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In this paper we define a half-integer valued function on the simply connected 

covering group of the symplectic group, related to the Maslov index of curves on 

the Lagrangian Grassmannian and use it to write down explicitly the operators of 

the metaplectic or Oscillator representation. We also elucidate the relationship of 

the so-called Maslov bundle (as defined by Hormander) to the metaplectic 

representation. ‘1’ 1992 Acadcmlc Prcs. Inc 

I. INTRODUCTION 

In this paper we go back and look at the construction of the metaplectic 
(or oscillator) representation. The metaplectic representation was dis- 
covered by Segal, Shale [S], and Weil [W] in the early sixties and is based 
on two observations. One, the Stone-von Neumann theorem which asserts 
that for the Heisenberg group, given a central character x, there exists up 
to unitary equivalence a unique irreducible unitary representation v with x 
as it central character. Second, the symplectic group, Sp,, is the group of 
continuous automorphisms of the Heisenberg group which fix the center 
pointwise. Thus the two representations v and v ~CJ are equivalent or for 
each CJ E Sp,, there exists a unitary operator r(a) such that r(a) vr(a)- ’ = 
V“ (T. Irreducibility of v implies that r(a) is uniquely determined up to a 
phase factor. If you make a choice of the operators CJ -+ r(c), one gets only 
a projective representation, i.e., r( CJ, CT*) = c.( c I, a,) r(a, ) r(az), for suitable 
scalars ~(cr,, a*). It is known that this 2-cocycle ~(a,, c2) is k I valued for 
a suitable choice c 4 r(c). Equivalently (see [WI, or [B-W]) if Mp, is the 
connected twofold covering group of Sp,, with d + (T as the covering 
homomorphism, then there exist unique unitary operators r(G) such that 
(I) r(~F)vr(c?) ‘=vru and (2) ~7 4 r(G) is a representation. This is called 
the metaplectic representation. In this paper we give a computable explicit 
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description of r(5), working with the simply connected covering group, 
rather than the twofold cover. One should note that for a set of special CJ, 
explicit formulas (up to a phase factor) are already given in [WI. These 
special elements include an open subset of Sp, and generate Sp,, as a group, 
and this has turned out to be adequate for most applications (see also 
[Fo]). However, because of the fundamental nature of the metaplectic 
representation (it is known to provide a unifying framework for many 
applications in analysis, geometry, and number theory see the papers of 
Howe, [G-S], etc.), it seems desirable to get as explicit a description as 
possible. In fact various such accounts exist (see [Sou-1, L-V, P, Ho, Fo] 
and [Ba. Raw-Ro] for accounts based on the Fock model). The version 
presented here is closer in spirit to that of [W. L]. In this paper we restrict 
ourselves to the real case. 

The starting point is that associated to a fixed symplectic basis, one can 
make a canonical choice of the operators (J + r(a). This is recalled in 
Section 2 (see Proposition 2.3 ). The various properties of this choice make 
it possible to compute the multiplier ~(a,. az) explicitly in terms of index 
of inertia of a triplet V, 0, ’ V, cz. V of Lagrangian spaces. These two were 
done in [RR] and since this was not published we have included a brief 
sketch of the proof for Proposition 2.3. The Maslov index of curves in 
the Lagrangian Grassmannian [A, Duis, G-S] enters the picture in the 
mctaplectic representation only because of its connection with this index 
Incrt( V. cr; ’ V, (T. V) (see Section 2 for definitions). In Section 3, we 
present in some detail the construction and various properties of the simply 
connected group. Here the definition of the half-integer valued function 
m(8) is made possible by the description of the double coset decomposi- 
tion; the double cosets are parametrized by two integers j and k (see 
Proposition 3.7) and nr = (1,‘2)j + k. In Theorem 4.1, the 2-cocycle 
~(a,, az) is expressed as a coboundary explicitly in terms of m(5), giving 
the metaplectic representation. In Section 5, we consider the Maslov 
bundle. We show that this line bundle M is a homogeneous line bundle 
of the simply connected covering group, although as a C’ line bundle it 
is equivalent to the trivial line bundle. Its connection with the natural line 
bundle E, associated to the metaplectic representation and the half-form 
bundles is also clarified. 

2. NOTATION AND PRELIMINARIES 

2.1. Let (X, o) be a symplectic vector space over Iw of dim 2n and 
* e, , . . . . en. e, , . . . . e,*, a fixed symplectic basis, i.e., w(ei, e,) = w(e:, e:) = 0 

and o(e,, e,*) =6,,. Let n(X) denote the Lagrangian Grassmaniann and 
SpX, the symplectic group. For any L E n(X), P,, N,. are subgroups of 
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SpX, defined as P,= {gESpX: g.L=L}, and N,.= (aESpX:a=idon L). 
We write V=ZRe,, V* =ZRe,?, and write P= Pv. For any (TE SpX, let 
o = (; {) be the matrix presentation of o in the fixed symplectic basis. 
Then r, ,U, 7, 6 E M(n, R) and satisfy (i) ‘a6 - ‘yj? = I, and (ii) ‘a~, ‘86 are 
symmetric. We also write z‘, for the set of all n x n, real symmetric 
matrices. Then N c = { uB: /I E Z,, ) and N &.. = iv:.: 7 E Z,,} where 

(2.1) 

Also P,, = { K = (;, f): ‘36 = I,,, r’/? is symmetric). Write T, E SpX, 
j= I, 2, . . . . n, where 

T, . P, = t?,*, '5,. P: = -‘, (2.2) 

and ‘5, fixes all others in the basis, then 54 = id, j= 1, . . . . n; r,, . . . . T,, all 
commute and generate a finite group W = , T; . T:: 1, E H 1. Note I 1 

(2.3) 

For any subset SC ( 1, 2, . . . . n 1, we write 

V.S=~,..S~c;, v,* = 2‘,, ,,LRe* / ’ x,y = v, + v.;, Ts= n ?,. (2.4) 
, E s 

Note TOT ‘=( ^p ;‘)=(‘a) ‘. Let K be the centraliser of T in Sp(X). 
Then K is a maxima1 compact subgroup and K = {a = (i I”): 51 + i/l is a 
unitary matrix}. Note K = Sp(X) n 0(2n), where O(2n)’ is the orthogonal 
group relative to the fixed basis. Clearly WC K. 

