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The Sieve of Eratosthenes and the Theorem of Goldbach

Figeo Brun

§1. The theorem of Goldbach is well-known that one can write
every even number as a sum of two prime numbers. In a letter of
1742, Euler has written: "I believe it is a completely acceptable
theorem, although [ cannot prove it." This theorem has still not
been proved, and it is the same about the following theorem: The
sequence of the twin prime rlu.unl.‘rﬂr‘sll| is infinite. In an address
delivered at the International Congress of Mathematics, Cambridge,
1912, E. Landau had said that he regarded these problems as
"unattainable problems in modern science."

However, one has now a starting point for the treatment of
these problems, after which one has discovered that the prime
numbers of Goldbach and twin prime numbers can be determined by a
method analogous to that of Eratosthenes. The first who had paid
attention to this fact should be Jean Merlin.?)

The method consists of a double employing the Eratosthenes
sieve, Let us, for example, give the partition of the even number
26. We write the following two sequences of numbers

01234586 789101 1213141516
17 18 19 20 21 22 23 24 25 26

26 25 24 23 22 21 20 19 18 17 16 15 14 13
12 11 10 987 6543210

T)That is to say that the couples of the prime numbers having the
difference 2. See P. Stdckel in "Sitzungsberichte der
Heidelberger Akademie Abt. A., Jahrg; 1916, 10 Abh.

2)see Bulletin des Sciences mathematiques T. 39, 1 partie, 1915,
See also Viggo Brun in “Archiv for Mathematik og Naturvidenskab"
1915, B. 34, nr. 8: “lber das Goldbachsche Gesetz und die Anzahl
der Primzahlpaare."
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The prime numbers not exceeding V26 are 2, 3 and 5. We efface
the numbers of the form 24, 3% and 5% in our two sequences. The
sum of a number of the first line and the number immediately below
in the second line is 26. If these two numbers are not effaced,
they are prime numbers, and give then a Goldbachian partition of Z6.
It is not necessary to write the second sequence. One can only
choose the numbers 26 and 0 of the first sequence as the starting
points of the effacements. By this method we obtain all the parti-
tions of an even number x 1into a sum of two prime numbers lying
between +x and x-+%. 0On choosing 0 and 2 as the starting
points, we can determine the twin prime numbers. We do not know
if a treatment by this method can lead te a proof of these theorems;
but we see that the method can at least lead to very profound
results.

§2. We study at first the method of Eratosthenes, on giving it
the following form:

Suppose that the series:

01 2 3 45 6 7 89 10...%x

0 2 4 6 8 0. ..
0 3 6 9

0 Pn 3p

LS L L l
n n Pn

are given, where x denotes an integer and Pp the n-th prime
number:

Pn 3 /X< Prsl '

and X an integer:
Ap, £ X < [l+1]pn

The terms of the first series, which are different from all the
terms of the other series, are the prime numbers lying between /%

and x and the number 1.
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These are the terms not effaced by the Eratosthenes sieve., We
generalize, on studying the following arithmetical progression

A A+ D &+ 20 .

ay a,+p, a.'rith-1 . e e

a a_tp. ar+2p_l_

The progressions are extended from 0 to x. [ denotes an
integer prime to the prime numbers p],...,pr (successive or not,
but different).

A and 3y:-.-.3 are integers:

0<asD, D{ai{P‘T
We raise the following problem:

How many terms different from all the terms of the other lines
does the first 1ine contain?

We denote this number by
N{A, D, X, 815 Pysceseads pr}
or often more briefly by
N{D, x, pl,...,pr]
We obtain the fundamental formula:

N(a, D, X, 8y, Pya-eeals P)
= N{a, D, x, Ay Praceesdpo p» pr_.l,'p

- H{‘!" ] DPri ™ a'l'l F"I'l---I'a-.r.__'Il pr_‘|} ]
where

0 <a'sDp,
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or more briefly
"{D. Xy p'l’r‘ll"pr} = H{D'l Ky p'li"'"’p-r-._]}

- N(Dp_s X5 Pys---aPl ) (1)
on studying at first our arithmetical progressions up to the pro-
gression a .+ lpr_1, and on subjoining then the progression
a.tAp,. Suppose that N(&, D, x, al‘“]""'ﬂr-l‘pr-1} is known.
We deduce N(&, D, x, a].p],...,ar,prj from it on subtracting the
number of the terms of the last progression, which are identical to

the terms of the first progression, but not identical to the terms
of the intermediate progressions.

We see that the number is equal to N(a&', Dpr, Ko 8ys Pracess r_]}
on noting that the terms of the last progression ar+.1pr, which
are identical to the first progression A+pD, are the terms
between 0 and x of the arithmetical progression
& i +DpT_ A +ED|:|r « e e s
where
0=<A" < Dpr .
A' being the smallest positive term of the progression.

The indeterminate equation

a_ * 1pr = A + uD
or

Frl -Du=4a- a_
always has, as one knows, solutions, because e and D are

relatively prime. The solutions are

+ tDh , B = g + tpr "

whenever Ag, u, are solutions and t runs through the values 0O,
+1,%2,...

The terms of the last progression, which are identical to the
terms of the first progression, are then all the terms
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a_+tAp. =a_ +dp +thp  , where t=0, 21, £2,...
These are the terms of an arithmetical progression having the
difference Dpr.

