj8' = K, we obtain

y(A)cos>c-f8(A)sin»c '

As K varies this describes a circle, which is therefore the limit-circle.
Thus, in the notation of the book,

m(X) — yi(A)cos<c+81(A)sin>t
^ ; ( A ) + 8 ( A ) i "

For any K this is a meromorphic function of A. The eigenvalues are its
poles, and so the whole spectrum is discrete.

3. As an example, we shall consider the case q(x) = — e2*, with a = 0
in the boundary conditions at x = 0. Solutions of the equation

^ = 0 (3.1)

are Jv(e
x), JLv(e

x), where v = iVA. Since

we have
6(x,X) = -^-{Jv(e-)J'_v(l)-J-v(e

x)J'v(l)}, (3-3)

We can take p = 0, so that

o
Thus the general theory gives

eix<f>(x,X) = y(A)cos(e*-l)+8(A)sin(e*-l)+o(l)(

ei*d(x,\) = yi(A)cos(ea:-l)+81(A)sin(ea:-l)+d(l).
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In fact it is known that

Hence

Comparing the two formulae, we obtain

^ } , (3.5)

, (3.6)

and similarly for Yl(X) and Ŝ A) with J'v(l), JLV(1) replacing Jv(l), J-V(l).
Hence the denominator in m(X) is

and similarly for the numerator. Thus

miv\ — J'-yWcOBJlvn+hT— 1 — «) — J'V(1)COB($VTT—jn+l+K) . .
1 ' J{l)cos($tnT+frTlK)J{l)co&($viTlir+l+K)' y ' '

Taking e.g. 1 -\-K = \TT, we obtain

v ( ) p ( )

The corresponding function

+(x,\) = 8(x,\)+m(\)4(x,\)

*^=JM^B
and the expansion formula is easily obtained. Similarly, if l+/c = £77,

*•»-*&&$•

4. Consider next the case where q(x) = —e2*, and where the interval
is —00 < x < 00. If we were considering the interval —00 < x < 0 only,
we should obtain a continuous spectrum in A > 0, by the theory of § 5.3,
since \q(x) \ is integrable over (—00,0). I t follows that, in the case of the
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whole interval —oo < x < oo, the spectrum will be discrete in A < 0 and
continuous in A > 0. This we shall now verify directly.

Let 6(x, A), <f>(x, A) denote the same functions as in § 3, and let

^(x,A) = 9(x,X)+m1(X)<f>(x,X),

<fs2{x,X) = 6(x,X)+m2{X)<f,(x,X)

be solutions of (3.1) which are L\—oo,0) and L2(0,oo) respectively.
Now as x -»• —oo, ex -> 0, and

If VA = a+it (o- > 0, t> 0), then le^^l = e-"*, so that Jy(e
x) is not

£2(—oo, 0); but J-V{e?) is L2(—oo, 0). Hence we must have

and so 0l(a!,A) = ! ^ ^ . (4.2)

The interval (0,oo) gives the limit-circle case as in § 3, and so involves
an arbitrary parameter. We shall consider the two particular cases
referred to in § 3. We may first take m2(A) to be defined by (3.8), and
ifiz(x,X) by (3.9). The expansion formula will then be obtained by
integrating with respect to A the function

X

J J-
00

J
This has a branch-point at X = 0. The factor sin vn = sin(tVA7r) vanishes
at the points A = — n2 (n = 1,2,...), but owing to the relation

J_n(z) = (-l)Vn(z)

there is a pole only if n is odd, say for n = 2ra+l (m = 0,1,...). The
residue is „

(4m+2)J2m+1(e-) J J^rftf tf) d$.
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Allowing for these residues, the integral

S!
taken round a large circle in the positive direction, may be reduced to
an integral round a loop starting at +00, encircling the origin in the
positive direction, and returning to +00. The contribution to this of
the first term in (4.3) is

f j_
J

+5

0 —00

and similarly for the other part.
Hence the complete expansion formula is

J"»=•> J 4»
"oo

JJmitLh^xe)dX

Similarly, if m2(A) is defined by (3.10), and ifi2(%, A) by (3.11), we obtain
z

<!>(*, A) = 2 ^

and the expansion formula is
a. I

"i
I ^ — — — ^ — — — — Cun I

0 -co
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If we put e1 = 8, et = t, and