2.2. The group G = Sp(X) acts transitively on ,4(X) 2 G/P. For 
each LE n(X), the subset 

A,(X)= {L’EA(X): LnL’=(O)} (2.5) 

is open and the group N, acts simply transitively on it, and the action 
converts it into a coordinate open set. Next group action on n(X) x n(X) 
also has only a finite number of orbits and all pairs L,, L, such that 
dim L, n Lz = k constitute a single orbit. Equivalently the subgroup P has 
only a finite number of orbits in /i(X) and these are A V.k( X) = {L E A(X): 
dim Ln V=n-k}. In particular if R,={~E.S~(X):IJ.VEA,.,,}= 
{U = (y $) E Sp(X): rank 7 =.j}, then 52, is a single P double coset and 
TIE 52, if ISI = j, since T.~. V= V,: + V,., S’ being the complement of S. 
Thus 

Sp( X) = ij Q, = P. W.P. (2.6) 
I 0 
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2.3. Next the group action on n(X) x n(X) x n(X) also gives only 
a finite number of orbits. The invariants defining these orbits will now 
be described. First consider L,, .j= 1, 2, 3, mutually transversal. Then 
Inert(L,, L,, L,) (called index of inertia in [L]) is the signature of a quad- 
ratic space constructed as follows: let X, E L, be such that X, + .Y~ + .Y~ = 0. 
Then any one of the X,‘S determines all the others uniquely and o(x,, x~) = 
w(I~, x,) = o(.Y~, .rl ) = Q,(x,) (,j= 1, 2, 3). All the quadratis spaces (L,, Q,) 
are isometric and their signature is denoted by Inert(L,, L,, L,). Two such 
triplets are in the same orbit if and only if their indices of inertia are the 
same. (See [L] and [G-S] or [ LV]). For a general triplet let 
F=L,nL,+L,nL,+L,nL,. Then F is isotropic and the images of L,, 
say 1, in the symplectic vector space F -!F, are mutually transversal. Define 
Inert(L,, L,, L3) to be equal to Inert(L,, L,, L,). The two triplets L,. L; 
(j= 1,2, 3) are in the same orbit iff 

(i) dim L, n L, n L, = dim( L’, n L> n L;), 

(ii) dim L, n L, = dim L,’ n 1,; for all i, .j, and 

(iii) Inert(L,, Lz, L,)=Inert(L;, L>. L[,). 

(For this and the lemma below see [RR].) This result can be easily proved 
by induction on dim X or by using the following 

LEMMA 2.1. Let L, E A(X) be arhitrar),. Then there exists orthogonal 
decomposition X = x:= 0 X, into symplectic subspaces such that L, = 
Z‘L, n A’, and 

(I) On X,, L, = Lz= L,. 

(2) On X,, L, = L, and theJ both are transcersal to L,. 

(3) On X>,L,=L, andL,nLz=(0). 

(4) On X,,L,=L,andL,nL,=(O). 

(5) On X,, L,, L,, L, ure mutually transversal. 

From these one deduces the following easily. 

LEMMA 2.2. Let u,, IS? E Sp(X) he arhitrar). Then there exist 
g,, g,, go P and ti,, K~ES~X such that g,~, g=a,, g ‘K~~~=IJ~, where 
K,, K? hatie the following special form: there exists a partition S, (0 < j64) 
of { 1, 2, . . . . n } such that in the decomposition X = LX.,, one has 

h-, = diag(l, T, 1. T, L’, ). K? = diag(l, T, T, I, r). 

Here the isometry class of 11 is uniquely determined h!, the propert!* that 
sgn ;’ = Inert( V, (T, ’ V, 6? V). 
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A proof is easily given on the basis of the observation that K, and K* are 
constructed so that the triplet k’, (T, ‘V, (T* V and the triplet V, K, ’ V, K* V 

are in the same G-orbit (for detals see [RR]). 

2.4. We next establish our notation about the metaplectic (projec- 
tive) representation and also, a few facts about the construction of what we 
call the standard model of it (associated to a symplectic basis of X). 
References for this part are [Fo, L-V, G-S, Sou, L, H] and the original 
papers of [W, S]. For the Hiesenberg group Xx I&’ with group law 
(z, r)(c’, t’) = (z + z’, t + r’ + $(z, z’)), we use as the Schrodingcr represen- 
tation, the following: if z = ,E~,E, + Zq,eT or z = (p. y), then 

,t(p, y, t).~.(.~)=e2nl’+2fi,P (t 1’ wf(.r-q) (2.7) 

for all.fE Y(R”) = .Y( V*) the Schwartz space. (This is the Fourier trans- 
form of the representation p considered in [Fo].) Note we write v(p, 4) = 
Y( p, y, 0). Now the Lie algebra of the Hersenberg group is X@ [w with the 
identity map serving as the exponential map and the Lie bracket being 
[(Z, 1). (i', 1’)] = (0, (I)(Z, Z’ )). Then the infinitesimal representation of Y is 9 
and on the Schwartz space we have 

9 

f(e,) = 27Ti.u,, qe,*) = -5. 
S.r, 

(2.8) 

Now the group G acts as automorphisms of the Hersenberg group via 
0. (z, 1) = (a. z, t) and by the Stone-von Neumann theorem, the two 
representations v and r’;cr are unitarily equivalent. These intertwining 
unitary operators are determined only up to a scalar multiple and one gets 
in this way a projective representation of G known as the metaplectic or 
oscillator projective representation. These intertwining operators where 
written down explicitly for special elements of G, for example, in [W] itself 
(or any of the other references mentioned earlier). We recall these. If 
c = ((; f) E P, then one can verify that the operator 

r(a)f.(.r)= ldet dl”2exp(in/I’r[x])/‘(6 ’ ..u) (2.9) 

intertwines 1’ and vc ~7 or r(a) v(i) r(o) ’ = \(a.~).and moreover r(c,02)= 
r(~, ) r(a2) for all (T, , C? E P. Next similarly by direct verification, the inter- 
twining operator corresponding to T, is +-the partial Fourier transform 
corresponding to the jth variable, i.e., for any subset SC ( 1, 2, . . . . n}, the 
partial Fourier transform .?Ps corresponding to the variables x,, je.S is 
defined as 

?s(f; Ol;)(s.s+-‘I.s~)=.~~, ‘(-u,,oj-2(.Y,s~). (2.10) 
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where f, E .V( I’<), jz E .V( V:. ). The Fourier transform in .V( R”) is defined 
according to the formula 

If you now deline for (T = r:, . T:,” E W 

r((+.p/;l . . ..$q (2.12) 

then r(a) v(z) T(O) ’ = v(a. :) and r(a,a,)=r(a,)r(o,), if u,,(T?E W. In 
particular r(r) = 9 is the Fourier transform on R” (note 5 = T, . T? . . T,,). 

Since G = P WP, the operators corresponding to other elements of G can be 
written down. This is how, for example, the operator for CJ = (;1 !i) with 
det 7 # 0 is written down in [WI. The following fact was observed n [RR]. 

PROPOSITION 2.3. !/’ IV, n.’ E W und g, , gz. g’, , gi E P ure such rhar 
g , wg2 = g’, II”&, then 

dg,) r(~~., 1 r(g,) = r(g;) r(lt.‘) r(gi). (2.13) 

In purticuiur this shows thut there is a ~~~11 defined and unique choice of 
intertwining operalors (T --t r(a) such that r( (T ) is giwn hi* (2.9) u,hen c E P, 

und h,? (2.10) \r*hen [TE W and has the property r(g,agz)=r(g,) r(a)r(g,) 
n*hen g,, gz~ P unduEG. 

Since this fact is not mentioned in any of the above books and the article 
[RR] is not published we will give a brief sketch of its proof. It is easy to 
see (since any H’ E W is of the form H’ = ss. g for some g E Wn P) that the 
verification of (2.13) reduces to checking the following two statements 

(I) If S,, S, are two subsets of { 1, 2, . . . . n} with IS,1 = IS,1 and < is 
a permutation of { 1, 2, . . . . n) taking S, to Sz and g = (i f), then g E P and 
RT.s, R ’ =rsl and r(~)~r(~.s,)=r(~.s~)r(g). 

