Goldbach conjecture (1742, june, the 7^{th})

• We note \mathbb{P} the prime numbers set. $\mathbb{P} = \{ p_1 = 2, p_2 = 3, p_3 = 5, p_4 = 7, p_5 = 11, \ldots \}$

• remark : $1 \notin \mathbb{P}$

Statement :

Each even number greater than 2 is the sum of two prime numbers.
Yn C 2N n > 2 Jn n C P n n n + n

$$\forall n \in 2\mathbb{N}, n > 2, \exists p, q \in \mathbb{P}, n = p + q$$

• p and q are called n's Goldbach components.

Recalls

- Prime numbers greater than 3 are of $6k \pm 1$ form.
- *n* being an even number greater than 2 can't be a prime number square that is odd.
- n's Goldbach components n are to be found among multiplicative group (Z/nZ, ×) units. These units are coprime to n, they are in even quantity and half of them are smaller than or equal to n/2.

Recalls

• If a prime number $p \le n/2$ is congruent to n modulo a prime number $m_i < \sqrt{n} (n = p + \lambda m_i)$,

Then its complementary to n, q, is composite because $q = n - p = \lambda m_i$ is congruent to 0 (mod m_i).

In that case, prime number p can't be a Goldbach component for n.

An algorithm to obtain an even number's Goldbach components

- It's a process that permits to obtain a set of numbers that are *n*'s Goldbach components.
- Let us note m_i (i = 1, ..., j(n)), prime numbers $3 < m_i \le \sqrt{n}$.
- The process consists :
 - first in ruling out numbers $p \le n/2$ congruent to 0 (mod m_i)
 - then in cancelling numbers p congruent to $n \pmod{m_i}$.
- The sieve of Eratosthenes is used for these eliminations.

- A sample study : n = 500
 - $500 \equiv 2 \pmod{3}$.
 - Since 6k 1 = 3k' + 2, all prime numbers of the form 6k 1 are congruent to 500 (mod 3), in such a way that their complementary to 500 is composite.
 - We don't have to take those numbers into account.
 - So, we only consider numbers of the form 6k + 1 smaller than or equal to 500/2. They are between 7 and 247 (first column of the table).

A sample study : n = 500

• Since $\lfloor \sqrt{500} \rfloor = 22$, prime moduli m_i different from 2 and 3 to be considerated are 5, 7, 11, 13, 17, 19. Let us call them m_i where i = 1, 2, 3, 4, 5, 6.

• $500 = 2^2 \cdot 5^3$

500 is congruent to :

 0 (mod 5),
 3 (mod 7),
 5 (mod 11),
 6 (mod 13),
 7 (mod 17)

and 6 (mod 19).

A sample study : n = 500

$a_k = 6k + 1$	congruence(s)	congruence(s)	n-a _k	G.C.
	to 0 cancelling a _k	to $r \neq 0$ cancelling a_k		
7 (p)	0 (mod 7)	7 (mod 17)	493	
13 (p)	0 (mod 13)		487 (p)	
19 (p)	0 (mod 19)	6 (mod 13)	481	
25	0 (mod 5)	6 (mod 19)	475	
31 (p)		3 (mod 7)	469	
37 (p)			463 (p)	37
43 (p)			457 (p)	43
49	0 (mod 7)	5 (mod 11)	451	
55	0 (mod 5 and 11)		445	
61 (p)			439 (p)	61
67 (p)			433 (p)	67
73 (p)		3 (mod 7)	427	
79 (p)			421 (p)	79
85	0 (mod 5 and 17)		415	
91	0 (mod 7 and 13)		409 (p)	
97 (p)		6 (mod 13)	403	
103 (p)			397 (p)	103
109 (p)		7 (mod 17)	391	
115	0 (mod 5)	3 (mod 7) and 5 (mod 11)	385	
121	0 (mod 11)		379 (p)	
127 (p)	· · · ·		373 (p)	127
133	0 (mod 7 and 19)		367 (p)	
139 (p)		6 (mod 19)	361	
145	0 (mod 5)		355	
151 (p)			349 (p)	151
157 (p)		3 (mod 7)	343	
163 (p)			337 (p)	163
169	0 (mod 13)		331	
175	0 (mod 5 and 7)	6 (mod 13)	325	
181 (p)		5 (mod 11)	319	
187	0 (mod 11 and 17)		313 (p)	
193 (p)	(<u>-</u> .)		307 (p)	193
199 (p)		3 (mod 7)	301	
205	0 (mod 5)		295	
211 (p)		7 (mod 17)	289	
217	0 (mod 7)		283 (p)	
223 (p)			277 (p)	223
229 (p)			271 (p)	229
235	0 (mod 5)		265	
241 (p)	- ()	3 (mod 7)	259	
247	0 (mod 13 and 19)	5 (mod 11)	253	
<u>yı</u>	- (- (
2				

Remarks :

• The first pass of the algorithm cancels numbers *p* congruent to 0 (*mod m_i*) for any *i*.

Its result consists in ruling out all composite numbers that have some m_i in their euclidean decomposition, n being eventually one of them, in ruling out also all prime numbers smaller than \sqrt{n} , but in keeping prime numbers greater than or equal to \sqrt{n} (that is smaller than n/4 + 1).

Remarks :

• The second pass of the algorithm cancels numbers p whose complementary to n is composite because they share a congruence with n ($p \equiv n \pmod{m_i}$) for some given i).

Its result consists in ruling out numbers p of the form $n = p + \lambda m_i$ for any i.

- If $n = \mu_i m_i$,

no prime number can satisfy the preceding relation.

Since *n* is even, $\mu_i = 2\nu_i$,

conjecture implies that $\nu_i = 1$.

- If
$$n \neq \mu_i m_i$$
,

conjecture implies that there exists a prime number p such that, for a given i, $n = p + \lambda m_i$ that can be rewritten in $n \equiv p \pmod{m_i}$ or $n - p \equiv 0 \pmod{m_i}$.

- 3

Remarks :

- All modules smaller than √n except those of n's euclidean decomposition appear in third column (for modules that divide n, first and second pass eliminate same numbers).
- The same module can't be found on the same line in second and third column.

Using Gold and Tucker notation in their article "On a conjecture of Erdös" about covering system of congruences

• Proving that *n* allways admits a Goldbach component consists in proving that :

$$\left\{\bigcup_{m_i \text{ prime, } m_i=2}^{m_i < \sqrt{n}} [0, r_i] \text{ mod } m_i\right\} \text{ doesn't cover interval } [3, n/2].$$