/(*)=/(log*) = *(«).
these formulae take the form

00 ~~

9(*) =
m-0

and °
00

0

f J 7+

/
0 0

5. We shall discuss now the relation between the above formulae and
the Webb-Kapteyn theory of Neumann series.f

A Neumann series for an odd function g(s) is of the form
oo

m"~0

and it is known that certain classes of analytic functions can be expanded
in this form. However, in view of the formula

f r (f\r (t\dt

0

it is also possible to calculate the coefficients a2m+1 in the case of an
arbitrary function of a real variable g(s). Proceeding in the manner of
an ordinary Fourier series, we obtain

00

«2m+i = (4m+2) J 9(t)J2m+1(t)^. (5.3)
o

It was shown, however, by Kapteyn, that the series (5.1), with the
coefficients (5.3), can represent the function g(s) only if g(s) satisfies the
integral equation

^ s ) } d t . (5.4)

o
t O. N. Watson, Theory of Bessd Functions, § 16.4.
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For an odd function g(s), this is equivalent to

g'(s) = \ j ^{g(s+t)-g(s-t)} dt. (5.5)

This equation was solved by Hardy and Titchmarsh.f It was shown,
for example, that, if g(s) is of integrable square over (—oo,oo), then a
necessary and sufficient condition for (5.5) to be satisfied is that g(s)
should be of the form

I

g(s) = I {a(u)cossu-\-b(u)sinsu} du, (5-6)
o

where a(u) and b(u) are £2(0,1). In particular it follows that g(s) must
be an integral function of a of a certain type.

The formulae of § 4 throw a new light on all these questions. The
Webb-Kapteyn Neumann expansion of g(s) is just the formula (4.6)
without the repeated-integral term. The condition that it should be
valid is that the continuous spectrum should make no contribution to
the expansion. It is to be expected that this will hold only for special
classes of functions.

To prove the sufficiency of the Hardy-Titchmarsh condition directly,
suppose that g(s) is of the form (5.6) and is odd, so that in fact it is
of the form x

gr(s) = I b(u)sinsu du, (5.7)
o

where b(u) is L2(0,1). Then

J {•WO-.'-.VAW}^) J = J 6(«) ̂  J { < W < W - , V A W } ^ *, (5-8)
0 0 0

the inversion being justified by absolute convergence. Now,J if
0<u<l, ^

/* T f/taiTi / i / Bin/vnrnciTi ot\

J i = v •
0

Hence the inner integral in (5.8) vanishes, and the result follows.
To prove a theorem of the converse type, we observe that the Parseval

t G. H. Hardy and E. C. Titchmarsh, Proc. London Math. Soc. (2), 23 (1923),
1-26.

t G. N. Watson, loo. cit. § 13.42 (2).



174 D. B. SEARS AND E. C. TITCHMARSH

formula corresponding to (4.6) is

f

CO

J

m~°

0 0

For the contribution of the continuous spectrum to vanish, the second
term on the right must vanish, and therefore

CO

0

for all positive values of A.
In order to avoid intricate analysis, we shall assume in this problem

that g(t) is absolutely continuous, that g(t) and g'(t) are both 2/2(O,oo),
and that g(0) = 0. As in Theorem 68 of Titchmarsh's Fourier Integrals,
it follows that, if •v/(£

7r) b(ii) is the sine transform of g(t), then b(u) and
ub{u) are both £2(0,oo).

Since Jv{t)jt is £2(0,oo) if R(v) > \, we can calculate
00

J .
0

ig(t) dt

by the formulae of Fourier sine-iransforms. We have

t v"1 sin(v arcsin u) (u < 1),

o

Hence, if R(v) >
oJ ' Ut»+V(»'D? (W> )-

0 0 1

Under the above conditions, these integrals converge uniformly with
respect to v for R(i>) > — \, \v\ > S > 0, so that the formula holds, by
the theory of analytic continuation, in this region. In particular it
holds if v is purely imaginary. Taking v = t'VA, then v = — iVA, and
subtracting, we obtain, by (5.9),

CO

\ du = °;
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or, writing u = cosh w,
CO

6(coshM>)sinhw;sin(u>VA) dw = 0.
o

CO 00

Since | {6(coshw>)sinh«;}2 dw = i bz(u)>J(u2—l) du < oo
o i

under the conditions assumed, it follows that

&(coshM>)sinhw; = 0

for almost all values of w, i.e. that b(u) = 0 for almost all values of u
greater than 1. Hence <7(s) is of the form (5.7).