(2) If gq g’ E P are such that g~,~ = ~,~g’, then 

4x1 r(7.s) = r(Ts) r(d). (2.14) 

Actual verification of (I) is straightforward. For (2) we need the 
following 

LEMMA 2.4. Let P’ = P n (sq ‘PT,~). Then g E P’ or both g und 
g’ = T.~ ‘gs, belong to P [f’ and only if‘ g = (G $) (EP) has the jorm (in the 
decomposition V = V,+ V,., V* = V,* + V$, S’ being the complement of S) 
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In purticular $ g = g, . uO, with go = (; ‘,‘), uO = (I ’ ,;(‘) rhen g E P’ [f und 
only if both go und u(, E P’. Moreocer 

det( g ) V) det( g’ I V) = { det( g I V,.) ‘,‘. 

Proof of the Lemma. Observe that the matrix of rS in the decomposi- 
tion X = V,s + V,s, + V,$ + V$ is 0 0 -I 0 010 0 Ts= u I 0 0 0 

00 0 I 1 (2.15) 

If you write out the condition r5 ‘R~,~E P, you get the formulas for g and 
g’. The others follows from these. 

Coming back now to the proof of (2.14) we observe that this can be 
broken up into two parts according to when g E P’ is of the form g = (; z) 
and g is of the form = (i {). I n each of these cases the equality (2.14) is 
easily checked by using a simple change of variables in integrals. We omit 
the details. 

Remark 2.5. The choice rr -+ r(a) of unitary operators introduced 
above, depends only on the symplectic basis and will be called the standard 
model associated to that basis. We note that this has the tensor product 
property, i.e., if S,, . . . . S, is a partition of { I, . . . . n} and the symplectic 
subspaces X,, bases, etc. (see 2.4) are naturally defined and if rs is the 
standard model associated to the data X,s, ej, e,*, je S, then 

r(a) c~=r,,(f~,) cpI Ors,(a2) cp20 ... Ore, cpl, (2.16) 

where cr = diag( cr Iv . . . . a,), ~,ESP(A’~,), and cp = cpI 0 ... Ocpl, ~P,E.~‘(IJ’:,). 
This follows easily from the fact that (2.16) is easily checked when 0 E P or 
aE w. 

2.5. The multiplier ~(a,, a2). The standard model r(a) is only a 
projective representation of ..+(A’) and so there exists scalars c(a,, a2) such 
that r(a, a2) = c(a,, a2) r(a,) r(a2) for all a,, a? E Q(X). The following 
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properties of the multiplier are obvious from the definition of the standard 
model. 

c(g,a, g, g ‘“2gz)=c(fl,, a,) forall a,,az~Sp(X) (2.17) 

and gI, g,, REP. 

c(a,, oz)= 1 forall C,,O~E W. (2.18) 

If s, , s,, . . . . S, is a partition of { I, 2, . . . . II) and (T = 
diag(a,, . . . . a,), u’ = diag(o’, . . . . . a;) with (T,, O;E s~(x,~,). 
then (2.19) 

do,, (3-z) = n (‘.\,(a,, c;,. (2.20) 

We recall here the main calculation, already done in [WI. 

c(r,,r)=exp-llIsgnT. 
4 

(2.21 ) 

where c;, is defined in (2.1), r in (2.3). 

FROPROSITION 2.6. The fice properties, (2.17 )-( 2.2 I ), determine Ihe 
multiplier completeI?*. In .fuct we hove 

~(a,, a,)=exp-T Inert( V, 0, ‘V, 0?. V). 

where Inert( L,. Lz, L,) i.s the inde.\- of inertia oj‘ u rriplet (?f Lugrungian 
subspaces (see puragaph 2.3 ). 

This follows from Lemma 2.2 and the properties (2.17 J-(2.21 ) of the 
multiplier (for details see [RR]). For another version of this result see 
[L-V]. 

3. THE SIMPLY CONNECTHI COVERING GROUP 

3.1. In this section we discuss in some detail the construction and 
properties of the simply connected covering group of G = Sp( A’). (For other 
presentations see [Ba, G-S, L-V] and possibly others.) The details 
developed here will be used in Sections 4 5. Let H, denote the generalised 
upper half-plane = {Z = A + iB: with A, B, real, n x n symmetric and B 
positive definite}. Then G = SpX acts transitively on .K,, by the formula 
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a.Z=(aZ+fi)(yZ+c?) ‘, where (T = (T {) E G, and the stabilizer at il,, is 
K. Let j(a, Z) = det(yZ + 6). Then 

j(a,a,, Z)=j(a,, a2.Z)j(a2, Z). (3.1) 

Let r, = {lc/: .q, + 63; J/ holomorphic and satisfies exp J/(Z) = j(a, Z) for all 
Z}. Then note flI. = {2nil:IEZJ. Also in general if $, $‘~l‘,, then $-II/‘. 
is a constant = 2nil, for some integer IE Z. Note also that the cocycle 
property (3.1) implies that if $, E fC,, j = 1. 2. then rl/ = Ic/, q a? + @I E I ‘n,OL. 
We now clearly have 

PROPOSITION 3.1. Let G={(~,I(/):~EG,II/E~,). Then the map 
(a,,$,), (a,, ~2)-*(a,.a2,~,:.az+~2) i.r a group law on G, with (I,,,,()) 
as the identity element and (a - ‘, - +b - a ’ ) as the inverse of (a, 9). 
Moreocer (a, 3/) + a is a homomorphism onto G with kernel I- = 
{ ( 12,, , 2&): I E Z f . Thus as groups G/r = G. 

Next we topologize G by giving it the subspace topology of the product 
G x Hol(&). Here HoI has the topology of uniform convergence on 
compact sets. Then G is a topological group, I- is a closed, discrete central 
subgroup, and G = G/f as topological groups. From general theory, G is 
also a Lie group with the same Lie algebra as G. We will next show that 
G is connected. This needs some preparation. It is known that a = (’ .-O) E 
K+ u(a)=r+ ifi~ U(n) is a group isomorphism. If A = (::I -A{2) Z Lie 
Algebra K, then ‘A,,= -A,, and ‘Alr=Alr. Then j(expA,iI,)= 
detu(expA)=exptr(A,,+iA,2)=expitr(A,2). Thus if )(/ercxpA, then 
@(iI,,) = i tr(A,>) + 2nil for some integer I. Thus there exists a unique 
element in fcxp.4r to be denoted by $A such that Il/A(iI,l)=i tr A,,. 

LEMMA 3.2. Let A E Lie alg K, Then the map t(ER) + (exp tA, $,,) is a 
continuous homomorphism. In particular exp,: A = (exp A, $A ). 

Proclf: It is suIIicient to check that t +d,= (exp tA, $,,) is a 
homomorphism. The rest follows from the general properties in Lie 
Groups. Now 

~,,.~,,=(expt,Aexpt,A,~,,,- exp t2A + ti,2A)= (ev(t, + t2) 4 $1 

say. Then ti E J‘cxp,,, + 12j4 and IL(iI,,) = IL,,,(il,,) + $,,,(il,) = i tr((t, + t2) A ). 
Thus from the definition, $ = 11/,,, + ,z,A and d,, . ~7,~ = d,, + ,*. 

hWPOSlTlON 3.3. The group G is connected and simply connected. 

