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In this paper we define a half-integer valued function on the simply connected
covering group of the symplectic group, related to the Maslov index of curves on
the Lagrangian Grassmannian and use it to write down explicitly the operators of
the metaplectic or Oscillator representation. We also elucidate the relationship of
the so-called Maslov bundle (as defined by Hormander) to the metaplectic
representation. ¢ 1992 Academic Press, Inc

1. INTRODUCTION

In this paper we go back and look at the construction of the metaplectic
{or oscillator) representation. The metaplectic representation was dis-
covered by Segal, Shale [S], and Weil [W] in the early sixties and is based
on two observations. One, the Stone-von Neumann theorem which asserts
that for the Heisenberg group, given a central character y, there exists up
to unitary equivalence a unique irreducible unitary representation v with y
as it central character. Second, the symplectic group, Sp,, is the group of
continuous automorphisms of the Heisenberg group which fix the center
pointwise. Thus the two representations v and v-o are equivalent or for
each g€ Sp,,, there exists a unitary operator r(¢) such that r(a)vr(s) ™' =
v-o. Irreducibility of v implies that r(o) is uniquely determined up to a
phase factor. If you make a choice of the operators ¢ — r(s), one gets only
a projective representation, i.c., r{g,0,)=cla,, 6,) r(6,) r{c,), for suitable
scalars ¢(o,, g,). It is known that this 2-cocycle ¢(a,, 6,) is + 1 valued for
a suitable choice 6 — r(¢). Equivalently (see [W], or [B-W]) if Mp, is the
connected twofold covering group of Sp,, with § »a as the covering
homomorphism, then there exist unique unitary operators r(é) such that

(1) r(@)vr(6) '=ve<o and (2) & - r(d) is a representation. This is called
the metaplectic representation. In this paper we give a computable explicit
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description of r(d), working with the simply connected covering group,
rather than the twofold cover. One should note that for a set of special o,
explicit formulas (up to a phase factor) are already given in [W]. These
special elements include an open subset of Sp, and generate Sp,, as a group,
and this has turned out to be adequate for most applications (sec also
[Fo]). However, becausc of the fundamental nature of the metaplectic
representation (it is known to provide a unifying framework for many
applications in analysis, geometry, and number theory see the papers of
Howe, [G-S], etc.), it seems desirable to get as explicit a description as
possible. In fact various such accounts exist (see [Sou-1, L-V, P, Ho, Fo]
and [Ba, Raw-Ro] for accounts based on the Fock model). The version
presented here is closer in spirit to that of [W, L]. In this paper we restrict
ourselves to the real case.

The starting point is that associated to a fixed symplectic basis, one can
make a canonical choice of the operators ¢ — r(¢). This is recalled in
Section 2 (see Proposition 2.3). The various properties of this choice make
it possible to compute the muitiplier ¢(g,, 6,) explicitly in terms of index
of inertia of a triplet V, o, 'V, g, V of Lagrangian spaces. These two were
done in [RR] and since this was not published we have included a brief
sketch of the proof for Proposition 2.3. The Maslov index of curves in
the Lagrangian Grassmannian [A, Duis, G-S] enters the picture in the
metaplectic representation only because of its connection with this index
Inert(V.a ' V,a,- V) (see Section?2 for definitions). In Section 3, we
present in some detail the construction and various properties of the simply
connected group. Here the definition of the half-integer valued function
m(é) is made possible by the description of the double coset decomposi-
tion; the double cosets are parametrized by two integers j and k (see
Proposition 3.7) and m=(1/2)j+k. In Theorem 4.1, the 2-cocycle
¢(o,,0,) is expressed as a coboundary explicitly in terms of m(4), giving
the metaplectic representation. In Section 5, we consider the Maslov
bundie. We show that this line bundle M is a homogeneous line bundle
of the simply connected covering group, although as a C™ line bundle it
is equivalent to the trivial line bundle. Its connection with the natural line
bundle E, associated to the metaplectic representation and the half-form
bundles is also clarified.

2. NOTATION AND PRELIMINARIES

2.1. Let (X, w) be a symplectic vector space over R of dim 2n and
ey, ...e, ek ., e¥ a fixed symplectic basis, i, w(e,, e;)=wlef, e*)=0
and w(e,, e*)=4,. Let A(X) denote the Lagrangian Grassmaniann and
SpX, the symplectic group. For any Le A(X), P,, N, are subgroups of
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SpX, defined as P, = {ge SpX: g-L=L},and N, = {oe SpX:o=idon L}.
We write V'=2XRe,, V*=XRe?*, and write P=P,. For any ge SpX, let
o =(* §) be the matrix presentation of ¢ in the fixed symplectic basis.
Then 2, f, 7, 6 M(n, R) and satisfy (i) ‘ad —‘yB=1, and (ii) ‘ay, 'Bé are
symmetric. We also write 2, for the set of all nxn, real symmetric
matrices. Then N, = {uz: feZ,} and N,.={v.:yeZ,} where

I B 10
u,,=<0 1>, tg.=<? 1). (2.1)

Also P,y={g=(%:'a0=1,2'f is symmetric}. Write 1,€SpX,
Jj=1,2,..n, where

—p¥* *
1,-e,=ep, T,-ef = —e, (2.2)

and 1, fixes all others in the basis, then ti=id j=1,..,n1,,..,1, al

A

commute and generate a finite group W= {z}-t":1/,€ Z}. Note

0 -
r—r,~rz~~-r,,—(1 Ol>. (2.3)

For any subset S< {1, 2, .., n}, we write

Vs—z R(’ V::L

je s

osReX,  Xe=V 4+ VE 1= n 1. (24)
€S

Note 1ot '=(°, 77)=('c) '. Let K be the centraliser of 7 in Sp(X).

Then K is a maximal compact subgroup and K= {o=(; ,):a+ifisa

unitary matrix }. Note K= Sp(X)n O(2n), where O(2n) is the orthogonal

group relative to the fixed basis. Clearly W< K.