We define particularly N(A, D, x) or briefly MN(D, x) as the
numbers of the terms between 0 and x of the progression

A A+D A+2D ., . A+MD

where
0D<ac<D, A+AD £ x < & + (A+1)D

Hence we deduce that

1+]-H{D,x}|=%+ﬂ, where -1 <@ =<1 .
We give an example, choosing
A=2 D=7 x=60 atrf p.|=2 a2=1 |:|-2=3 a3=4 Py=5
(A) 2 9 16 23 30 37 44 51 58

(B) 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 M
36 38 40 42 44 46 48 50 52 54 56 58 60

(C)1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49
52 55 58

(D) 4 9 14 19 24 29 34 39 44 49 54 59
The numbers of (A) which are different from the numbers of (B)
and (C) are 9, 23, 51. We subjoin then the progression (D). The

numbers of (A) and (D), which are identical, are 9 and 44, having
the difference 7+5. We obtain then

N(7, 60, 2, 3, 5) = N(7, 60, 2, 3) - N(7-5, 60, 2, 3)
or 2=3-1.
From the formula (1) we deduce the following
N(D, x. p|,+“,pr]| = N(D, x) - H{Dp]. x) - H{DpE, Xy |:|1]|

= o = N(Dp.s X5 Pys---sPpq) ]
(2



and
N(D, x, I'n'-"|l-+-i|:'r} = N(D, x} - H{Dpl, X} = oo - H{Dlj'rt x)
+ N(Dp,py s X)
+ H{Df’3p]t X} + HEDPJPE' Xy P]]'
t ...
+ N(Dp.pys x) + N(Dp_py, %, Pq)
+ .. # NDPP._ys X2 Prase-aP_5)
(3)
We give the last formula a concise form

N(D, x, p]!“':-pr]' = N{D, x) - E H{Dpa:- x)
a<r

+ I I NDPPLs %5 PraeeesPy )
as<sr b<a a'h ! b-1
(3')

When the question is to determine a lower bound for N(D, x,
p]i.,.,pr} we can set aside as many positive terms as we want in
the formula (3). One can choose these terms in several different
ways3), for example, the terms which lie on the right of a vertical
line. In general we obtain the formula

H{ui Xy F']l-v-ipr} - H[D- !} - E H{Dpﬂ. -"[J
asr
+ 11 H{D'F'ﬂﬂht Ky pi""‘pb-’lj s (4)
“
where we have chosen for PPy 3 domain iy which lies in the
interior of the following domain

P2P
P3P1 P3Pp

PeP1 PePg o PPy

3 ] 2 il
ISge: "Nyt tidsskrift" 1918: Une formule exacte pour la determina-
tion du nombre des nombres premiers audessous de x, etc. by
Yiggo Brun.,
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On applying the formula (4) twice we obtain the new formula

N{D, X, pI""‘pr} > N(D, x) - ) Hfﬂpa. x)

asr

RAICCXSERS TN

+ E.E E F— "{Dpaphpcpd! ':!l p"|:|1r1|pd_a|} W
fa}
1

where wy g and w, denotes the domain for PPy
On continuing and applying

H{d.x}=§+a, where =1 <8 <1,
we obtain at last the general formula

D 1 1 1
= N(D, %, Pyyecaup ) =1 - F — 4 e (1= § —
X ! r ﬂgrpa EE ( c<h }

y PaPb Pe
+ - L + ... - E 3 5
EIE E.:EE papbpc'}d ( egd Pe ) X (%)

where R denotes the number of terms, and where m.'[ < iy ete.

We can also give the formula (5) the following form, on
supposing particularly Py = £y Py = 3, Py = 5 etec.:

X 1T 1 1 1
H'l:[}:- kA Ei -3:- 5|-+r5pr] > E 1 'E 'i' "g' awa pr
+'|
32
1 .1 4.1
g+ e (1-3)
1 1
1 133
1 1 1
—_— (1 ==+ —
+?-E+?-3[ E} 7.5 +]
3.2
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1-1.1
' Tz+ ]3{]'%“ l5 c
prZ P p.* 1
r r r +3'2
1-1 1.1
2 3 b ]
P 4 + .. -R,
Per? 3.2
1 1 1 .
—_ ] =-—
*ratsa 3

where one can set aside every term (the subsequent parenthesis
included), which follows the sign +.

R denotes the number of terms employed.

We obtain the better lower bound for N, when we aside those
terms, which multiplied by % are less than the number of terms
employed.

We give an example, choosing x=1,000, D=1 and pr==31

which is the greatest prime number not exceeding .

3 CH IR T B B B
N(1, 10%, 2, 3,...,31) > 10 [1 R
+ 1 + 1 {]-1_}+_-|_+._1_{]-l}+_.]._ -l-l.q._.]_J
5.2 5.3 2 7.2 7.3° 20 7.8 27 3 3.2
1 1 1 1 11
M S PY 113“'5“11.5 (-3 -3+*337)
! L n-Lye Lo p-1o1, 1
132 133 2/ T3 YV T2 T3 37
e g-h+ L L a-hye v -1

+ + 1
172  17.3 Fa 19.2 19.3 2 23.2 23.3 2
]

1 1 ] 1 “_1}_53

+ + 1-<=) + +
29.2  29.3 ( E} 31.2  31.3

We have set aside the tEan%IT§ {l-—l-w 1. —l=] = 0.0039...