Proof: Note G is connected. So to show that G is connected it is 
sufficient to check that f c connected component of the identity in G. 
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In fact we show that 1‘~ expc( Lie alg K). Let H,, = (g ,,“), where D is a 
diagonal matrix. Then exp 2nH,> = (Cyi:,“,“: Crs:$f) = I,, if D has integral 
entries. Thus if D is an integral diagonal matrix, then expr:2nH, = (IZn, 2nil), 
where I = tr D. Thus 1-c expc( Lie alg K) and G is connected. Thus G is a 
connected covering group of G and f is isomorphic to a quotient of n,(G). 
Since R,(G) % Z, it follows that G is the simply connected covering group 
of G. 

The same argument also gives the following. 

LEMMA 3.4. ( I ) Let R be the inverse image of‘K in G. Then R is con- 
nected und simply connected. The map (a, I(I)(&) + $(il,,) is a continuous 
homomorphism of R onto iR. 

(2) !fa,, az E K commute and d,, d, ure two elements sitting above 
a,, a1 in G, then 8, und Cr also commute. 

For the proof we just note that K Iixes if, and this gives the 
homomorphism property. As for part (2), consider (a,, $ ,)(a,, I++~) 
(a,,C1/,)-‘=(a,a2a, ‘, ~)say.ThenII/=1(1,‘a,‘a,‘+~,,ja, ‘-$,;a, ‘. 
Evaluating at il,, gives +(iI,,) = tiZ(iZ,,) or (a, a?a, ‘, $) = (a,, $2). 

3.2. We now consider the subgroup m-the inverse image of Win 
G. First consider the element ‘I = (y ;‘)E W. Then j(r, 2) = det 2. Let 
Z+ tr log Z be the unique holomorphic function on X,, such that 
cxp(tr log Z) = det Z and tr log(il,,) = inn/2. (This function and its proper- 
ties are discussed in the Appendix.) Then we define 

f=(T, trlog)EG. (3.2) 

LEMMA 3.5. For any subset SC ( I, 2, . . . . n ), j(r,y, Z) = det Z, where Z,s 
i.y the S x S submatrix of Z. In particular tr log Z, E Trc and we define r’, = 
(TV, tr log Z,) E G. In particular f, = (T,, log z,,), z,, being the jth diagonal 
entry of Z. 

Proof We regard Z as a linear transformation of (I’*)‘- to V” (the 
complexifications). Write Z = (“,’ :) in the decompositions V= V,Y+ V,, 
and V*= V,* + Vz.. Then from the matrix form (2.15) of T,%, we get 
,j(rs. Z) = det Z,s. The rest is clear. 

COROLLARY 3.6. For each j. (f,)” = (I*,,, 2nik a generator of‘ r. 
Moreover (i,)’ = (T:, in) E P. Also the ?,‘s commute and 5’,= n,,,fi. In 
particular 

I?= {(r’,)k’...(S,)kn:k ,,..., k,EE;. (3.3) 
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Proof: Note (a, $) + $(il,) is a homomorphism on R. Since r; = IZn, 
and rf E P, the statements about (?,)” and (?,)* follow. Clearly the ?,‘s 
commute by Lemma 3.4 and by evaluating at il,, one establishes that fs 
is the product of the ?,‘s with Jo S. Note @ is a commutative subgroup 
containing f, with image W in G and so is the inverse image of W. 

Next consider P-- -the inverse image of P. Note the connected component 
P’ of P is ={g=( ; 2) E G: det 6 > 0). Note for g E P, j( g, Z) = det 6 
is a constant. Thus if (g, $) E P, then $ is a constant and in fact 
II/ = log ldet 61 + inm where m is an integer such that ( - 1 )“I ldet 61 = det 6. 
Note that (g. $) + $ E Iw + i%? is a homomorphism. In particular m(g) = 
m= (I/n) Im II/, (j= (g, I(/)) is also a homomorphism of P with kernel 
(P)’ ---the connected component of P. In fact (P)’ = (2 = (g, log det 6): 
g E P’ 1. Clearly P is the semidirect product of (P)’ and a discrete subgroup 
isomorphic to Z. In fact m(fz/, ) = k, so that if I-’ = (?y: k E Z ), then l-c f’ 
and p = (p)” I“. 

3.3. We now consider double coset decompositions. Let 0, be the 
inverse image of Q, (see 2.6). Then 

d, = Pr,P if ISI =,i and G= fi a,. (3.4) 
,=o 

PROPOSITION 3.7. Let l?,.,,=(P)’ i,Tf”‘(P)‘~. Then I?,,,,, nfi ,.“, ?# 0 if 
und only if m, = nr,. Moreotler 0, = U _ ,. < ,” ~ r d,., is the decomposition of 
fi, into its connected components, euch a,,,, being open in s’,. 

ProqJ For the first part it is sufficient to check the following. Suppose 
R, RI E (P)- and 

-- -Ym, - - , 
PST; RI - -2m? = 5.~'1, , then m, = m,. (3.5) 

Clearly the equality (3.5) implies that 

Since (a, Ij/) + Ic/ is a homomorphism of P into C, we have 

(2’) ‘=((R’)-‘. im,n-logdet(g, I V)-im,n) (3.7) 

(note g, g, E P” and so det(g, 1 V) > 0). Now the relation (3.6). using the 
multiplication law in the group, becomes gs,Yg’ ’ = T,~ and 

log(det(gl V))+ tr log(g’.-’ .Z),- log(det(g] I V))+ in(m, -m2) 

= tr log Z,s. 
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We thus have 

(m, -mz) n = Imag. part of { tr log Z,s- tr log(g’. ’ .Z),Y}. 

We now compute (g’ ’ . Z),. Now g’ = ( 0 $1) implies 

K’ ’ .z= (‘h’.Z- ‘/y)(y) ’ = (‘S’.Z- ‘fl’) .6’ 

= ‘6’(Zd’ - /I’). (3.8) 

where in the last step we have used symmetry of Z and g’ ’ Z. 
Now gong’ ’ = r,% and so we can use Lemma 2.4 and if Z= (<,’ :) in the 
decompositions V= V’, + I’,., V* = V,* + Vf., we get 

R’ ‘.z=(‘:j Z)(? Z)(“d’ ;)+(P :>. 

Thus (g’ ’ ~z),s=‘~ll .Z,r,,. From the property of tr log (see Appendix), 
trlog(‘rllZ,~ccll)=trlogZ,s+log(detrll)’. From this we get ml=m2. 

Note for the second part fi,= P?,P= (P)-’ s,~~“(P)‘, where r’= 
(f:“‘: rnE Z}. Thus a, is the union of fi,.,,,. From general theory at least 
one of the (P) double cosets in 0, is open. All these double cosets are 
homeomorphic since a,,,,, = d,,,f:m. These facts imply that n ,,,,, are 
precisely the connected components. 1 

Remark 3.8. The double coset (P) f,s?t”‘(P)” depends only on ISI =.j. 
rather than on the particular set S. To see this, note that there exists a 
[E SO(n) such that grs, g ’ = T,~: if IS,I = ISzl, where g= (f y). Then 
g=(g,o)~(P)’ and @,s,R-‘=?r2. 

DEFINITION 3.9. ( I ) For any d = ( CJ, II/) E c?, define j(5) = j if d E a, or 
equivalently j( 6) = !I - dim(a . V n V). 

(2) Define m(6)=(1,‘2)j+k if 6~d,,~. 