2.2. The group G = Sp(X) acts transitively on A(X)~ G/P. For
each L e A(X), the subset

AfX)={L e A(X): LAL =(0)} (2.5)

is open and the group N, acts simply transitively on it, and the action
converts it into a coordinate open set. Next group action on A(X) x A(X)
also has only a finite number of orbits and all pairs L,, L, such that
dim L, n L, =k constitute a single orbit. Equivalently the subgroup P has
only a finite number of orbits in A(X) and these are 4, ,(X)={Le A(X):
dimLnV=n—k}. In particular if Q,={ceSp(X):a-VeA,, }=
{o=(] 9)e Sp(X):rank y = j}, then @, is a single P double coset and
15€Q, if |S| =, since 14-V=VE+ Vs, § being the complement of S.
Thus

n

Sp(X)= ) 2,=P.W.P. (2.6)

jo 0
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2.3. Next the group action on A(X)x A(X) x A(X) also gives only
a finite number of orbits. The invariants defining these orbits will now
be described. First consider L,, j=1,2, 3, mutually transversal. Then
Inert(L,, L,, L) (called index of inertia in [L]) is the signature of a quad-
ratic space constructed as follows: let x,€ L, be such that x, + x5+ x; =0.
Then any one of the x,’s determines all the others uniquely and w(x,, x,) =
w(xy, X3)=w(x;, x}=Q,(x;) (j=1, 2, 3). All the quadratis spaces (L,, Q,)
are isometric and their signature is denoted by Inert(L,, L,, L,). Two such
triplets are in the same orbit if and only if their indices of inecrtia are the
same. (See [L] and [G-S] or [LV]). For a general triplet let
F=LinL,+L,nLy+LynL,. Then F is isotropic and the images of L,
say L, in the symplectic vector space F -/F, are mutually transversal. Define
Inert(L,, L,, L;) to be equal to Inert(L,, L,, L;). The two triplets L,, L,
(j=1,2, 3) are in the same orbit iff

(1) dmL nL,nLy=dim(L)nL5nLY),
(i) dimL,nL,=dimL ~ L, for all i, j, and
(in) Inert(L,, L,, Ly)=1Inert(L;, L}, L}).

(For this and the lemma below see [RR].) This result can be easily proved
by induction on dim X or by using the following

LEMMA 2.1. Let L e A(X) be arbitrary. Then there exists orthogonal
decomposition X =Z;‘=0X , into symplectic subspaces such that L,=
2L~ X, and

(1) OnX, L =L,=1L,.

(2) On X,, L,= L, and they both are transversal to L,.
(3) OnX,,Ly=L,and L,nL,=(0).

(4) On X,,L,=L,and L,~nL,=(0).

(5) On X,,L,,L,, Lyare mutually transversal.

From these one deduces the following ecasily.

LEMMA 22. Let o,,0,eSp(X) be arbitrary. Then there exist
2., 8, 8€P and x,, k,e SpX such that g, x,g=0,,8 'k,g,=0,, where
K1, Ky have the following special form: there exists a partition S; (0< j<4)
of {1,2,...n} such that in the decomposition X = XX, one has

k, =diag(/, 1, 1. 1, v.), Kk,=diag(l, 1, 7, 1, 7).

Here the isometry class of y is uniquely determined by the property that
sgny=Inert(V,o, 'V, 0, V).



THE MASLOV INDEX 215

A proof is easily given on the basis of the observation that «, and x, are
constructed so that the triplet V, a, 'V, 6,V and the triplet ¥, k, 'V, k, V
are in the same G-orbit (for detals see [RR]).

24. We next establish our notation about the metaplectic (projec-
tive) representation and also, a few facts about the construction of what we
call the standard model of it (associated to a symplectic basis of X).
References for this part are [Fo, L-V, G-S, Sou, L, H] and the original
papers of [W,S]. For thec Hiesenberg group X xR with group law
(z, 1)z, ')=(z+ 2, t+ 1"+ wl(z, ")), we use as the Schrodinger represen-
tation, the following: if z=2p,e,+ Xq,e* or z=(p, ¢), then

\'(p, q, 1)/ (X)z()?_m’l+2mp~(\ 1 2!:/]‘('\,_ q) (27)

for all fe #(R")=%(V*) the Schwartz space. (This is the Fourier trans-
form of the representation p considered in [Fo].) Note we write v(p, g) =
v(p, ¢, 0). Now the Lie algebra of the Hersenberg group is X@® R with the
identity map serving as the exponential map and the Lic bracket being
((z, 1), (2, )] = (0, oz, ='}). Then the infinitesimal representation of v is v
and on the Schwartz space we have

¥e,) = 2mix,, ve¥f)= ——. (2.8)

Now the group G acts as automorphisms of the Hersenberg group via
6-(z,t)=(0-z,t) and by the Stone-von Neumann theorem, the two
representations v and v-o¢ are unitarily equivalent. These intertwining
unitary operators are determined only up to a scalar multiple and one gets
in this way a projective representation of G known as the metaplectic or
oscillator projective representation. These intertwining operators where
written down explicitly for special elements of G, for example, in [W] itself
(or any of the other references mentioned earlier). We recall these. If

o =(§ %)e P, then one can verify that the operator

r(e) f-(x)=|det 8| " exp(inf'a[x]) f(5 '-x) (2.9)

intertwines v and v o or r(o) v(z) r(e) '=v(o-z)-and moreover r(s,0,)=
r(¢,) r(c,) for all 6,, g, P. Next similarly by direct verification, the inter-
twining operator corresponding to 1, is #—the partial Fourier transform
corresponding to the jth variable, i, for any subset Sc {1,2,..,n}, the
partial Fourier transform % corresponding to the variables X, JeES is
defined as

Fs([1® ) xs+xg)=Ff, - (x5)® fr(xs) (2.10)
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where fie ¥ (V¥), f-€ #(V¥). The Fourier transform in .#(R") is defined
according to the formula

e () dy. (2.11)
L

If you now define for 6 = .t e W

Hoy= Fh ... Fho (2.12)

n

then r(s)v(z)r(e) '=v(o-z) and r(o,0,)=r(c,) r(c,), if 0,, 0, W. In

particular r(t)=# is the Fourier transform on R” (note t=1,-1,---1,).
Since G = PWP, the operators corresponding to other elements of G can be
written down. This is how, for example, the operator for o =( %) with
det 7 # 0 is written down in [W ]. The following fact was observed n [RR].

ProrosITION 2.3. If w,w'eW and g,.g,. 8, 85€P are such that
g1Wg,= giw'gs, then

r(g) riw,) r(gy) =r(gy) riw’) r(gs). (2.13)

In particular this shows that there is a well defined and unique choice of
intertwining operators 6 — r(a) such that r(a) is given by (2.9) when o€ P,
and by (2.10) when o € W and has the property r(g,6g,)=r(g,) r(c) r(g,)
when g,, g,€ Pund o eG.

Since this fact is not mentioned in any of the above books and the article
[RR] is not published we will give a brief sketch of its proof. It is easy to
see (since any we W is of the form w=1. g for some ge Wn P) that the
verification of (2.13) reduces to checking the following two statements

(1) IfS,,S, are two subsets of {1,2, .., n} with |§,|=|S,| and ¢ is
a permutation of {1, 2, .., n} taking S, to S, dnd g=1(; “) then ge P and
875, 8 ]=ng and r(g)-r ( W) =rltg)r(g).

(2) If g, g'€ P are such that gro=14g’, then

rig)ritg)=ritg)rig’). (2.14)

Actual verification of (1) is straightforward. For (2) we need the
following

LEMMA 24, Let P'=Pn(t;'Ptg). Then geP or both g and
x fi

g =1 'gts belong to P if and only if g= (3 %) (eP) has the form (in the
decomposition V=V + Ve V*=V¥ ¥+ V%, S being the complement of S)

2, 0 ) ( 0 ﬁx:) 8 <5|1 512)
= R = R 0: R .
(121 X322 A By B 0 95
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su 0
B a0

/f'=< 0 512) 5,=<111 ‘[312)
— %y P ' 0 027 .

In particular if g= go-uy, with go=(% ), ug=1(4 *,*) then ge P’ if and
only if both g, and uy,e P'. Moreover

In this case g' = (% &), with o' = (

det(g|V)det(g'| V)= {det(g|V¢)}™

Proof of the Lemma. Observe that the matrix of t in the decomposi-
tion X=Vi+ Vet VE+VEis

(2.15)

O~ O
O O~ O
S © O
-~ o © O

If you write out the condition 7 'grg€ P, you get the formulas for g and
g'. The others follows from these.

Coming back now to the proof of (2.14) we observe that this can be
broken up into two parts according to when ge P’ is of the form g=(3 ¢
and g is of the form=({ #). In each of these cases the equality (2.14) is
easily checked by using a simple change of variables in integrals. We omit
the details.

Remark 2.5. The choice ¢ —r(s) of unitary operators introduced
above, depends only on the symplectic basis and will be called the standard
model associated to that basis. We note that this has the tensor product
property, ie, if §,,.., S, is a partition of {l,..,n} and the symplectic
subspaces X, bases, etc. (see 2.4) are naturally defined and if rg is the
standard model associated to the data X, e;,e*, jeS, then

V(U)<P=’sl(01)¢1®’sz(62) Q08 - ®rs,(¢7/)(ﬂ/» (2.16)

where o =diag(o,, .., 9,), 0,€ Sp(Xg), and 9 =9, ® - @ ¢, ¢,€ V)
This follows easily from the fact that (2.16) is easily checked when g € P or
geW.

25. The multiplier ¢(6,,0,). The standard model r(c) is only a
projective representation of Sp(X) and so there exists scalars ¢(o,, 6,) such
that r(e,6,)=c(0,,0,)r(6,)r(g,) for all ¢ ,0,eSp(X). The following
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properties of the multiplier are obvious from the definition of the standard
model.

c(g.0,8.8 '0,8.)=clo,,0;) forall a,.0,eSp(X)y (2.17)
and g,, g,. ge P.
oa,,0,)=1 forall ag,,0,e W. (2.18)

If §,,8,,...5, is a partition of {1,2,...,n} and o=
diag(o,, .., 9,), 0’ =diag(s}. .., 0;) with @, 0,eSp(Xg).
then (2.19)

('(0’,,(72)211('5,((7,,0';). (2.20)

We recall here the main calculation, already done in [W].

<-(v./.,r)=exp—%sgn s (2.21)

where v, is defined in (2.1), t in (2.3).

PROPROSITION 2.6. The five properties, (2.17)-(2.21), determine the
multiplier completely. In fact we have

oy, 02)=exp—%lncrt(V, e, 'V.ao, V),

where Inert(L,, L,, Ly) is the index of inertia of a triplet of Lagrangian
subspaces (see paragaph 2.3).

This follows from Lemma 2.2 and the properties (2.17)-(2.21) of the
multiplier (for details see [RR]). For another version of this result see
[L-V].

3. THE StiMpLY CONNECTED COVERING GROUP

3.1. In this section we discuss in some detail the construction and
properties of the simply connected covering group of G = Sp(X). (For other
presentations see [Ba, G-S,L-V] and possibly others.) The details
developed here will be used in Sections 4- 5. Let s, denote the generalised
upper half-plane = {Z = 4 + iB: with 4, B, real, nxn symmetric and B
positive definite}. Then G = SpX acts transitively on J#,, by the formula
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6-Z=(aZ+B)NyZ+3) ', where o =(3 §)eG, and the stabilizer at if, is
K. Let j(o, Z)=det(yZ + 5). Then

Ne,0y, Z)=jl0,,0,-Z) j(0;, Z). (3.1)

Let I',={y: #,-C; t}/ holomorphic and satisfies exp ¥(Z) = j(o, Z) for all
Z}. Then note I, = {2nil: [e Z}. Also in general if yy, y" € I';, then y — "
i1s a constant = 2mil, for some integer /e Z. Note also that the cocycle
property (3.1) implies that if e I',, j=1,2. then Y =y ~0,+¥,€ 1, ,,.
We now clearly have

ProposITION 3.1. Let G={(o,¥):0eG, yel,}. Then the map
(0,.¥,), (02, 5) > (0,-05, Y, Uz'*'lﬁ ) is a group law on G, with (I,,, 0)
as the identity element and (67', —y-0 ') as the inverse of (o, V).
Moreover (o,y)—> 0 is a homomorphism onto G with kernel I =
{(Iy,, 2nil): 1€ Z}. Thus as groups G/I'=G.

Next we topologize G by giving it the subspace topology of the product
G x Hol(##,). Here Hol(s,) has the topology of uniform convergence on
compact sets. Then G is a topological group, I' is a closed, discrete central
subgroup, and G = G/I" as topological groups. From general theory, G is
also a Lie group with the same Lie algebra as G. We will next show that
G is connected. This needs some preparation. It is known that ¢ = j’
K—u(g)=a+iffeUn) is a group isomorphism. If 4= (5 -7) eLle
Algebra K, then ‘A,;=—A4,, and ‘4,,=A,,. Then j(exp A, il)=
det u(exp A)=exptr(4,, +id,)=expitr(4,;). Thus if Yyerl,,,, then
Y(il,)=itr(A ;) +2nil for some integer /. Thus there exists a unique
element in I, . to be denoted by ¥, such that y ,(il,)=itr A,,.

LEMMA 3.2. Let A€ Liealg K. Then the map t(eR)— (exptA, ¥, ) is a
continuous homomorphism. In particular exps A = (exp A, ¥ ,).

Proof. Tt is sufficient to check that t+—&,=(exptA4,y,) is a
homomorphism. The rest follows from the general properties in Lie
Groups. Now

G, G,=(exptyAdexpt, A, 4-€xp 1, A +_([/,M)= (exp(t; +1,) A, )
say. Then ‘/’ € [‘cxp(ll +1)A and lﬂ(il,,) = ¢1|A(i1n) + W:;A(iln) =itr((t1 +1,) A).

