Goldbach conjecture (1742 , june, the $7^{\text {th }}$)

- We note \mathbb{P} the prime numbers set.

$$
\mathbb{P}=\left\{p_{1}=2, p_{2}=3, p_{3}=5, p_{4}=7, p_{5}=11, \ldots\right\}
$$

- remark : $1 \notin \mathbb{P}$

Statement :

- Each even number greater than 2 is the sum of two prime numbers.
$\forall n \in 2 \mathbb{N}, n>2, \exists p, q \in \mathbb{P}, n=p+q$
- p and q are called n's Goldbach components.

Recalls

- Prime numbers greater than 3 are of $6 k \pm 1$ form.
- n being an even number greater than 2 can't be a prime number square that is odd.
- n's Goldbach components n are to be found among multiplicative group $(\mathbb{Z} / n \mathbb{Z}, \times)$ units. These units are coprime to n, they are in even quantity and half of them are smaller than or equal to $n / 2$.

Recalls

- If a prime number $p \leq n / 2$ is congruent to n modulo a prime number $m_{i}<\sqrt{n}\left(n=p+\lambda m_{i}\right)$,

Then its complementary to n, q, is composite because $q=n-p=\lambda m_{i}$ is congruent to $0\left(\bmod m_{i}\right)$.

In that case, prime number p can't be a Goldbach component for n.

An algorithm to obtain an even number's Goldbach components

- It's a process that permits to obtain a set of numbers that are n's Goldbach components.
- Let us note $m_{i}(i=1, \ldots, j(n))$, prime numbers $3<m_{i} \leq \sqrt{n}$.
- The process consists:
- first in ruling out numbers $p \leq n / 2$ congruent to $0\left(\bmod m_{i}\right)$
- then in cancelling numbers p congruent to $n\left(\bmod m_{i}\right)$.
- The sieve of Eratosthenes is used for these eliminations.

A sample study : $n=500$

- $500 \equiv 2(\bmod 3)$.
- Since $6 k-1=3 k^{\prime}+2$, all prime numbers of the form $6 k-1$ are congruent to $500(\bmod 3)$, in such a way that their complementary to 500 is composite.
- We don't have to take those numbers into account.
- So, we only consider numbers of the form $6 k+1$ smaller than or equal to $500 / 2$. They are between 7 and 247 (first column of the table).

A sample study : $n=500$

- Since $\lfloor\sqrt{500}\rfloor=22$, prime moduli m_{i} different from 2 and 3 to be considerated are $5,7,11,13,17,19$. Let us call them m_{i} where $i=1,2,3,4,5,6$.
- $500=2^{2} .5^{3}$
- 500 is congruent to:

$$
\begin{gathered}
0(\bmod 5), \\
3(\bmod 7), \\
5(\bmod 11), \\
6(\bmod 13), \\
7(\bmod 17) \\
\text { and } 6(\bmod 19) .
\end{gathered}
$$

A sample study : $n=500$

$\mathrm{a}_{\mathrm{k}}=6 \mathrm{k}+1$	congruence(s) to 0 cancelling a_{k}	congruence(s) to $r \neq 0$ cancelling a_{k}	${ }^{\mathrm{n}-\mathrm{a}_{k}}$	G.C.
7 (p)	$0(\bmod 7)$	$7(\bmod 17)$	493	
13 (p)	$0(\bmod 13)$		487 (p)	
19 (p)	$0(\bmod 19)$	$6(\bmod 13)$	481	
25	$0(\bmod 5)$	$6(\bmod 19)$	475	
$31(p)$		$3(\bmod 7)$	469	
37 (p)			463 (p)	37
43 (p)			457 (p)	43
49	$0(\bmod 7)$	$5(\bmod 11)$	451	
55	$0(\bmod 5$ and 11)		445	
61 (p)			439 (p)	61
67 (p)			433 (p)	67
73 (p)		$3(\bmod 7)$	427	
79 (p)			421 (p)	79
85	$0(\bmod 5$ and 17)		415	
91	$0(\bmod 7$ and 13$)$		409 (p)	
97 (p)		$6(\bmod 13)$	403	
103 (p)			397 (p)	103
109 (p)		$7(\bmod 17)$	391	
115	$0(\bmod 5)$	$3(\bmod 7)$ and $5(\bmod 11)$	385	
121	$0(\bmod 11)$		379 (p)	
127 (p)			373 (p)	127
133	$0(\bmod 7$ and 19)		367 (p)	
139 (p)		$6(\bmod 19)$	361	
145	$0(\bmod 5)$		355	
151 (p)			349 (p)	151
157 (p)		$3(\bmod 7)$	343	
163 (p)			337 (p)	163
169	$0(\bmod 13)$		331	
175	$0(\bmod 5$ and 7)	$6(\bmod 13)$	325	
181 (p)		$5(\bmod 11)$	319	
187	$0(\bmod 11$ and 17)		313 (p)	
193 (p)			307 (p)	193
199 (p)		$3(\bmod 7)$	301	
205	$0(\bmod 5)$		295	
211 (p)		$7(\bmod 17)$	289	
217	$0(\bmod 7)$		283 (p)	
223 (p)			277 (p)	223
229 (p)			271 (p)	229
235	$0(\bmod 5)$		265	
241 (p)		$3(\bmod 7)$	259	
247	$0(\bmod 13$ and 19)	$5(\bmod 11)$	253	

Remarks :

- The first pass of the algorithm cancels numbers p congruent to $0\left(\bmod m_{i}\right)$ for any i.

Its result consists in ruling out all composite numbers that have some m_{i} in their euclidean decomposition, n being eventually one of them, in ruling out also all prime numbers smaller than \sqrt{n}, but in keeping prime numbers greater than or equal to \sqrt{n} (that is smaller than $n / 4+1$).

Remarks :

- The second pass of the algorithm cancels numbers p whose complementary to n is composite because they share a congruence with $n\left(p \equiv n\left(\bmod m_{i}\right)\right.$ for some given $\left.i\right)$.

Its result consists in ruling out numbers p of the form
$n=p+\lambda m_{i}$ for any i.

- If $n=\mu_{i} m_{i}$,
no prime number can satisfy the preceding relation.
Since n is even, $\mu_{i}=2 \nu_{i}$, conjecture implies that $\nu_{i}=1$.
- If $n \neq \mu_{i} m_{i}$,
conjecture implies that there exists a prime number p
such that, for a given $i, n=p+\lambda m_{i}$ that can be rewritten in

$$
n \equiv p\left(\bmod m_{i}\right) \text { or } n-p \equiv 0\left(\bmod m_{i}\right)
$$

Remarks :

- All modules smaller than \sqrt{n} except those of n 's euclidean decomposition appear in third column (for modules that divide n, first and second pass eliminate same numbers).
- The same module can't be found on the same line in second and third column.

Using Gold and Tucker notation in their article "On a conjecture of Erdös" about covering system of congruences

- Proving that n allways admits a Goldbach component consists in proving that:

