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The following report is a brief and elementary account of a generalized Galois
cohomology for generalized algebraic groups which takes into account the in-
separability as well. We assume a ground field k of characteristic p # 0, because
our theory reduces entirely to the classical one in the characteristic zero case.
Much more general results have been obtained by M. Artin and A. Grothendieck

(see [1]).

1. Definition of an algebraic group. Our algebraic groups are the same as the
affine group schemes of finite type considered by A. Grothendieck and his school.
We use the functorial point of view to define them. Namely, let U, be the cate-
gory of commutative k-algebras. An algebraic group G is a covariant functor
from U, to the category of groups which is “representable” in the following sense :
there exists a pair (Ao, go), where A is some finitely generated algebra in W, and
go an element of the group G(A,) such that, for any object A of U, and any g in
G(A), there exists a unique homomorphism o from A, into A such that G(c) maps
go into g. We simplify the notation by writing 7 - g instead of G(r)-g when g is
in G(4) and 7 is an algebra homomorphism from A to B.

ExAaMPLEs. (a) Let V, be any finite-dimensional vector space over k, and V,
denote the additive group ¥, ® ,4 for any object 4 of U,. The functor V is called
the vector group associated to V.

(b) If E, is any finite-dimensional k-algebra, commutative or not, we define
E} as the multiplicative group of the k-algebra E, = E; ® ;A. This defines the
multiplicative group E* of the ‘“‘algebra-variety” E.

(c) Let n be an integer. For any object 4 in ,, let GL,(A4) denote the group
of invertible n by n matrices with coefficients in 4. Besides the algebraic group
GL, thus defined, one can define in the same way the symplectic group, or the
orthogonal group of a quadratic form with coefficients in k.

(d) The algebraic group u, associates to any A the multiplicative group
consisting of the elements a in 4 with a" = 1.

The algebraic group G is called commutative if the groups G(4) are commuta-
tive. It can be shown that the commutative algebraic groups form an abelian
category.

2. Definition of the cohomology groups. Let K be a finite-dimensional com-
mutative algebra over k. For any A in U, let us define X , as the set of algebra
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homomorphisms from K to A. Moreover, let there be given a commutative
algebraic group G. By definition, an n-cochain c is a collection of functions

(1) Ca: Xy X xX,>G, (n+1 factors X,)

where A runs over the objects of U, subjected to the condition
(2) CB(JGOS ] O'G',,) =0 CA(GOs ) 0',.)

for any algebra homomorphism ¢: A — B. The coboundary éc of the n-cochain ¢
is the (n + 1)-cochain defined by

() (0)alg0s "5 0ns+1) = Z (_l)idi'cA(O'Os'"’ai—laai+ls""o'n+‘l)'
0<isn+1

As usual, we have 86c = 0 for any n-cochain ¢. We can therefore define
cohomology groups in the standard fashion; they will be denoted H"(K/k, G).
This definition includes as particular cases the ordinary Galois cohomology in
case K/k is a finite Galois extension and G an “ordinary” algebraic group, and
also the Amitsur cohomology when K/k is a finite algebraic extension and G
is ‘the’ multiplicative group G,, = GL,.

The cohomology groups H"(K/k, G) depend functorially on G and also on the
pair (K, k) in the sense that any commutative diagram

K—24>K'

v v
k a ,kl

gives rise to a homomorphism «" from H%K/k, G) to HYK'/k', G) independent
of ¢.

We can define the absolute cohomology groups H"(k, G) in two equivalent
ways. The first is to replace K by the algebraic closure k of k in the previous
definitions (the fact that K is finite-dimensional over k played no role); the second’
consists in taking the direct limit of the groups H"(K/k, G) when K runs over the
finite algebraic subextensions of k.

The group G(k) consists of the “‘rational points” of G and will also be denoted
I'(G). The functor T maps the category of commutative algebraic groups into
the category of abelian groups; the derived functors R"I" of I' are therefore
defined. It turns out [2] that R"I'(G) is nothing else than H"(k, G), which fact
entails among other properties the existence of an exact sequence of cohomology
associated to any short exact sequence of algebraic groups.

3. Some particular cases (K finite algebraic extension of k). Two important
results are the following:

(a) For any vector space V, over k and any n = 1, one has H'K/k, V) = 0.

(b) For any commutative algebra E,, one has H'(K/k, E*) = 0 (generalization
of Hilbert’s Theorem 90). The assumption of commutativity of E can be dropped
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provided one defines the first cohomology group H!(K/k, G) for a noncommuta-
tive algebraic group G as well, which causes no difficulty. Once this is done, one
can prove for instance

“) HY(K/k,GL,) = 0.

(c) One has H'(K/k, G,;) = 0 and H*(K/k, G,,) is the relative Brauer group of
the field extension K /k (that is the group of similarity classes of normal k-algebras
split by K).

Going to the limit over K, we get as a corollary:

(d) One has H'(k, G,,) = 0 and H*(k, G,,) is the Brauer group of k.

Finally using the exact sequence

0O-u,-G,»G,—-0

defining u, (with v,(x) = x" for every A) and the associated exact sequence of
cohomology, we get the following information: 4

(¢) The group H'(k, u,) is isomorphic to k™ /(k™)" and H?(k, u,) is the subgroup
of the Brauer group of k defined by the condition a" = 1.

4. Comparison with standard cohomology. Let us denote by k any algebraic
closure of k, and by k, the maximal separable subextension of k; the letter g
denotes the group of k-automorphisms of k. If G is any commutative algebraic
group, the Galois group g acts on G(k,) and G(k) and corresponding coho-
mology groups H"(g, G(k,)) and H"(g, G(k)) are defined after Tate [4]. Moreover,
there are canonical homomorphisms

H"(g, G(k)) S H(k, G)'3 H"(g, G(K)).

Using recent results by Shatz [3], one can prove that af and % are iso-
morphisms in each of the following cases (except possibly g for n < 2)

(@) k is perfect.

(b) G is smooth, that is the algebra 4, ®, k has no nilpotent element where 4,
is as in the definition of G (§ 1).

(c) The integer n is distinct from 1 and 2.
Moreover, for every n, the kernels and cokernels of of;, and B are p-torsion
groups and the different cohomology groups involved have no p-torsion for
n > 2. Finally, a}, is injective and B% is surjective.

5. Infinitesimal groups. The algebraic group G is called infinitesimal in
case G(K) is O for every field K; it suffices to assume G(k) = 0. These groups
enter as the kernels of the purely inseparable isogenies, and any information
about their cohomology enables us via the exact sequence of cohomology to
compare the cohomologies of any two purely inseparably isogeneous groups.

The basic result is again due to Shatz [3] and states that H"(k, G) is O for
n # 1,2 and isomorphic to H"™ (g, H'(k,, G)) where the Galois group g acts in
the natural way on H!(k,, G).
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