2 3 3.2



107

since 10°-0.0039... = 3.9... is less than 4, the number of terms
] T 1 1.1 .1 ]
employed. In the te l-—=-=- -+ -=1,
P T ( 2 375 33 52753 0°7)
. 1 ] 103 L
1d 1 -1 — (1-2) =
we would at first set aside 5.3 (1 E} since 7753 (1 E}

0.4... 1is less than 2, and we should also set aside the term
1 ('J -% - % - % + 312 + 51—2;}= 0.003... since 1934{].{103.” =

]
3. ... 1is less than 6.

We obtain then
N(1, 103, 2y 3,...,31) > 109 - 52 = 57
We can express this result in the following way:

When we efface among 1,000 numbers all the multiples of two,
three, five up to 31, there remain still at least 57 numbers.
Thence we deduce particularly that there exist more than 56 prime
numbers between 31 and 1000, on observing that

N(1, 10°, 2, 3,...,31) = n(10%) - x(/10°) + 1
when we choose 0 as the starting point of the effacements.
Here ¢(x) denotes the number of prime numbers not exceeding x.

Here we have chosen the domains w 1n a way to obtain the most
suitable lower bound. If we choose the domains by the same
principle, we find
N(1, 10°, 2, 3,...,31) > 109 -52=57,
while =(10%) - (/10°) = 158 ,

N(1, 10%, 2, 3,...,97) > 820-284=536 ,
while n(10%) - n(/10%) = 1,206 ,

N(T, 105, 2, 3,...,313) » 5,733-1,862=3,871 .,
while 7(10%) - 7(/10°%) = 9,528

In the sequel we will choose the domains w by simpler
principles.
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To illustrate the principles sought after we give at first three

examples:

MH“WLhLi”’{“Ti?'Tifmf

=x(1-H ao-Lp-Lp-LoA
(1-2) (1-3) (0 -2) (1-3) - 2

We have set aside no terms.

: N(1, x, 2, 3, 5, 7, 1 1---L_.2_.1. LN
Eg. 2) N(1, x 5 1) > x > "3

7
+ 1 + 1 + ] ['l-l}+-|_+]_|:'[_l]|+L|:‘|..

—
L

'EE 3

where the terms set aside are added on a small scale. One can also
write

N1, 0 2, 3,5, 7, ) > x [(1-90 -0 -ho-ho -

( 5132 115332 11-‘;-3-2+ﬁ71*l-ﬁ+ﬁ-_}]$'3)
§ed4  5e4e3
(n 745430 2)]- (Hhm Y ozes )

- x[0.2078 - 0.0121 + 0.0004] - 26 = 0.1961x - 26.

1

e EI'I'EI
PaPbPcPd

Here we have set aside all terms of the form

1

of the form — .
PaPuPcPdPe
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T R I

13.2 @ 13.3 2

1 1
+ + 1-=) +
19-2  19-3 ( E}

0.163x - 72 .

1 1 1 (
3.2 5.2 5.3
1.1,
Z 3 3.2
1 1
, (T2
+
1145 , ]
3.2
l-l 1
: z°3
135 | !
$ —
3.2
1 1
1-L -1
] 2" 3
17-5 1
L -
3.2
101
A
—_ +
195 |
"3z

11
? 3
1 1
2 73
1 1 1
l-3-3-3
1 ]
.71 ¥ 32
+
5.2
1.1 .11
77375
1 1
37| Y332
s
5.2
a1
1=5-3°3
1|,
177 3.2
1
Y 5.2
(1-‘-‘-‘
Z 3 5
1|, 0
197 32
+
B.2

|-
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Here we have set aside the terms on the right of the vertical
lines. One see that the expression is of the form

1
1-E—+IE— 1INl g5
pa FIhpcpd
where ph, P pc and pq run thrnugh the following values
Py 2 3 5 7 11 13 17 19

ppb 2 3 5 7

po 2 3 5 7

in which a=b=>c>d.
§3. We study at first the method employed for example 2.

We do not apply the general formula (5), but we deduce directly
from the formula (3'):

N(D, X, Pys---,p.) = N(D, x) - agr N(Dp,, x)

+ 1 I N(Dp,phs X5 PyseeesPy_q) -
a<sr b<a atb 1 b-1

On employing this formula twice, we obtain

N(D, X, Pys..-sp.) = N(D, X) - 7 N(Dp,, x)

a<r
L) 1 M(Dp_p,, %)
azr b<a a’b?

- I T T Moppypc. x)

azr b<a c<b

+ E I

asr b<a c<b d=<c

H{DPaﬂhpcpd- Ky pl""’pﬂ—ll . (8)

The last sum is positive {or 0). On applying

H[d,x}=%+e, where -1 <@ <1 ,
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thence we conclude:

N(D, x, P1|--vrpj}';'[]' E l_+ E E -ﬁ-l_p_

or more briefly
MO, % pyaeap) > 5 1oL 4 I - B - R (7)

where E] 1s equal to the sum of the terms of the first of the
following three lines

L IR O I

Pi Pz Pr

L .

P P Pr

1 1 ]

el e, A
p1 + pE + + Dr (A}

EE is equal to the sum of the terms formed by multiplication of
every term of the first line by those terms of the second line,
which lie on the left of this term, and E3 can be defined similarly.