Thus from the definition, y =y, , ,,)4 and 6, -¢,, =6, , ,,.

PROPOSITION 3.3.  The group G is connected and simply connected.

Proof. Note G is connected. So to show that G is connected it is
sufficient to check that /"< connected component of the identity in G.
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In fact we show that /'cexpg(Liealg K). Let H,=(5 ,°), where D is a

diagonal matrix. Then exp 2nH , = (<3370 sn2"Py=1,,, if D has integral
entries. Thus if D is an integral diagonal matrix, then exps2nH p, = (/5,, 2nil),
where /=tr D. Thus I"c expg(Lie alg K) and G is connected. Thus G is a
connected covering group of G and I is isomorphic to a quotient of n,(G).
Since 7,(G)~ Z, it follows that G is the simply connected covering group

of G.

The same argument also gives the following.

LemMA 34. (1) Let K be the inverse image of K in G. Then K is con-
nected and simply connected. The map (o, Y )(€K) = y(il,) is a continuous
homomorphism of K onto iR.

(2) If 6,,0,€ K commute and é,, &, are two elements sitting above
6,,0,in G, then 6, and &, also commute.

For the proof we just note that K fixes i/, and this gives the
homomorphism property. As for part(2), consider (o, ¥ )0, ¥,)
(01,4,) '=(0,0,0, ', y)say. Then Yy =y, ~a,-0, ' +4,°0, ' —¢,-0, .
Evaluating at il,, gives Y(il,) =y ,(il,) or (6,0,0, ', ¥)=(0,, ¥,).

3.2. We now consider the subgroup W—the inverse image of W in
G. First consider the element t=(Y /)e W. Then j(r, Z)=det Z. Let
Z —~trlog Z be the unique holomorphic function on J,, such that
exp(trlog Z) =det Z and trlog(il,)= inn/2. (This function and its proper-
ties are discussed in the Appendix.) Then we define

T=(1,tr log)e@. (3.2)

LEMMA 3.5. For any subset Sc {1,2,.,n}, j(t5, Z)=det Zs where Z
is the S x S submatrix of Z. In particular trlog Zse I',. and we define Ts=
(15, trlog Zs)e G. In particular T,=(1,,logz,), z; being the jth diagonal
entry of Z.

Proof. We regard Z as a linear transformation of (V*)* to V¢ (the
complexifications). Write Z=(“* :) in the decompositions V="Vs+ Vg
and V*=V¥+ V%, Then from the matrix form (2.15) of 15, we get
Jj(ts, Z)=det Z. The rest is clear.

COROLLARY 3.6. For each j. (%)*=(l,,, 2ni}--a generator of I.
Moreover (%,)° = (12, in)e P. Also the s commute and Ts=[] .. In
particular

W={@@) (5, k,,..k,eZ}. (3.3)
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Proof. Note (g, ) — y(il,) is a homomorphism on K. Since r7=12",
and ;€ P, the statements about (7)* and (7,)* follow. Clearly the #/'s
commute by Lemma 3.4 and by evaluatmg at il,, one establishes that 7
is the product of the s with je S. Note W is a commutative subgroup
containing I, with image W in G and so is the inverse image of W.

Next consider P--the inverse image of P. Note the connected component
P' of Pis ={g=(; §)eG:det3>0}. Note for geP, j(g, Z)=det?
is a constant. Thus if (g, y)e P, then y is a constant and in fact
¥ =log |det 8| + inm where m is an integer such that (—1)" |det 6| = det 6.
Note that (g, ¥) > Y € R+ inZ is a homomorphism. In particular m(g) =
m=(l/m)Imy, (§=(g,¥)) is also a homomorphism of P with kernel
(P)* -—the connected component of 2. In fact (P) = {g=(g, logdet )
ge P’} Clearly P is the semidirect product of (P ) d a discrete subgroup
1somorph|c to Z. In fact m("”‘ y=k,sothatif I''={i*:keZ}), then T I
and P=(P)"-1".

3.3. We now consider double coset decompositions. Let &, be the
inverse image of Q, (see 2.6). Then

Q=P Pif|S|=j and G={) @, (34)

ProposiTioN 3.7, Let @,,,=(P) #s5"(P). Then &,,, n8Q,,.#T if
and only if m; = m,. Moreover Q Uy cmex Q, IS the decomposition of
Q into its connected components, each Q, . being open in Q

Proof.  For the first part it is sufficient to check the following. Suppose
g 8, €(P) and

FE MG = F.7™ then m,=m,. (3.5)

Clearly the equality (3.5) implies that

Since (o, ¥) — ¢ is a homomorphism of P into C, we have
(&) '=Wg)" imn—logdet(g,|V)—im,n) (3.7)

(note g, g, € P* and so det(g,|¥)>0). Now the relation (3.6), using the
multiplication law in the group, becomes grsg’ '=1g and

log(det(g| V) +trlog(g’' ' - Z)s—log(det(g, | V) + in(m, —m,)
=trlog Z,.
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We thus have
(m, —m,) n=Imag. partof {trlog Z,—trlog(g’ ' -Z)s}.

We now compute (g’ '-Z)s. Now g’ = (% %) implies

g L Z=(8-Z-B)x) =02
Zy ). (3.8)

where in the last step we have used symmetry of Z and g’ '-Z
Now grog’ '=1 and so we can use Lemma 2.4 and if Z=("* ) in the
decompositions V=V + Ve, V¥*=V¥+ V¥, we get

g ].Z___(I,“ 0><ZS *)(1“ *)+<0 *>.
* % * % 0 = * %

Thus (g’ '-Z)s="x,,-Zsx,,. From the property of tr log (see Appendix),
trlog(‘a, Zsay,) =trlog Zs +log(det 2,,)°. From this we get m;=m

Note for the second part Q,=PiP= (P)y’ t1oI(P)°, where I''=
{#2":meZ}. Thus Q, is the union of @,,,. From general theory at least
one of the (P) double cosets in €, is open. All these double cosets are

homeomorphic since Q,_,,.—Q,Or . These facts imply that &, are
precisely the connected components. ||

Remark 3.8. The double coset (P) £,72"(P)" depends only on |S| = j,
rather than on the particular set S. To see this, note that there exists a
£e SO(n) such that grg g '=1g if |S,|=1S,l, where g=(§ ). Then
g=(80)e(P) and i 3~ ' =1,

DEFINITION 39. (1) For any 6= (0, y)e G, define j(6)=jif €8, or
equivalently j(6)=n—dim(c -V V)
(2) Define m(6)=(1/2) j+kif6eQ,,.