Note j(C)=0 if and only if REP. Also if g=(g,II/)EP, then m(g)= 
(l/n) Im II/ is integer valued homomorphism of P. In addition we have 

.i(Rl c@t2) =.i(ZL m(Rldgz)=m(gl)+m(ii)+m(g,) (3.9) 

if gl, gz E p. Moreover if ~7 = r’:’ . . ?iq, then j(C) = ISI, where S = {j: k, is 
odd) and 

m(5)=: (k, + ... + k,)=i Im I(/(il,,), (3.10) 

if d = (~7, II/). The last step follows from the observation d = r’,r’:; . . ?tn = 
tsr”’ 8, with 8~ (p)-, where I= k’, + ... + k:,, each k; being even. 
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3.4. The above construction of a simply connected covering group 
G depended on the choice of a fixed symplectic basis. Now we discuss how 
this construction behaves under direct sums. For this purpose we identity 
X, as linear maps of ( I’*)” to Ye relative to the bases e:, . . . . e,* and 
e, , . . . . e,,. (See Section 2). This is motivated by the geometrical identification 
of the generalized upper half plane .X, with the set of (strictly) positive 
Lagrangian supspaces of A’“. In fact this identification map is Z -+ uz. V*, 
where uz = ( h :) E Sp(X“). Note if f., = u7. V*, then CJ . L, = L, z for all 
D E Sp(X). Now suppose S,, . . . . Sk is a partition of { 1, 2, . . . . n i. Let (S,I = 
n,,j= 1, 2. . . . . k. Thus .W;,;c Hom( I’:,, V,si). Then there is a natural map 

x;,, x . x x,,, -+ .JY,?, (Z , . . . . . z, ) + z 

such that Zl V$ = Z,. In this case we write Z= diag(Z,, . . . . Z,). If 
e = diag(rr,, . . . . ok) with a,E .Sp(X,), then one checks easily that a. diag 
(Z,, . . . . Z,) = diag(a, .Z,, . . . . a4 .Z,). Moreover, 

j(a, diag(Z,, . . . . Zk))= fj Aa,, Z,). 
,=I 

LEMMA 3.10. With notation as above, let 6, E G,s,. Suppose 6, = (a,, $,), 
j= 1, 2, . . . . k. Let a=diag(a,, . . . . ok). Then there exists u unique II/ E f nr such 
that $(diag(Z,,...,Z,))=$(Z,)+ ... +ll/(Z,). We w*rite this (a,$) as 
diag(6,. . . . . a,,). 

Proqf. Since j(a,, Z,) = exp $,(Z,), it follows that j(a, il,) = 
j(a,, iI,,)... j(ak, iSk)=exp Z+,(il,,). Thus there exists a unique $E I-,, 
such that $(il,,) =Z$,(il,). From this one deduces easily that 
Il/(diag(Z,, . . . . Zk)) = ll/(Z,) + ... + Il/(Zk). In fact exponentials of both 
sides in the above equation agree and they both agree at one point. 1 

For any subset S, we have the symplectic subspace A’, with symplectic 
basis {e,, e,?, jE S} and so we have the groups G, = SpXs, G,s, P,, P,$, W, 
pt,, etc. Also the functions js(. ), M,~( .), are defined analogously on G,Y. 

PROPOSITION 3.11. Let 6,~ c,, S,, . . . . Sk being a partition of 
( 1, 2, . . . . n}. Let 5 = diag(e,, . . . . 5.k). Then if f is any of the functions 

.i(.),m(.) on G thenf(d)=f,,(d,)+ ... +.[&(a,). 

Proof: Note that if 5 = (a, I(/), then a =diag(a,, . . . . ak) so that 
dimaVn V=Z‘dima,.V,,n V,?, or j(C)= Ej,(6,). Next if 6~ P, then 
d = (a, II/) with 1+5 constant and =z$, where $, is also constant, since d, = 
(aj, $,) E P, From this it follows that m(5) = ,?YM~,(c?,) if d E p. Note ~7 E p 
implies 5, E P,,. Thus in view of (3.9), it is sufficient to check this additivity 
property when 6j~ RX, for all j. In this case using (3.10) we have m(E) = 
(1/2)IC/(il,)=(1/2)Z‘~,(i/.,)=~m.,(d,). I 
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LEMMA 3.12. Let 7 E z‘,, be u n x n, symmetric real matrix with det y # 0. 
Let c.;=(: ‘j) and define I’,=% ;f ‘, where u;.=(L 3). fi;.=(u;.,O), and 
?= (T. tr log). Then m(r’;)= (l/2) sgn y=(n’(;‘)-n (7))/2 where n’(y) is 

the number of positice (negutice) cigenca1ue.s of’ ;‘. The same .formulu holds 
,fbr all ;‘. 

Proof. Suppose r:. = (“.;, ((/, ), then from Proposition 3.1 it follows that 
l+b.,(Z) = tr log( -z ’ - :)-trlog(-Z ‘). Next L‘;.=~.T.u; I, where 
g=(, ’ I). Let k denote some element in C? above K. Then C. = 2. r’. ii;. I 
(I:,,, Txii) for some integer 1. Thus m(L’: ) = m(g) + m(f) 21= (1;2) n + k + 21 
where 2 = (R, log ldet ;‘I + ink). Now 

Thus G,.(Z) - tr log(Z + ;’ ’ ) = log ldet ;‘I + ix(k + 20. From the result in 
the Appendix (Proposition A.2) we get k + 21= -n (7). 1 

Finally we note the following calculations of m(C). The proofs are 
omitted. 

LEMMA 3.13. (1) Let o=(T 2) M.ith dety#O. Let c?=(a,$)~G. Then 
IL(Z) = log ldet 71 + tr log(Z+ y ‘6) + ink, .for some integer k, such thut 
( - I )’ ldet ;‘I = det ;‘. Moreowr, m(5) = (l/2) n + k. 

(2) Suppose insteud det ci # 0. !f  ~7 = (a, 1,9) E G, then e(Z) = 
log ldet dl + ink + tr log( -Z ’ - 6 ‘7) - tr log( -Z ‘). bvhere the integer 

k is such that ( - l)k ldet dl = det b. Moreover m(6) = k + (l/2) sgn(d-‘7). 

4. THE MAIN THEOREM 

The main result in this section is the lifting of the projective representa- 
tion (T + r(a) of G, by an explicit formula. to an ordinary representation 
of (7:. 

THEOREM 4.1. Let h( CT) = exp - (in/2) m( 5). Then 

c(cJ,, a*)=h(ci,)h(~,)(h(d,dz)) ’ 

In particulur d + r(C) = h(d) r(a) is u representation of G. 

ProoJ Let h(d,, ~?,)=rn(ti,) +m(dz)-m(d,d,). Then the property 
(3.9) implies that h(d,, 5,) actually depends only on (T’, CS~, rather than on 
the elements d,, 6, sitting above them in G. So we write h(o,, az)= 

h(d,, 5,). Next the same property also implies that h(g,o, g, g-la, gz) = 

Ma, 9 az) for all g, , gz, go P. Next the additivity property (Proposi- 
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tion 3.11) of m( .) implies the additivity property of h, i.e., if S, , . . . . SI, is a 
partition of { 1, 2, . . . . n), IJ, =diag(a,,, . . . . ulk) and (TV =diag(a,,, . . . . o,,), 
then h(a,, a2) = mQ9 Q2,). Next the function m( .), being a 
homomorphism on m, it follows that h(o,, aI) = 0 if gl, C*E W. Now 
suppose A’( 6, , a?) = ( l/2) Inert( V, 0, ’ V, c2. V). Then /~‘(a,, c2) has 
the same properties (see Section 2). Thus from Lemma 2.2, it would follow 
that /~(a,, 5*) = /I’(cI’,, 0;) if we show that h(~‘,, T) = h’(~;., r). Now 
from Lemma 3.12, ~(a,.)= (l/2) sgn 7, m(C;.i) =m(?.ii..;)=m(?), since 
i7 Ye’. Thus h(~‘;., r)= (lj2)sgny. On the other hand, one checks 
directly from the definition of index of inertia that h’(r:,., T) = (l/2) sgn ;‘. 
Thus h(o,, a,)=h’(a,, a?) for all CJ,, ~7~. The theorem now follows from 
Proposition 2.6. 