We will say, in the sequel, that we calculate the expression

=L+l - 13
by means of diagram (A) or more briefly by means of the diagram
r terms

— three lines

We compare EE and uE:
Z 2 2
2 1 1 1
o r ) ) v ) v 2> 2l

or UE] » EEE
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We will also prove that

HEE? 3E3 or (EE,;T:)(.L hEa pﬂ]_ph)

:
>3( 11T e )
asr b<a c<b PaPpPe

]

Any term where y<fB<a<r, 15 represented once in

PaPaPy :
I; but, as we see, three times in of,.
We search at first L in I 1 and —— in 7 ¥
Pa csr 'c PaPy asr b<a
1 1 1 1 1
, and then — in | — and in | I
PaPy Pa cer Pe PPy asr be<a PaPp '
1 . ] 1. 1
and at last — in ] — and in —_—
Py csr Pe PaPg asr b<a PaPb

1

The term is therefore represented three times in UEE .
DnPEPT
which contains also terms of the form EI_ etc. Hence we conclude
DDFE

that of, > 353.

We can generalize the formula (7), on calculating the last sum
in (b6) by means (6). On continuing we obtain a formula analogous
to (7) or more briefly analogous to (7'):

ORI [ A A A L

where m 1is an odd number satisfying m<r, and where the expres-
sion I-E.‘+E2 - aaa - Em is calculated by means of the diagram

r terms

m lines




113

We can, in the special case m=r, calculate this expression:

L P L

] | 1
“-31—] (1 -El eve 1 -E}

-7 a7 o,

asrpa a<r b<a PaPh
where r may be even or odd. The number of terms is 2' in this

case. We obtain then the formula

N(Dy X, Pys---sP,) :-gn-g?} ['=~|—,1§} e =27 (9)
r

In general case we will determine a lower bound for the
expression

I I A
We can, as before, prove that
g = E] . “E1 > [i1—1][i+] (1<i<m=1)
whence o > miI, -

Hence we conclude

In < w In- (10)
and
m m
e < (%) o)

on applying the 5tirling formula

m!={E)m{Jm+E}. -1 <8 <]

e
We now write the formula (B) in a different way

N, %, pyseeapy) > X [(1-L#Tp = oot (D7)

Dy = Lyp # oee # (1) Er}] -R
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L P L

] | 1
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-7 a7 o,
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on applying the 5tirling formula

m!={E)m{Jm+E}. -1 <8 <]

e
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We know the value of the first parenthesis in the form of a
product. The second parenthesis is composed of a series of decreas-
ing terms, whenever m+2 > g, and then it has a value less than

m+1
Em+l’ which is less than (JELJ )
m+1

We can therefore write
X 1 1 eo ™
N(D, X PyseesPp) >3 {T‘Eﬂ e (=5-) = (57) -R.
r

It is not difficult to determine the value of H‘l:

() () ()

< l+r+rz+ BT

We obtain then the formula
x 1 1 eg “*l] 1
N(D, x. pIi.“.pr}}E[{'I-ﬁ} ”'P_,.}'{ﬁ-i-'_l] - ™
(12)
whenever
1 1
m+é > a E+'.‘+p_r

This formula is more useful than (9), the growth of s being

not so great as that of 2'. But the growth of the term R is still
too great for our purpose.

§4, For this reason we shall choose the domains w in another
way, setting aside all terms on the right of the vertical lines, as
in the example 3 (52).

At first we set aside in the formula (3) all positive terms on
the right on a vertical line. We obtain then the following formula

4159&, for example, Landau: Handbuch der Lehre von der Verteilung
der Primzahlen, I, p. 67.
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HDI L] TEEED HD. - HD "
(D, %, Py R.) > N(D, x) igrtp,x}

+ I L NDpps Xy ProeessBy 1)
asr b<a a’b 1 b-1
be<t

(13)

where t 1is an integer less than r.

The terms of the last sum can be calculated by means of the same
formula, whence one deduces

N(D, Xs Pyse-sP,) > N(D, X} - ¥ N(Dp,, x)

+ E E prapb' 1] = E E Eh H{Dpﬂphpﬂ. I}

asr b<a a<r b<a ¢
bet be<t c<t
+ T I I 1 NDp.p.p.Pis Xs Pya---sPy 1) s
a<r b<a c<b d<c a'b"cTd 1 d-1
bt c<t deu

where u 1is an integer less than t.

On continuing, and on applying
Md,xjnﬁi-ﬂ . 1l<a<1 ,

we obtain at last the formula

1 1
0. . pyrecep) 2[5 1 Lo 1 oL
(D Xy PyaeeesPp) > 5 ,E..np .Er bEapaph
bet
1
agr -I]-Eta c:hpapbpc
bet cet
o
. _ = ...l =R (14)
I*.E.l" hEa c-Ecb dgcpapbpcpd
b<t c<t d=<u
or more briefly
H{D, My Fl]:----lﬁr] }%[1 -51 + SE oo ‘SET'I-.|]- R



116

where the expression

EI'I=II-S'|+SE'-'” 'Szn_l
is calculated by means of the diagram in the form of stairs
] “n | “2 %
1 1 1 1
—+ ...+ ...k — 4 +— —F ...+ =
Py Pu-1 Py Pt-1 Pt Pr
1 1 1 1
—_—t L b L — ., +
P1 Py-1 Py Pt-1
1:'-1- . .._I_ + ...+ s + + ]
Py Py-1 Py Pe-1
1 1
—t ...+
P Pu-1
1 1
—+ L —
P Py-1

We choose the prime numbers of the diagram as successive prime
numbers lying in the interior of the following intervals

il I ]

g n-1 - 2
Rl" 131 P

=]
= R =

where a>1.