Note j(6)=0 if and only if Ge P. Also if g~=(g,://)el~’, then m(g)=
(1/n) Im  is integer valued homomorphism of P. In addition we have

H8&:1682)=j(G),  m(£,68,)=m(&,)+m(G)+m(g;) (39)

if §,, §,€ P. Moreover if ¢ =% ... % then j(6) =S|, where S={/:k, is
odd} and

m(&)z%(k,+ +k,,)=7lrlm v(il,), (3.10)

if 6 =1{(0, ). The last step follows from the observation &=fsff" ~~~f:5=

Tt g, with ge (P)°, where =k + --- + k|, each k/ being even.
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34. The above construction of a simply connected covering group
G depended on the choice of a fixed symplectic basis. Now we discuss how
this construction behaves under direct sums. For this purpose we identity
J, as linear maps of (V*)® to V* relative to the bases e, .., e* and
ey, .., ¢,. (See Section 2). This is motivated by the geometrical identification
of the generalized upper half plane .#, with the set of (strictly) positive
Lagrangian supspaces of X . In fact this identification map is Z — u, - V*,
where u,=(/ 7)eSp(X*). Note if L,=u, - V* theno-L,=L, ,for all
o€ Sp(X). Now suppose S, .., S, is a partition of {1,2,...n}. Let |§,| =
n, j=12, .,k Thus #, cHom(V¥, V). Then there is a natural map

;ﬁlmx"'x‘){m'—’y/n’ (Zl!""zk)—)z

such that Z|V§=2Z, In this case we write Z=diag(Z,,..,Z,). If
o =diag(o,, .., 6,) with 0,€ Sp(Xs), then one checks easily that ¢ -diag
(Z,,...Z,)=diag(e,-Z,, ... 0,-Z,). Moreover,
k
jlo,diag(Z,, .., Z)) =[] jla,, Z,).

=1

LemMMa 3.10.  With notation as above, let 6,¢ GS,. Suppose G;=(a,, Y,),
Jj=12,.,k Let c =diag(o,, .., 6,). Then there exists a unique Yy € I',,, such
that Y(diag(Z,, ... Z,)=WY(Z,)+ --- +Y(Z,). We write this (o,¥) as
diag(é,, .., 6,,).

Proof. Since j(o,,Z,)=expy,(Z,), it follows that j(o,il,)=
Hoy, idg) - jlo,,S,)=exp Zy,(il5). Thus there exists a unique y eI,
such that y(il,)=2y,(ils). From this one deduces easily that
Y(diag(Z,, ..., Z,)y=y(Z,)+ --- +¥(Z,). In fact exponentials of both
sides in the above equation agree and they both agree at one point. |

For any subset S, we have the symplectic subspace X with symplectic
basis {e,, e*, je S} and so we have the groups G4 = SpXy, Gy, P, Ps, W,
W, etc. Also the functions j(-), m(-), are defined analogously on G.

PropoSITION 3.11. Let 6,€Gg,S,,., S, being a partition of
{1,2,..,n}. Let 6=diag(¢,,..,G,). Then if f is any of the functions
J(-)om(-) on G then f(8) = [5,(8))+ - + f(6)).

Proof. Note that if 6=(o,y), then o¢=diag(s,,.. d,) so that
dimaVr'\ V=Xdime, -Vgn Vs or j(G)=2Zjs(6,). Next if GeP, then
= (o, w) with constant and =2y, where ¢, is also constant, since 6, =
oY )ePg From this it follows that m(G)=2Zmg (6;) if e P. Note aeP
1mplles G, € PS Thus in view of (3.9), it is sufficient to check this additivity
property when g€ W for all j. In this case using (3.10), we have m(¢) =

1/2)¢(11)—(1/2)2¢(11s =2Zmg(d). 1

5&0°107 1-15
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LEMMA 3.12. Let ye 2, be a n xn, symmetric real matrix with det y #0.
Let v,=(!Y) and define & =%i T ', where u,=(; 3. &,=(u,,0), and
T=(t.trlog). Then m(f. )=(1;2)sgny=(n'(y)—n (3))/2 where n*(y) is
the number of positive (negative) cigenvalues of 7. The same formula holds
for all .

Proof. Suppose .= (r., ), then from Proposition 3.1 it follows that
Yy(Z)=trlog(—Z '—7)—trlog(—Z '). Next v.=g-t-u,, where
g=("’0I ’) Let ¢ denote some element in G above g. Then £ =g T4,
(1., 2nil) for some integer /. Thus m(£.)=m(g)+m(7) 2= (1/2)n+k + 2/
where g = (g, log |det ;| + ink). Now

gtu, 1= (v, log|dety| +ink +trlog(Z +7 "))

Thus . (Z)—trlog(Z+7 ')=log|detyl + in(k +2/). From the result in
the Appendix (Proposition A.2) we get k+2/= —n (7). |

Finally we note the following calculations of m(é). The proofs are
omitted.

LemMa 3.13. (1) Let o=(* #) with dety #0. Let 6 = (0, Y )€ G. Then
Y(Z)y=log |det 7| + trlog(Z+ 7 '8) + ink, for some integer k, such that
(—1)Y* |det ¥| = det 3. Moreover, m(¢)= (1/2)n+k.

(2) Suppose instead detd#0. If 6=(o,y)eG, then Y(Z)=
log |det 8| + ink +trlog(—Z '—6 'y)—triog(—2Z '), where the integer
k is such that (—1)* |det 8| = det 3. Moreover m(6) =k + (1/2) sgn(d ™~ 'y).

4. THE MAIN THEOREM

The main result in this section is the lifting of the projective representa-
tion ¢ = r(g) of G, by an explicit formula, to an ordinary representation

of G.

THEOREM 4.1. Let b(6) =exp — (in/2) m(G). Then
c(o,, 0,)=b(G,) b(G,)(b(,65)) "
In particular 6 — r(G) = b(&) r(o) is a representation of G.

Proof. Let h(é,,6,)=m(G,)+m(6,)—m(6,6,). Then the property
(3.9) implies that A(d,, &,) actually depends only on o, 05, rather than on
the elements G,,d, sitting above them in G. So we write A(a,, 0,)=
h(é,, &,). Next the same property also implies that h(g,0, g, g '0,8:) =
h(c,,0,) for all g,, g,, ge P. Next the additivity property (Proposi-
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tion 3.11) of m(-) implies the additivity property of &, 1., if S,,..., S, is a
partition of {1,2,..,n}, o,=diag(s,,, .., 0,,) and ¢, =diag(c,;, .., ),
then h(o,,0,)=2h(0,;,0,). Next the function m(-), being a
homomorphism on W, it follows that h(c,,0,)=0 if 6,,0,€ W. Now
suppose h'(g,,d,)=(1/2)Inert(V,o, "' -V,0,-V). Then h'(c,,0,) has
the same properties (see Section 2). Thus from Lemma 2.2, it would follow
that h(o,,q,)=Hh(c},05) if we show that A(v.,1)=h'(v., 7). Now
from Lemma 3.12, m(&,)=(1/2)sgny, m(#,T)=m(T-d_ )=m(t), since
ii .e(P). Thus hA(v,,t)=(1;2)sgn;. On the other hand, one checks
directly from the definition of index of inertia that #'(v,, t)=(1/2)sgn .
Thus A(s,,6,)=h'(0,,0,) for all 6, 0,. The thcorem now follows from
Proposition 2.6.