Remark. (1) If CJ = (IZn, 2nil) E f, then m(C) = 21 and t(5) = (- 1 )‘id. 
This gives the well known fact that the metaplectic representation is 
actually a representation of the 2-fold cover G/f ^, r” = f I?,,, 2nil): 1 even}, 
of G. 

(2) lfg=(R,~)EP,m(8)=(l!n)ImII/, and 

r(d)f.(x)=e ““‘lL(exp ixfl’r. [x]).f(K .s), if p= 
r B 

( > 0 6’ 

and similar formulas can be written down for (T = (F II), det ;’ # 0, etc. 

(3) Note the additivity property of m over direct sums (see Proposi- 
tion 3.11) implies a tensor product property for the representation 5 + r(5). 
(See Remark 2.5.) 

(4) The proof of Theorem 4.1 actually gives that 

Inert(a, . V, u2 V, 03. V)=2{m(6;~‘d,)+m(B,d3)-m(d, ‘rT3)}. 

Since Inert(a . L,, CJ. L,, 0. L3) = Inert(L,, L,, L,) for all c E G, it follows 
that 

Inert(o, . V, a?. V, bj. V) = Inert( V, 07’0,. V, 6, ‘a3. V) 

= 2{m(d, ‘6,)+m(6, If?,)-m(cT;‘d,)}. 

In this connection compare Leray [L, Chap. 23. 

We note next a simple formula for r(e) F,, where Fz(x)= 
exp ilrZ[x], ZE&“. Up to an ambiguity in the phase factor, this is 
discussed in [Fo, p. 2021. (See the references cited there.) In our set up, 
this takes a simple form. 

PROPOSITION 4.2. For any 5 = (a, t,b) E G and Z E %, 

r(c) FL = e “‘2)*(z’Fn %. 
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Proof: The formula is easily checked for 5~ P and 8 = 5. Also both 
sides arc additive over direct sums, so the formula is valid for ~7 = ?,. Also 
the validity of (4. I ) for 5:,, ii, implies its validity for d, d,. So it is valid for 
all fi. 

Remark. This proposition gives the well known fact that if C?E R, 
~(6) cpO = e ““‘cL”‘nJ(po, where ‘p. = F,, with Z= il,,. Also the matrix 
entries u(5) = (r(6) FL,, F,,) can be easily evaluated and in fact = 
{exp(-(1/2)~(Z,)))~det(-i(a.Z,-Z,))t ’ ‘. Various other evaluations 
are possible, but we do not pursue it here. 

5. THY: MASI.OV BCWLI: 

We begin with some remarks on notation, etc., on homogeneous line 
bundles. Let G be a Lie group, H a closed subgroup, and z a quasi charac- 
ter of H, i.e., x E Hom( H, C ’ ). Then the homogeneous line bundle over 
G/H, associated to z may be constructed as follows: let G x1 C denote the 
set of H orbits in G x C, with H acting on the right by (g, z), 
h + (‘$4 X(h) ’ 2). Let (g, z) H denote the M-orbit of (g. z). Let 
n: (g, 2) H = gH E G/H. With quotient C ’ -structure on G x1 C, it is a 
smooth line bundle over G/H. Then G acts on G x, C, via g,, (g. :) 
H + (g, g, 2) H and this action is equivariant with the natural action of G 
on G/H. This construction gives a bijection between homogeneous line 
bundles on G/H, and quasi characters of H. If { C:,; is a contractible open 
covering of G/H, with K,: C:, + G smooth cross-sections, then .Y,: 
XH + (K,(xH), I) H is a smooth local section over C’,, and the transition 
functions c,,(.uH) are computed as c,,(sH) = X(K, ‘(.uH) K,(xH)). Note 
.s/=c,;., Y on U, n CT,. As a homogeneous line bundle, G x, C is trivial if and 
only if x is trivial, although as a (smooth) line bundle over GIH, it may be 
equivalent to a trivial bundle, even when x is not trivial. In this connection 
we note the following. 

LEMMA 5.1. !fG!H is compuct and there exists q E Hom( H, 62) such thut 
x = e”, then G x, C is equivalent to a triciul line bundle. 

ProoJ Let cp E C,’ (G), such that I,, cp(xh) d,h = I for all .r E G. (This is 
possible since G/H is compact.) Here d,h stands for left invariant Haar 
measure on H (see Helgason [HI). Let 

.f‘(.r) = ( d-uh) q(h) d,h. 
- I, 

ThenJ(xh) =./‘(.w) - q(h) and if you write u, = exp( -.f K,) on U,, then one 
checks that c,, = u,u,-‘. Since the u, are smooth, this implies that the line 
bundle is trivial. 
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We next give the natural line bundle associated to the metaplectic 
representation. Using the notations introduced earlier, define for each 
IELI( the space E, of tempered distributions, E, = {u E S’(W): 
it(z) u = 0 for all z E 2). Here v is the Schrodinger representation and d is 
the corresponding representation of the Lie algebra of the Hersenberg 
group. Thus, for example, one checks easily that E,= C6,; here 6, is the 
Dirac distribution at the origin. From u(a) i(z) Y(G)- ’ = +(a~!), for 
g E Sp(X), z E X, it follows that E,. j, = r(a) E, and SO E,. y = O(a) 6,,, Y(C) 
being the projective representation of SpX, introduced in Section 2. Thus 
dim E, = 1 for all ;1 E /1(X). If 6 -+ r(6) denotes the metaplectic representa- 
tion (see Section 4) then we have seen that for S = (g, II/) E P (note II/ is a 
constant), r(g) = (exp - (l/2) Im $) r(g) and the formula for r(g), g E P 
gives r(g) 6, = ldet 61 P1’2 6, if g = (i f). Since Re $ = log ldet 61, it follows 
that 

da 60 = x(i9 L where x(g) = eP’1’2’ti. (5.1) 

Note that (g, $) = g -+ $ is a homomorphism of p into @ and x is a quasi 
character of P. 