We apply the Mertens' formulas, giving them the following forms:
X

1 5 )
%E—Tﬂg ]ﬂgi‘l' D..EEII M +Em . I{Elﬂl
x ~

i.[ {l-l}’ E_?Elj']ngx ﬂrSE]-l-'-'l . _'! £ e < 'I

2 P logx
where log denotes the natural logarithm.
5)

See, "Journal fur die reine und angewandte Mathematik" B.78, 1874,
or Landau, Handbuch, I, p. 201.
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Hence we conclude

X 5(1+1) X
Elt loga+ 8 a . 1 U_]__},leﬂ-rlfu}?aﬂng X
p p [ ]
X log x X
But in that case we can choose P1 sufficiently large for which
_ 1 1
9 -ﬁ+ +p—r-=: log oy »
1
ﬂztp—ud-..,-l-pt-.l{]ugﬁu'___
1 1
o =—+ ... * “ lﬂg {15]
n p‘l P'_] uﬂ
and

I 1 1
Ty = (le=) se. (J==) > — ,
I Pt Pr %o

1 1 1
Ty = (1-=—) ... {1~ }r—, ...
e Py Pt-1 %

1 1 1
o= (1==—) ... (1= Yyr — , (16)
nm ) ) &

whenever ag >o.
We suppose particularly log ag < 1.

We try to realize a successive calculation of the sums, to which

the diagrams in the form of stairs give rise.

Suppose that we have calculated by means of the diagram

=

&
e

» (2m-1) lines

+ * 4

giving rise to the expression E = T=5#5,= 000 = 5507 -

We subjoin then 2m+1 1lines on the left, (which only taken
gives rise to the expression 1-J, + ], - ... - Lom+ 1)
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1'E1*E:'----E1m*1 1-51*52-.“-5%—1

L

The sum E-&- 15 now equal to E1 + 5. We see also that the
a

new sum EEHI— is equal to EE +5, E'I + 5, on studying the three

paph

-

possible cases:
p, occurs on the left of L and py on the left of L {EE}
p, Occurs on the left of L and p, on the right of L [SIE]]
p, Occurs on the right of L and p, on the right of L (5;) .

In general we can calculate the new expression Em+] by the
following way:

By = 1= (5 #57) * (52*5151 +$S,) - (53*5152*5231“53)

.- (EEm+I 5 fop ¥ o v 5500 Do ).

We compare this expression with the following product
{1-E]+EE - s Eu} {1 '51"'52 - res = 52m-1]
=1 - {E]+51} + {'Ezi-ﬂlz.l *5,) = ...

" (lgmer * Silom * oo+ * Sopr L2
*lamez * Sy Lomer * ooe * Sy 23) 7 oo

The first factor contains as many terms as possible, that is to
say, v 1is equal to the number of the terms in 21. The product
contains, as one sees, all the terms of Em+l and in addition a
series of parentheses, whose values, by (10), are decreasing, since



119

E‘L = 0., < log Ay < 1, and having alternative signs. Hence we
conclude

B = (Eomsa * 5y Dpmen * o0 * Sppoy 13) (17)
We can determine an upper bound for the last parenthesis. It is

a sum of the different products of (2m+2) numbers —Iﬁ » Wwhich all

Em+'| * T

occur in the two sums 5, and El‘ But we obtain the sum of all
possible products of that form, on forming the sum

(5) * I} )omez

calculating by means of the diagram
L, Sy

=
— i

&
*

(2m+2) lines

N X

=

But by (11) and (15) we obtain

e(s,+1;) 2m2 e(m+1) Tog o
{S'I"PE'I}EIHE{ (— ) < ( )

2m+2 2(m+1)
e log g
(=)

Our parenthesis (in (17)) is then still less, whence we conclude
that

Zme2

Zmed

am+2

Elnguﬂ
)

Epel > "ot En - (
We obtain then particularly, since E'I = 'I-‘Ep.E .

E.l:b‘l—ll::guﬂ "

Elnguﬂ * elﬁguﬂ 4
EE:*'JTEE]-( > )}ﬂg(i-]ﬂgﬂn'nﬂ( » ))




on applying (16). On continuing in the same way, we obtain at last

Eluguﬂ 4
E“ > Ty Wy wo Mo 1-1log uﬂ-uﬂ(—z—-—) - e

2n
_n-1 © mg“‘ﬂ
"o 2
or, since L < 1:

e1uguﬂ +
(=)

()

ErI Wy Ty oLl W 1-1log oy -

2

eloga, 2
whenever ag| — < 1.
2

Choose particularly

o= E— and oy = 1.51 .
We obtain
E >0.3(1 - ) ... (1 -1 (19)
n P Pr

We study the number (R) of terms in En' on forming the follow-

ing product

1 1
(1 ﬁ? aa -E;} (1

LI RN A I

P1 Pt-1 Py Py-1
This product contains all the terms of ErL and more. The

number (r+1) of terms in the first factor is less than Pt and in

1/

the second less than p etc. We obtain the number of terms of

r
the product, on substituting all the terms - %- by +1, whence we
conclude
. p2lo 2/a" _ (a¥1)/(a-1) _ 5
R < I:'r I:'r o pr < pr Pr
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We can then give (14') the following form

X 1 1 5
N(D, x, p1.+.+,pr} > E-U.S{1 -EGJ e {la-ﬁ:} - Py (20)

This formula is valid for all successive prime numbers Pys---sPp
with Py 2 Pao where Pe denotes a determinable prime number.