Remark. (1) 1f o=(l,,,2nil)e I, then m(¢) =2/ and 1(6)=(—1)"id.
This gives the well known fact that the metaplectic representation is
actually a representation of the 2-fold cover G/I"°, I'” = {I,,, 2ril): | even},
of G.

(2) Ifg=(g ¥)eP. m(g)=(1/n)Imy, and
MBS ()= Uepipa (D60, i =) ff)
and similar formulas can be written down for o = ( %), det 7 #0, etc.

(3) Note the additivity property of m over direct sums (see Proposi-
tion 3.11) implies a tensor product property for the representation 6 — ().
(See Remark 2.5.)

(4) The proof of Theorem 4.1 actually gives that
Inert(a, -V, a,V,0,-V)=2{m(G;'6,)+m(G,6;) —m(d, 'G,)}.

Since Inert(o-L,,0-L,, 0 Ly}=1Inert(L,, L,, L;) for all a€G, it follows
that

Inert(o, - V,0,-V,0;-V)=Inert(V,0;'a, - V,0, 'a;- V)
= 2{”1(62 161 ) + m(6| 163) - m(&z_ 163)}'
In this connection compare Leray [L, Chap. 2].

We note next a simple formula for r(6)F,, where F,(x)=
expinZ[x],Ze #,. Up to an ambiguity in the phase factor, this is
discussed in [Fo, p. 202]. (See the references cited there.) In our set up,
this takes a simple form.

PROPOSITION 4.2. For any 6=(o,y)eG and Ze X,

r(&)F-,;=e |l'2)l#(2)1.‘(7 .
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Proof. The formula is easily checked for 6e P and 6 =1%. Also both
sides arc additive over direct sums, so the formula is valid for ¢ = 7,. Also
the validity of (4.1) for G, &, implies its validity for &,6,. So it is valid for
all 4.

Remark. This proposition gives the well known fact that if ek,
(6)po=e "Wy, where ¢,=F,, with Z=il, Also the matrix
entries a(6)=(r(6) F,,F,,) can be easily evaluated and in fact=
{exp(—(1/2)Y(Z,))}{del(—i(g-Z,— Z,))} "2 Various other evaluations

are possible, but we do not pursuc it here.

5. THE MasLov BUNDLE

We begin with some remarks on notation, etc., on homogeneous linc
bundles. Let G be a Lie group, H a closed subgroup, and y a quasi charac-
ter of H, ie, ye Hom(H, C*). Then the homogeneous line bundle over
G/H, associated to y may be constructed as follows: let G x, C denote the
set of H orbits in GxC, with H acting on the right by (g, z),
h—(gh, x(h)y 'z). Let (g.z)H denote the H-orbit of (g z). Let
n: (g, z) H=gHe G/H. With quotient C “-structure on Gx C, it is a
smooth line bundle over G/H. Then G acts on Gx, C, via g,,(g. )
H — (g, g z) H and this action is equivariant with the natural action of G
on G/H. This construction gives a bijection between homogeneous line
bundles on G/H, and quasi characters of H. If {U,} is a contractible open
covering of G/H, with k,:U,—> G smooth cross-sections, then s,:
xH = (x,(xH), 1) H is a smooth local section over U',, and the transition
functions ¢, (xH) are computed as ¢, (xH)= y(x, '"(xH) k,(xH)). Notc
s,=c,-s,0n U,n U, As a homogencous line bundle, G x, C is trivial if and
only if y is trivial, although as a (smooth) line bundle over G/H, it may be
equivalent to a trivial bundle, even when y is not trivial. In this connection
we note the following.

LeMMA 5.1.  If G/H is compact and there exists n€ Hom(H, C) such that
y=¢", then Gx,C is equivalent to a trivial line bundle.

Proof. Let ¢ € C”(G), such that f,, @(xh)d,h=1for all xeG. (This is
possible since G/H is compact.) Here d,h stands for left invariant Haar
measure on H (see Helgason [H]). Let

fix)=] olxh)nih) dih.

Then f(xh) = f(x)—n(h) and if you write ¢, =exp(— /" k;) on U,, then one
checks that ¢;=a;a". Since the a, are smooth, this implies that the line
bundle is trivial.
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We next give the natural line bundle associated to the metaplectic
representation. Using the notations introduced earlier, define for each
Ae A(X), the space E, of tempered distributions, E,= {ueS'(R"):
v(z)u=0 for all ze A}. Here v is the Schrodinger representation and v is
the corresponding representation of the Lie algebra of the Hersenberg
group. Thus, for example, one checks easily that E, = Cé,; here §, is the
Dirac distribution at the origin. From r(o)v(z)r(c)~'=¥(g2), for
g€ Sp(X), ze X, it follows that E, ;=r(c) E; and so E, , =Cr(c) b, ()
being the projective representation of SpX, introduced in Section 2. Thus
dim E; =1 for all Ae A(X). If § — r(G) denotes the metaplectic representa-
tion (see Section 4), then we have seen that for §=(g, ¥)e P (note ¥ is a
constant), r(g)=(exp—(1/2)Imy)r(g) and the formula for r(g), ge P
gives 7(g) 8o =|det 3| ~'* 8, if g= (% %). Since Re y =log |det 8], it follows
that

(&) 8o =1x(£) 0o,  where y(g)=e 2. (5.1)

Note that (g, )= g — ¢ is a homomorphism of P into C and y is a quasi
character of P.