Let E= lJ E, = {(I-, u): I E /i(X), u E E,}. Now n(X) = c/p. Then the 
map @:ex,@+E, defined as c?? (a, z) P + (a . V, ZT(C?) 6,) E E, is a 
bundle map, linear on fibers. It is also a bijection. We will endow E with 
the structure of a smooth line bundle over /1(X) by requiring @ be an 
isomorphism. Note @ also intertwines G-action, with the natural G action 
on E, defined by d. (2, u)= (0 .I., r(6) u), for (E., U)E E and c?E(?. If 
{U,, BEZ~} is a contractible open cover of /i(X), with rcg: U, + G, 
smooth cross-sections over U,, then a smooth section (frame) over U, is 
sB: 1-+ (2, T(K~(,?)) 6,) and transition functions are 

cB,,p2(A) = X(Jca,(Jb)-’ . K/j,(A)). (5.2) 

Note sp,(;l) = c~,,~,(J~) sP,(i), for ,?E U,, n U,,. We will now compute the 
transition functions cp,, 82 explicitly for a specific choice of U,, xp. Let Z,, 
denote the set of all n x n, real symmetric matrices. Let V, V* be the 
Lagrangian subspaces introduced earlier (Section 2). If /1,,(X) = 
(1~ /1(X): E,nl, =O>, then Nj,, = {~ES~X: (T= idon Ai} acts transitively 
on /1,,(X). Now NV= {up= ( ; ~):PEC,), NV+= {uy=(; ;):YE&}. Thus 
/i y = { uB. V*: b E Z,}. We write %P = uB. V* and U, = /i,,(X). Then 
{U,: p E C,} is an contractible open covering of /i(X). Actually U, is a 
coordinate open set and to describe it, note VE U,, since Vn 2, = (0) and 
N+ acts transitively on U,. Now N,, = ugN,.ug’ = {up. vy. u,‘: y EC,}. 
Now u~u., . UT ’ V= uB. u.;. V. Thus U, = { ulr. uy. V: y E C,}. One checks 
that the map ,! = uPu,. V+y is one to one on U, and gives a param- 
etrization of U,. Define the smooth cross-section ICY: U, + G by 
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i. = up. ~;~V~ii,~~L’;,whereli,,=(u,,,O)~~andL:~=ilj...~~~‘.Tocompute 
the transition functions we need the following. 

LEMMA 5.2. Let i = u,,, c;., VE U,,, . Then i E Ulr; !j’ and only if 
det(l- 7,/j) ~0, lcjhere /I = /j2 - 11,. In this cuse i = u,,: u;.: V, where 
i’*=(I-;‘,P) ’ .;‘,. 

Proof: Suppose i. = up, t!;, V= up:. L‘;.?. V. This is equivalent to 
(U/I, pj.,) ’ (upzc;.:)E P or c ,, u,,~:.,, E P where /I = fi? - 8,. Now 

(/-y,/)y2=;‘, and ‘(f+fi.Y2).(I-y,/O=f 

and the lemma follows. 

~OPOSITION 5.3. If‘ i. = ug,c;, . V= u,~?. u;.? . VE li,, n lib2 and Ka,(j.) ’ 
K,,?( j. ) = (g, $ ) E P, rhen 

$ =log Idet(l-?,/I)1 + fi7r(sgn(yz)-sgn(y,)). 

Proof: Now K8,(j.) ’ Ka2(i.) = c’ .;, ii,“?;., = (g, $). Now suppose we write 
L’;.=(~~;.,$;)=ifi.;.?-‘. Recall ?=(T, trlog)and? ‘=(T ‘, --triogcr ‘). 
Since ‘5 . Z = T ’ .Z= -Z- ‘. we thus have 

or 
II/.,. = (tr log)’ u ;.’ T ’ - (tr log). r ’ 

$;.(Z)=trlog(-Z ‘-y)-trlog(-Z ‘1. (5.3) 

Next (g, Il/)=(t: ?,,$ ,,)(u,~,~)(c~~,$,~) and so IL=+ 7, JU~:C(.,~+$./~. 
Or since 4 is a constant, I(/ = II/ I’ L: -i’2 = II/ _ i’, ulr + *;., : u 72 = 
$ _ ,.,(Z+ /?) + $,.,(Z( --yzZ + I) ‘). Substituting for II/;, and II/7, we get 

II/=trlog(-(Z+/J) I+?,)-trlog(-(Z+p)-‘) 

+trlog(-Z ‘)-trlog(-Z ‘+y2). (5.4) 

Note if 7’ or yz is =O, then the other one is also 0 from Lemma 5.2. In that 
case II/ = 0. Suppose ;‘, ~0. Then there exists an x E O(n), such that 
ry,a - ’ = (12; I:) where 7” is a k x k, symmetric matrix, with det 7” # 0. If we 
now write a/k-’ = (‘!y I), then 
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If you now define 7; = (Ik - ;f; /I’) ’ y’, , then one checks, ry,r ’ = ($; z). 
Moreover det ;1; #O and det(l-y,fi)=det(l,-$,/?‘)=(det;I’,)(dety;)’. 
We now use Proposition A.2 of the Appendix to simplify (5.4). Note 
a(Z+p)a l=(z’:s’ 1). Thus 

$=trlog((Z+/I)‘--7i-l )+logldety;I-inn-(-y,) 

- { tr log(Z’ - y;- ’ )+logldet;>I-irrn,r (-y*)}. 

Now (7;) ’ =(y;) ‘(In-;‘;p’)=(y;) ’ - /Y. Also (Z + 8) = Z’ + [I’. Thus 

$=logldet~;I--logidety;I+in(n (-;?)-n (-7,)). 

Now n (-;?)-n (-~,)=n+(;.2)-n’(~,)=(l/2)(sgn~,-sgny,). 1 

COROLLARY 5.4. With the same notation us in the Proposition above, 

Proof Since g = (;: , *?.,,) (see Lemma 5.2), det(gl V) = (det(l, -yl, j?)) ‘, 
the corollary follows from (5.1), (5.2), and the above proposition. 

Remark 5.5. Consider the line bundle G x %I C. Here 1x1 (&) = 
exp( -(l/2) Re $) = )det( gl k’)I ‘.’ if 2 = (g, $). Then the line bundle 
G xix, 43 may be identified with the half-density bundle D”’ on A, i.e., 
the fiber at i(i. E /i(X)), (D’:“);. = set of translation invariant half densities 
on i.. For example, the translation invariant half densities on V is a one 
dimensional vector space over tc with the generator denoted by 
ldp, A . . A dp,,l I.‘* = IdVl I.*, p, , . . . . p,,, being coordinates on V. The line 
bundle equivalence between c xll, C and D’ ’ is defined (as for E) by 
(6, z) P + (a. v, z(a I)* I~VI’*)ED’*=((A,~):~.E~(X),~ED~,’*). Note 
(a-‘)* is the pull back operation. Note the (? action on II’,* is the natural 
one, d. (j., d) = (a;., (a-‘)* G’), d standing for a half density on A. Similarly 
let x0= x/lx) where the quasi character x of P is (as before) defined by 
(5.1), and define 

M=Gx,“C. 

It is clear that M has transition functions 

(5.5) 

c~,~:(L)=%O(~;~,‘(i)KA2(i))=exp~(sgni.l-sgn~2). (5.6) 

Clearly as homogeneous line bundles, E = D”* 0 M. Note all the line bun- 
dles E, D”*, and M are all equivalent to the trivial line bundle, in view of 
Lemma 5. I. We will presently identify M as the Maslov bundle, as formally 
defined by Hormander (see [Hor, Vol. III, p. 3343. In this connection note 
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D”“@ D’:’ is a bundle of translation-invariant densities on i., i. E A(X), 
while E@ E is the bundle of (translation-invariant) volume forms on i. 
j.E A(X). Thus E may be considered as the bundle of (translation- 
invariant) half-forms on A( A’). (In this connection see [B, G-S, Chap. 51.) 