Suppose particularly Py = Pas]® the (e+1)-th prime number.
When the question is to calculate H[D.x..21.+.,pe. pl.....pr}i
we can subjoin to our diagram (under (14)) the following:
IE*

------

which gives rise to the expression

1 1
“‘E] “es “‘p—:' = 1'E1+EE = e ® EE
e
containing 2® terms, whenever the number of the lines are ze.

We obtain then the new diagram

2, S,

(Zn-1) lines

fe+2n-1) lines

1-E,+5,- - +L,| Enam1=5+52- - -Sap
giving rise to the new expression En+1:
E,q=1- {E,{J-S.l} + [E2+51E]+52} - .

+ {EE+51 EE_]++..+5E}|

= (Sy0e * Sp ey ¥ e ¥ Se) v e

t (Spe Lo * =or ¥ Sopy fg) + eee * (Spn le)
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or
Enep = (O0-11 405 - .. 4 Ee} {l-514-52 = e #55 4)
1 1
=(1-2) ... (1-—=)E_
2 Pe n
where we have supposed e to be even.
We obtain then by means of (19) the formula

N, %, 2,3,...,p,)> 3 0.3 (=) (1-3) ... (1-2)-2%°

p
(21)

"
valid for all r > &, where e denotes a determinable number, on
noting that every term of (1-3)(1-1) ... (1 -E‘—] is multiplied
by every term of E_. r

But in that case we can determine, by the Mertens' formula, a
number ¢ 1in a way that

0.168 x e 5
s By 23 Fpnnes e 2
N(D, x Pr) * 5Tog 5. " 2 r (22)
for all r > ¢, where ¢ denotes a determinable number (c > e).
If we choose D=1 and Pr-:p[E#?F}, i.e.; the greatest prime

number not exceeding EJ?F: P < ﬁ#??{ P we obtain particularly:

r+l*

H(11:1213p-+rp':ﬁﬁ' })} Tiggﬂxl - EE HEIE g 1ﬂ;H

for all x > Xg-
We can then state the following theorem:

When we efface from x consecutive numbers the terms from two

to two, then from three to three, etc; finally from p{EH3E} to
X

log %

The starting points of the effacements can be chosen as one

p{EH?F}, there remain always more than terms, provided x> Xg+

would have it. ) denotes a determinable number.
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We can also deduce, by means of the formula (22), the following
theorem:

There exists always a number between n and n++n, whose

number of prime factors does not exceed eleven whenever n > Ny

Choose in the formula (22)
D=1, x=vn and P = p{n””} .

We obtain then

N(T, "'Fr E-E.”..p[nl"r”” s M _ EE I'IE'”] > 1
log n

for all n > "D'

When we efface in the interval [n, n+v/n] 2all the multiples
of two, three, etc. up to p(nl/11), there remains therefore at
least one number. We choose n as a starting point of the efface-
ments. The numbers not effaced cannot be composed of 12 or more
prime factors, because in that case one of these factors would be

12
less than Yn+ vn , and therefore less than 1I.fﬁ for all
n > ng. But all these numbers being divisible by 2, 3,..., or
p{nlfl1} are effaced.
§5. We have supposed that
2, 3""'Pr
in the formula (21) are successive prime numbers.

We generalize easily on studying the non-successive prime
numbers

l:|-|1q2-----qu_~|:. qu+'|:---1qr_'|h q.f+'ll---1qr,

forming a part of the successive prime numbers

U222 2%-1 g o1» o2 Bp1s By 1o G

where gy = 2 etc;
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and we gbtain as before (see (21)):

N(D, x, Qqs---sly_ 1o q.:ﬂl"""qr}

%

1 1 1 1 e 5
* 0.3 (1 -—) ... (1- (1o ) oo (1-=—) =2
% qu~1} qL‘l--l-'l] { qr} I

= x

or
H{D, X, q]:--+:qﬁ_]r qu+]l-'*!qr}

1 1
(1-=) ... (1-=—
qT} ( "r} %

] ]
==} ... [1=-—
(1-g0) - (1-g)

9

X, 3
- ﬁ 013 r
Hence we conclude

N(D, x, S EEEREL T qu+]1---rqr}

, 0.168 % | 1 _ Eeqff

D1
94, u-ql} {1*%].
4 4

We study now an arithmetical progression extended from 0 to x:
a A+D aA+2D .... .
4 and D being relatively prime. Suppose
D= qu q‘,
We efface now the numbers being divisible by

qliru-iqu_-ln qmli---:qT_"}r qu‘]....,qr

on choosing q, = q{ﬁ-"'r. ). We obtain
0.168 x e 5
N(D, % Qy5---20_ 7 yeeeaf.) > ——= - 259
1 qﬂl qﬂ+l r ¢{Dr|ugqr r

1.008x  _.e 5/6, 1 , _x
#(D)log x $(D) logx

>

for all X > Xy .
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The numbers not effaced are indivisible by

S RRRREL R qu+'l""'q1r-l’ RS EEERE R
but they are also indivisible by

Qgre=-20p »
since 4 and D are relatively prime. The numbers not effaced
contain therefore five or less prime factors.

Hence we deduce the following theorem analogous to that of
Dirichlet:

Every arithmetical progression, whose first term and difference
are relatively prime, contains an infinity of terms, whose number of
prime factors does not exceed five.