Let E=E,={(Au)AeA(X),uecE,}. Now A(X)=G/P. Then the
map @:Gx,C—E, defined as &:(6,z) P—(0-V,2zr(6)6)€E, is a
bundle map, linear on fibers. It is also a bijection. We will endow E with
the structure of a smooth line bundle over 4(X) by requiring @ be an
isomorphism. Note @ also intertwines G-action, with the natural G action
on E, defined by 6-(,u)=(c-4 r(6)u), for (L, u)eE and 6eG. If
{Us, peZ,} is a contractible open cover of A(X), with Kg: U,;—»G,
smooth cross-sections over Uy, then a smooth section (frame) over U, is
sgiA— (4, r(xg(A)) Jy) and transition functions are

)= x5, (A) 7Kg (4)). (5.2)

Note sg,(4) = cg, 5,(4) 55,(4), for Ae Uz n Uy, We will now compute the
transition functions ¢y, 4, explicitly for a specific choice of Uy, k5. Let 2,
denote the set of all nxn, real symmetric matrices. Let V, V* be the
Lagrangian subspaces introduced earlier (Section2). If A4, (X)=
{AeA(X):AnAi, =0}, then N, ={ceSpX:s=idonl,} acts transitively
on A,,(X). Now Ny ={us=(§ D):peZ,}, Nyo={v,=(] 9:yeZ,}. Thus
Ay={ug-V*:peZ,}. We write Az=uz-V* and Ug=4;,X). Then
{Us: BeX,} is an contractible open covering of A(X). Actually U, is a
coordinate open set and to describe it, note Ve Uy, since ¥ n ;= (0) and
N, acts transitively on Uy, Now N =usNyup'={ug-v,-uz'vex,}.
Now ugv,-uz'-V=uz-v,-V. Thus Ug={u,-v,-V:yeZXZ,}. One checks
that the map A=uzv,- ¥V >y is one to one on U and gives a param-
etrization of Uj. Define the smooth cross-section wy: Ug— G by
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L=ug-v - Vi, . where iy = (uy, 0)e G and §,=tu_.7"' To compute
the transition functions we need the following.

LemMma 52. Let i=uy v, -VelU,. Then /€U, if and only if
det(/—7y,B)#0, where B=B,—f,. In this case r=uy -u,-V, where
ya=U=18) '3

Proof. Suppose A=ugev, -V=u,- v, -V. This is equivalent to
(u,,lv.“)' (ugv..)ePorv uze. eP where B=p.—f,. Now

Eouer _< I+ B7s, b )
ANt — U= B 1=78)

=B va=7 and "U+By)- U~y 8)=

and the lemma follows.

PROPOSITION 53. If i=ugrv, -V=uy u, VeUy Uy, and ky(2) !
Kp(2)=(g W)€ P, then

Y =log |det(/— 7, B)| + Sim(sgn(y,) — sgn(y,)).

Proof. Now w,(4) ! Kpl(Ay=1T_, 4yt = (g ¥) Now suppose we write
£,=(v,,¢,)=7%i _.T ' Recall f=(r,trlog)and ¥ '=(r ' —trlog-t ').
Sincet-Z=1 '-Z= —Z""', we thus have

Y,=(trlog) - u . 1 '—(trlog)-t
or

Y.(Z)y=trlog(—Z '—7y)—trlog(—-Z ') (5.3)

Next (g, ¥)=(v ,.¥ ,Nuy0 (Lw,,wlz) and so Y=y  ougev ,,+¢,:.

Or since  is a constant, ¥ = ¢ ~v_,, =¥ _  ~uy + ¢, n=

Y_ . (Z+B)+ Y. (Z(—y,Z+1) ") Substltutmg for ., and y_, we get
Y=trlog(—(Z+f) "+y)—trlog(—(Z+p)7")
+trlog(—=Z ')—trlog(—2Z '+7,) (5.4)
Note if 7, or y, is =0, then the other one is also 0 from Lemma 5.2. In that
case ¥ =0. Suppose i , #0. Then there exists an xe O(n), such that

ay,a” = ("‘ ) where 7 is a k x k, symmetric matrix, with det y| # 0. If we
now write oz/iac "=(#:), then

_ L=\, =
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If you now define 75=(/, —y;#’) '7.. then one checks, 2y,a "' =(%§ ).
Moreover dety,#0 and det(/— 7, B)=det(l, — 71 8') = (det 7\ )(det y5) "
We now use Proposition A.2 of the Appendix to simplify (5.4). Note
W Z+B)a '=(71" ). Thus

¥ =trlog((Z+p) —7i~')+log |det 7i| —inn~(=7))
—{trlog(Z' —+5;" ") +log|det 35l —inn (—77)}.
Now (3) '=(:1) " (—3if)=(51) ' =B Also (Z+p)'=Z'+J. Thus
Y =log |det yi| —log idet y5| +in(n (—=32)—n (=71))
Now n (—y2)—n (=y)=n'(y)—n"(7)=(1/2)(sgn7.—sgny,) 1
COROLLARY 5.4. With the same notation as in the Proposition above,
Cppl7) = det(g| P)i! 2 ermsemn semiai,

Proof. Since g=(;; | , ) (sec Lemma 5.2), det(g|V) = (det(I, —7,, B))” !
the corollary follows from (5.1), (5.2), and the above proposition.

Remark 5.5. Consider the line bundle G x A C. Here [x(8)=
exp(—(1/2) Re y) = |det(g| V)|'? if §=(g ). Then the line bundle
G x,, C may be identified with the half-density bundle D' on 4, ie,
the fiber at A(/ie A(X)), (D'?), =set of translation invariant half densities
on 4. For example, the translation invariant half densities on V is a one
dimensional vector space over C with the generator denoted by
ldp, A --- Adp,|"2=1dV|'?, p,, ... p,, being coordinates on V. The line
bundle equivalence between G x,,,C and D'’ is defined (as for E) by
(G,2)Po(a-V, z(c ")* |dV|'2)eD' *={(4,d): ~e(X),de D}?}. Note
(6 ~')* is the pull back operation. Note the G action on D'? is the natural
one, 6 -(4, d)= (a4, (6~ ")* d), d standing for a half density on 4. Similarly
let yo=y/lx} where the quasi character y of P is (as before) defined by
(5.1), and define

M=Gx,C. (5.5)

It is clear that M has transition functions
. . R in
iy mlA)=xolK ' (A) K py(4)) = exp 7 (sgni —sgn ). (5.6)

Clearly as homogeneous line bundles, E= D'2®@ M. Note all the line bun-
dles E, D', and M are all equivalent to the trivial line bundle, in view of
Lemma 5.1. We will presently identify M as the Maslov bundle, as formally
defined by Hormander (see [Hor, Vol. II1, p. 334]. In this connection note
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D'*®D'? is a bundle of translation-invariant densities on 4, 4 e A(X),
while E® E is the bundle of (translation-invariant) volume forms on 4,
AeA(X). Thus E may be considered as the bundle of (translation-
invariant) half-forms on A(X). (In this connection see [B, G-S, Chap. 5].)