We now recall Hormander’s definition of the Maslov bundle. Let 
I . . 
/.o, 4 1.1 3 i, in A(X), be such that i, and i, are both transversal to i,,, 
and i.. Then Hormander defines (see [Hor, Vol. III, p. 3341) 

(5.7) 

where A and B are symmetric matrices arising in the defining equations of 
. i, and 1., I.e., let X, 5 be symplectic coordinates on X such that 

i.,= {x=0!, 2, = ((=O), i, = { 5 = Ax}, i.= {.Y= B<}. 

The Maslov bundle is defined as the bundle corresponding to the local data 

IAj.,(x), gil.,?, i,, i., E A j.,(X)} where 

g,,,.;,(j-1 =exp 
i’ 
T a(&,, i. ; 1. , , i ? ) 

i 

for j.E A,,(X) n A,,(X). To show that this gives the same bundle as M 
above, we choose A0 = V and work with coordinates p. q associated to 
our fixed symplectic basis (see Section 2), so that V= {q = 0) and 
V* = (p = 0). Let i, = i .,,, = up, . V*, i.,, = up:. V*, and i, = u@,c;., V, see 
notation introduced earlier in this section. Then the defining equations 
are V={q=O},%,={~=~,q),i.z=(~=~z~},andi.=(u,,,.c;.,.,:=~ V}= 
{p=(I+/l,-j,)z,q=i’,z for some ;E V}. If now we let X= q and 5 = 
p - ,4,q, then X, 5 are symplectic coordinates on A’ in the sense of 
Hormander and defining equations become i., = V = { .Y = 0 ), i., = i.,{, = 
{(=O},i.,=j. /j2={r=(82-B,)*+ and i= (x=Y,~). Thus the A and B 
arising in (5.7) are A = /I?? - fl, = fl (earlier notation -see Lemma 5.2) and 
B=;‘,. 

LEMMA 5.6. With the &me notation sgn( ,t. IR) = sgn(y2) - sgn(y, ). 

Protlf: Choose an ZE O(n), so that ay,r ’ = ($; g) with det 7; ~0. 
Write r/la- ’ = (5;: iii). Here ;‘, and fl,, are k x k matrices. Let 
f-c ( -.,y+ ‘,) and let 



Then one checks that 

Thus 

sgn F = sgn 
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zn-k 
0 
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=sgn(-B1,+(Y;)-‘)-sgn(y;). 
Now -/Iii +(y;))‘= (y;-‘) (see the proof of Proposition 5.3). Thus 
sgn F= sgn(y;) - sgn(y;) = sgn y2 - sgn yr. 1 

COROLLARY 5.1. The line bundle M is equivalent to Hormander’s Maslov 
bundle. 

Finally we remark that E = D’/* 0 M also implies that M = E 0 (D+ ‘I*)*, 
where (Dl’*)* is the dual line bundle of D”*. This dual bundle may be 
identified with the bundle of half densities on A*, 1 E /i(X). This identifica- 
tion gives rise to a description of the bundle M as given in Hormander 
[Hor, p. 3321. In connection with the material of this section see also 
[Duis, G-S]. 

APPENDIX: ON THE tr-log FUNCTION 

PROPOSITION A.l. Let ,ri”, denote the generalised upper half-plane con- 
sisting of all n x n, complex symmetric matrics Z, with Im Z > 0. Then there 
exists a unique continuous function denoted by tr log on X0 with the 
following properties 

(i) exp tr log Z = det Z; 

(ii) tr log(iZ,,) = irm/2; moreover this function is holomorphic and 
satisfies 

(iii) tr log(uZ’C() = tr log Z + log ldet aI* for all a E GL(n, R); 

(iv) if Z = diag(z,, . . . . z,), with z, E @, Im z, > 0, then tr log Z = 
Clog zj. 

Here log z is the principal logarithm of the complex number z. 

Proof Consider the map q: GL(n, R) x R”+Xn defined a, (a,, . . . . an)-+ 
a diag(a, + i, . . . . a, + i) . ‘a. Then this map is surjective. Moreover if 
a diag(a, + i, . . . . a, + i)’ a = /I diag(b, + i, . . . . b, + i) . ‘l?, then it follows 
that BP ‘a E O(n) and a,, . . . . a,, is a permutation of b,, . . . . 6,. Thus the 
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function H(r, u,, . . . . u,,) = 2‘ log(u, + i) + log ldet ~1’ is a continuous 
function which is constant on the fibers. From this one deduces easily that 
there is a continuous function h on .#‘,, such that H(r, u,, . . . . a,,) = 
h(r .diag(u, + i, . . . . u,, + i) ‘2). One checks easily that the function h(Z) on 
.H;, has the stated properties. We will write h(Z) as tr log Z the trace of 
the (principal) logarithm of Z. 

Remurk. Actually this function can be exhibited as the trace of a 
matrix, which can be considered as the logarithm of Z. We do not go into 
this, as this is not needed. We will however state a precise result (see [V, 
p. I II]). Let Q= (KEGL.(~, C): spec RC C’;,( - z, O]), tr)= (A~gl(n, 43): 

spec A c (i E C: ]Im j.1 < n) ;. Then (I), Q are open, and the exponential map 
is an analytic diffeomorphism of OJ onto R and the inverse map log: Q + (1) 
is called the principal logarithm. Note when Z E .%$,. Z has no real eigen- 
values and in fact one checks that the function tr log Z, introduced above 
coincides with the trace of log Z, for ZE ,K,. An analytic formula for log 
is given in [Sou-23. 

PROPOSITION A.2 For u reul .s?,mmetric mutriv p, 

tr log( -Z ’ -/j)-trlog(-Z ‘) -trlog(Z’+p.-‘) 

= log ldet p’] - inn (p), 

n-here n ( p ) is the mtmher of negutice eigetwulues of p and mutrices p’ und 
Z’ are defined as ~fbllo~~s. Let 2 E O(n) he such thut rpcc ’ = (‘;, E), with 
det p’ # 0; and let Z’ be de$ned b.v rZr ’ = (<’ 1). In purticular when 
det p # 0, we haoe the identity, 

trlog(-Z ’ -P)--trlog( -Z ‘) 

= tr log(Z + p ’ ) + log ldet pJ - inn (p). 

Proof: Let g(Z) denote the left-hand side, then exp It/(Z) = det p’, as is 
easily checked. Thus $(Z) is a constant. So it is sufficient to evaluate it 
when Z= il,. Because of property (3) in Proposition A.1 of tr log, we may 
assume that p is diagonal = diag(p’, 0). Then Z’ = if,. Thus 

Il/(il,,)= tr log(il,-p)- tr log(il,)- tr log(il+p’ ‘) 

= tr log(i/, - p’) - tr log if, - tr iog( il, + p’ - 1 ) 

=i {log(i-a,)-logi-log(i+u, I)). 
,= 

Now 

log(i - u,) - log i - log(i + a, ’ ) = log Ia,1 - inn (a,), 
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where n (a,)=0 if u,>O and =l if u,<O. Thus 

233 

LA1 

LBal 

tB1 

LB-WI 

[ Duis] 

LFoJ 

LG-Sl 

[HI 

[HoI 

tHorI 

[K-VI 

[Ll 

[L-VI 

[Ml 

LPI 

t+b(iI,,) = log ldet p’l - inn (p). 
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