§6. Now we study the Merlin's sieve, where one efface double
all the multiples of three, five, etc. up to P.- On generalizing,
we study the following arithmetical progression

A A+D A+ 2D

3 atp 3 tep
h1 bl + P b1 + Ep1 asa

L

+ + -
o Wt P 3.+ 2p,

hr br+pr hr+2pr

A1l the Tetters are defined in §2. Moreover we suppose a, # bi
and plg d . Denote by

P(a, D, x, ay h]. Ppae--sdn hr‘ pr]
or more briefly by

F[D* Xy p-l L I ypr]

the number of the terms of the first progression, which are different
from all the terms of the other progressions. We deduce as before
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the fundamental formula

P(&, X, @35 byy Praceend, by p)
= P(&, Dy Xy ays byy Pracenad gs b _1s PL_q)
= P{ﬁ.: DPF- Xy al' h1r pll"*lﬂr_ll br,li pr_1}

- P(a", Dp.s %, 2, by, Praseeadpys br—l’ Pp1)
or more briefly

P(D, x, Pll---:Pr} = P(D, x, 911-+~-Pr_1}

= EF[Dpr. L F1|---1Fr_1} . {23]

It can give rise to no misunderstanding, since we have written
2P(Dp., x, FT*""pr~I} when one remembers that it denotes a sum of
two expressions of the form P(A, Dpr, Xy 8ys hl’ Prsceesdn s br_].

Fr-l}'
We obtain as before, by means (23), the general formula
analogous to (5)

2
D 2 2 2
= P(D, X, Pys---sp.) > 1= = — (1~ =
* ! r agr Pa Emlz paph[: cgb Fc)

K
2 RD
! EE Em’]? PthF’:F'd (l - EEd ;:-_) et Y (24)

where m{ £ w et

R denotes the number of the terms of the form i% in the

formula, (where % = lﬁ + %.

Besides the designations, all are the same as in the formula (5).

etc.). We have supposed that Py 2 3.

We can also give the formula (24) the following form, on
supposing particularly Py = 3, Py = B . Py = 7, etc.:
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b
P(D, x, 3, 5,...,pr} > 5

4 4
J+3 745

+

(1 -%q P

4

+ LI

(25)

where one can set aside every term, (the subsequent parenthesis
included), which follows the sign + .

We give an example, one studying the following arithmetical

progression extended from 0 to 11,776

1T 3 5 7 9 11 13 15,

- 11,769 11,77

11,773 11,775

0 3 6 9 12 15 ...
| 1 4 10 13

!n

19 ...
15

. 11,757

11,769
11,770

1,772
11,773

1,775
11,776

11,761
11,776

The starting points of the effacements are 0 and 11,776 (see §1).

We obtain by means of (25), on observing that a, = b,

since

11,776 = 2°+23 is indivisible by 3, 5, 7,...,19:
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P(2, 11,776, 3, 5,...,19) >
: Z 3 8 7 11 13 0"
2.4 + 4 + 4

19 5-3 7.3 7.5

2 4 4 2
1-5) + + 1-£
Ty et s 03

1-2_2 1-2_2
4 35 4 4 2 4 3 5
MR TY: A I v R T U £ 2
* 53 * 5.3
4 4 2 4 41 2
+ ] -= 1-= - .
TR A U TR T L Ul B

where
BER=1+14+4+ 106+ 52 +52+32=171

whence P(2, 11,776, 3, 5,...,19) > 296 - 171 = 125 ,

The number (t) not effaced of the first progression, whose number
is more than 125, having the following property: t and 11,776-t
are indivisible by 2, 3, 5,...,19. They cannot composed of three or
more prime factors, because otherwise one of these factors would be
less than /11,776 < 22.9 .

One can then write the number 11,776 as the sum of two numbers,
whose number of prime factors do not exceed 2, in 125 or more
different ways.

However, I have not succeeded in giving an example of the just-
ness of the theorem of Goldbach by this method.

Nevertheless we see that we can deduce important results by
means of the formula (24), the method being completely analogous to
that employed above.

One should only replace pl by F'i everywhere.
i i
We calculate by means of the same diagram in the form of stairs

as in 84 on replacing 5}' by £ One should then replace the
i i

sums and the products considered in 84 by the following:
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-2 4
Ul_ﬁ-‘- A ‘l'E{ ETDgﬂﬂ ¥ Et-'c- %
and

2 2 1
Mo = {1==} ... (1= . tc. ,

on applying the following formula

x

. {]__34 . 0.8322 | c8/logx

3 P log€ x

We suppose now 21nguh < 1.

We deduce the following formula amalogous to (18):

2m2

Ewel > Tme1 Eg - (109 ap) »
whence one gets

2 4
(elogoy)
E. >0, ... T I-Elnguﬂ- "0 "0 .

1 n
1 'ﬂg{E]ﬂgﬂD}z

Choose particularly

_ 5 _ -
u—E— 1.25 and :10 1.2501
We obtain then
2 2
E, > 0.05(1 -aT} vee (1 —-pr] : (26)

We study the number (R) of terms in E_, on forming the
following product

(1_.&- 3,)( 2 _E_)E ( 2 _E_)E.
Po Pr M Pt-1 M Py-1

This product contains all the terms of En and more. The
number (2r+ 1) of terms in the first factor is less than Pr when-

ever pl >3, and in the second less than pl‘m. etc. Hence we
conclude
n
R < pr pffﬂ . pffﬂ < piﬂ."‘l}f{ﬂ ]} = pa
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We obtain then the formula
L 2 2 9
F{Dj “p P'lii+llpr} > 'E' D.DEH ﬁ} Tl {1 ‘E] = pr {E?}

a formula which is valid for all successive prime numbers PyacessPps
whenever Py 2 Pas where Pa denotes a determinable prime number,

We obtain also a formula analogous to (21):

A, 2 2 i9
P(Ds X3 3y 55eeeupp) > 500 0.05(1-3) o (1 -p—r] - 3p.  (28)

valid for all r>e.