We now recall Hormander’s definition of the Maslov bundle. Let
fgs Ay Ay A2 In A(X), be such that /., and 4, are both transversal to 4,
and 4. Then Hormander defines (see [Hor, Vol. III, p. 334])

L. 1 -4 1
(7(/.0./.;/.2,/;,)=;sgn< / —B)’ (5.7)

where 4 and B are symmetric matrices arising in the defining equations of
/5 and 2; ie., let x, £ be symplectic coordinates on X such that

io={x=0}, i,={¢=0}, i,={¢=dx},  i={x=B¢}

The Maslov bundle is defined as the bundle corresponding to the local data
{A,(X), &, 3 215 A2€ A, (X)} where

) L.
g,.:.4)=cxp 7‘7(/-0»/-;41’/~:)

for ieAd; (X)nA4,,(X). To show that this gives the same bundle as M
above, we choose i, =V and work with coordinates p, g associated to
our fixed symplectic basis (see Section2), so that V={¢=0} and
V*=1{p=0} Let Z\ =4y =uy-V* Ap=ug-V* and i=ugv, -V, see
notation introduced earlier in this section. Then the defining equations
are V={q=0}, 4, ={p=P.q}, r={p=Prq},and i={uy v, -zizeV}=
{p=U+B,7,)z,g=7,z for some e V). If now we let x=¢q and =
p—PB.q, then x, ¢ are symplectic coordinates on X in the sense of
Hormander and defining equations become io=V={x=0}, 4 =/, =
{E=0}, Ay =4 ={&=(B,—B,) x}, and i={x=7¢}. Thus the 4 and B
arising in (5.7) are 4 =§,— f, = (earlier notation see Lemma 5.2) and
B=+,.

LEMMA 5.6.  With the above notation sgn( * 'g)=sgn(y,)—sgn(y,).

Proof. Choose an xeO(n), so that 7,2 '= (% 9) with dety; #0.
Write  «fa~'=(j!! £2). Here 7, and f,, are kxk matrices. Let
F=(/* !, and let

Ik’ 0’ )‘; : [512

Oa 07 Oa In k
H=

0, 0, I, 0

0* In ks Oa %ﬂZZ'
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Then one checks that

_B11+(’y[l)vls Oa Oa 0

0, 0, 01 In—k

t —
HFCH)= 0, 0, -7, 0
0’ ]nflﬁ 0’ 0
Thus
_ _ﬂ11+(’y/1)71’ 0 0 Invk
sgn F= sgn( 0, —y + sgn L. 0

=sgn(—f,; + (1)~ ") —sgn(y}).
Now —B,,+ (1) '=(y4" ') (see the proof of Proposition 5.3). Thus
sgn F=sgn(y;) —sgn(y;)=sgny,—sgny,. |

CoROLLARY 5.7. The line bundle M is equivalent to Hormander’s Maslov
bundle.

Finally we remark that E= D'>® M also implies that M = EQ (D*'/?)*,
where (D'?)* is the dual line bundie of D' This dual bundle may be
identified with the bundle of half densities on A*, e A(X). This identifica-
tion gives rise to a description of the bundle M as given in Hormander
[Hor, p.332]. In connection with the material of this section see also
[Duis, G-S1.

APPENDIX: ON THE tr-log FuNcTION

PrROPOSITION A.l. Let i, denote the generalised upper half-plane con-
sisting of all n x n, complex symmetric matrics Z, with Im Z > 0. Then there
exists a unique continuous function denoted by trlog on X, with the
following properties

(i) exptrlog Z=det Z;
(i1) trlog(il,) =inn/2; moreover this function is holomorphic and
satisfies
(iii) trlog(aZ'a)=trlog Z +log |det «|? for all xe GL(n, R);
(iv) if Z=diag(z,,..,z,), with z;eC,Imz;>0, then trlogZ=
2log z;.
Here log z is the principal logarithm of the complex number z.

Proof. Consider the map ¢: GL(n, R) x R"— #, defined «, (a,, .., a,)—~
adiag(a, +1i, .., a,+1i)-‘a. Then this map is surjective. Moreover if
a diag(a, +1i, ..., a,+ i)' a = f diag(h, +1i,.., b, +1i)-'B, then it follows
that 8~ 'x€O(n) and a,, .., a, is a permutation of b,,..,b,. Thus the



232 R. RANGA RAO

function H(x, ay, .., a,)=2log(a,+i)+log|det z|* is a continuous
function which is constant on the fibers. From this onc deduces casily that
there is a continuous function & on #, such that H(x, a,,..a,)=
h(x-diag(a, + 1, ..., a, + i) - ‘a). One checks easily that the function #/(Z) on
#, has the stated properties. We will write A(Z) as trlog Z the trace of
the (principal) logarithm of Z.

Remark. Actually this function can be exhibited as the trace of a
matrix, which can be considered as the logarithm of Z. We do not go into
this, as this is not needed. We will however state a precise result (see [V,
p. 111]). Let Q={geGL(n,C):spec gc T (—x,0]},w={Aegln Cy:
spec A< (4Le{:|Im 2] <n)}. Then w, Q are open, and the exponential map
is an analytic diffecomorphism of w onto € and the inverse map log: 2 - w
is called the principal logarithm. Note when Z € #,, Z has no real eigen-
values and in fact one checks that the function tr log Z, introduced above
coincides with the trace of log Z, for Z e #,. An analytic formula for log
1s given in [Sou-2].

PROPOSITION A.2  For a real symmetric matrix p,
trlog(=7 '—p)—triog(—=Z ") —trlog(Z' +p ")
=log |det p’} —inn (p),

where n (p) is the number of negative eigenvalues of p and matrices p' and
Z' are defined as follows. Let a€ O(n) be such that xpa b= (% 9. with
detp’ #£0: and let Z' be defined by 2Zx ‘'=(7 ). In particular when
det p #0, we have the identity

trlog(—Z '—p)—triog(—Z ')

=trlog(Z+p "Y+log|detp|—inn (p).

Proof. Let y(Z) denote the left-hand side, then exp y(Z)=det p', as is
easily checked. Thus (Z) is a constant. So it is sufficient to evaluate it
when Z = il,. Because of property (3) in Proposition A.1 of tr log, we may
assume that p is diagonal = diag(p’, 0). Then Z'=il,. Thus

Y(il,)=trlog(il, — p)—trlog(il,) —trlog(il + p* ')
=trlog(il, —p')—trlogil, —trlog(il,+p — 1)
k
Z log(i—a;) —logi—log(i+a, ')}.

Now
log(i—a,)—logi—log(i+a, 'Y=logla,| —inn (a,),



where n

(Al

[Ba]

(B]

[B-W]

[Duis]
[Fo]
1G-S]
[(H]
[Ho]
[Hor]
[(K-V]
(L]
[L-V]
(M]

[P]
(Raw-Ro]
[RR]

(s]
[Sou-1]

[Sou-2]
(v]

[(w]
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(a)=0if a,>0and =1 if a,<0. Thus
W(il,) = log Idet p'| —itn (p).
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