Hence we conclude

P{Dn Xy 3.| 5|m+i ;ﬂr} > E" - & - EEFE {Eg}

D (log p,)°
for all r>c, where c:ze.

lf‘ll]]. We obtain then

Choose particularly P = plx

0.41x _ 4¢ ,9/10 , _0.4x

D(1og x)2 D(log x)2

(30)

p(0, x, 3, 5,....p(x'/1%)) >

for all X>Xg

On supposing D=1, we can therefore state the following
theorem:

When we efface double among x terms all the multiples of
three, five, etc. up to p{x”m}. there always remain more than

0.4x

terms provided x> x..
(10g x)2 0

We have supposed that

ai# I:n_[ .

that is to say that none of the double effacements are reduced to a
single one. When the question is to determine the Goldbachian

partitions of the number x=2° p:l p:, » One see yet that

a, = bﬂ,.u,a,‘, = b*r
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But the lower bound for P will not naturally less, when one
reduces the effacements (compare §5). One should then replace pi

i}
by — and = by — . We obtain then the new lower bound for
Pa Py Py
P:
-1 ... -1
0.4x Pa Py 5 _D0.4x
D(logx)?  (1-29 ... (1-2)  D(logx)?
Py P,

Hence we conclude, as in the previous example, on choosing
D=2, the following theorem, analogous to that of Goldbach:

One can write even number x, greater than g a5 a sum of
two numbers, whose numbers of prime factors do not exceed nine. Xn
denotes a determinable number and the prime factors can be different
or not.

We can also deduce the following theorem:

There exists an infinity of the pairs of numbers, having the
difference 2, in the class of the numbers whose numbers of prime
factors do not exceed nine.

§7. MWe can also determine an upper bound for the number of
numbers, which remain non-effaced on employing the sieves of
Eratosthenes and Merlin.

We apply the following inequality
N(a, D, x, 15 Proeeesdis Prseoesdps Fn}
< N(8, D, Xy ays Pys--esdis B)
or more briefly
N(D, X, Pysee-sPrres-sPy) € N(Dy X, Praveaby) (31)

where r<n.
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We apply also the formula

N(D, x, p]“.”pr] = N(D, x) - azr H{Dpa. x)

) agr bEa N(OPgPys PyrePpoy) -
(3")
To estimate the terms of the last sum, we apply (31) and the
same formula (3'). On continuing we obtain the formula analogous
to (14):

X 1 1
Hni 5 CEE I ] l':—[ll = — % —
(0. > 1’ pr} D agrpa aEr b-Ecapaph
b<r
1
agr hga céh PaPuPe
ber c<t
1
+ 7 ———=- ... | +R, (32)
agr bga cgb d<c PaPbPcPd ]
b<r c<t det
or more briefly
D[D. .:,. Pdliq-q;pr}":%[.l"s] +SE"' aom +52n] +H #

where the expression

En =1 - Sl + 52 - ... * SEn

is calculated by means of the diagram

11

On employing the same method as before, we obtain

EM-EI::G, Zm+3
Eqe1 < Mg Em+( 5 )
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and particularly 3

Elug“ﬂ
El < I[.I + ( ; )

whence
3 5
. E'|ﬂgl:1ﬂ 2 eTnguu
EE E1E211+%( > )+uu( ; )] .

On continuing we obtain at last

E, < M...0 [1 +un(“n;u“ )3 +ug(ﬂﬂ:u° )5 + ]

E-Iﬂgﬂﬂ )3
E =« {'l -1_} l"l __l_ 1+ ( Z
n P.I LI

pr} e log o, c
ol =)

or

' (33)

2
Choose particularly

1
whenever uu(f-ﬂ) < 1.

ﬂ--% EI"Id ﬂﬂ=1.51 *
We obtain then

1 1
E, < 1.505 (1 p—lj...n T"r} .

We study the number (R} of terms in E_ on forming the
following product
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We see, as before, that

2 2/a" 2a/o-1 6
Rﬁpr P;ﬂ:_.l'rﬂ-“‘-r Pr.l'rti {pE Ilr }npr .

We can give (32) the following form
6

N(D, X, PysevesPy) {%' 1-505{1-3—]}...{1-51'7} +p. -

Thence we conclude the formula

H{D.. Xy E-I 3|-"1pr}
X 1 1 1 e b
{'ﬁ 1.505{1-5}{1 i}'““'ﬁ:} + 2 Pr
valid for all r>e.

But in virtue of the Mertens' formula we obtain

0.9z + EEpE

N(D, %, 2, 3,...5p.) € ==
( Pe) <3 09 b "

for all r>c, where cze.

Choose particularly p_ = p(2 ;:f_x_]. Thence we conclude that

¥ < P <2 ey
on applying a celebrated theorem of Tchebycheff.

Therefore we obtain

7 6.5x e+b 6/7 7x
N(T, %, 2, 3,...,p(2 WX)) < —__1ugx + 2 X < -—-——_lngx
(34)
for all x> Xg
On applying the inequality (31), we obtain
N1, Xy 2yen.ap(¥8)) < N1, %o 250.0,p(K))
7 Tx
< N(1, %, 2,...,p(2 VX)) < T

for all LES L



