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If X is compact and Hausdorff there is the usual (i.e. non-

equivariant) Chern character 

ch : K°(X) > II H2j(X.Q) 
jeiN 

ch : K*(X) » n H2J+1(X;(Q) 

H (X;Q) is the j-th Cech cohomology group of X with coefficients 

the rational numbers <Q. The key property of this classical Chern 

character is that it is a rational isomorphism. Thus for any compact 

Hausdorff space X 

ch : K°(X) ® <Q > II H2j(X;(Q) 
TL j€IN 

ch : K J(X) 8 q > H H 2 j + 1 ( X ; q ) 
2 jeiN 

are isomorphisms of vector spaces over Q. 

In the equivariant case K_(X) will be an abelian group, but 

H (X.r) will be a vector space over the complex numbers <C. We 

require that the equivariant Chern character 

ch f : K^.(X) » H^X.T) 

give an isomorphism of vector spaces over C: 

K^(X) 0 C > H^X.T) i = 0 . 1 . 
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At this point there are difficulties with the traditional homotopy

quotient approach to equivariant cohomology. Roughly speaking, the

homotopy quotient theory is localized at the identity element of the
oo

group f. If X is a C manifold and the action of f on X is

COO and proper, then cyclic cohomology [16] can be used to define the

"delocalized" equivariant cohomology of X.

In this note we give a direct geometrically-defined cohomology

(denoted Hi(X,f), i = 0,1)
oo

which for proper C actions of f is

on

isomorphic to the cyclic cohomology of the relevant algebra. We then

exploit this isomorphism to solve the index problem for a f-equivari­

ant family of elliptic operators parametrized by a COO manifold X

which the action of f is COO and proper.

Motivated by the index formula so obtained, we drop the hypothesis

that the action of f on X is proper. Assuming only that X is a
oo

C manifold on which f acts by diffeomorphisms we construct a

commutative diagram:

1 1
Hi(X,f) ~ Ki[CO(X) x f] 0 C

71.

Here CO(X) is the C* algebra of all continuous complex-valued

functions on X which vanish at infinity. CO(X) x f is the reduced

crossed-product C* algebra arising from the action of f on CO(X).

We conjecture that both horizontal maps in this diagram are

isomorphisms.

Of special interest is the case when X is a point. CO(o) x f

is the reduced C* algebra C*r.
r

Let
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elements in T of finite order. VT is the permutation module (with 

coefficients <E) determined by the conjugation action of T on S(T). 

As usual H (r.Fr) is the j-th homology of T with coefficients in 

Ff. 

H°(..r) = • H9.{r,Fr) 

H^-.r) = • H_.cr.Fr) 

So for X a point the above conjectured isomorphism becomes: 

e H (r.Fr) = K~[c*r] ® c 
jQN J U r Z 

e H (r.Fr) = K [c^r] 0 c 
J€1N ^ l L r Z 

If true, this implies that the Novikov conjecture [15,29] and the 

Gromov-Lawson-Rosenberg conjecture [19,20] are true. 

When r is torsion free K1(-,T) = K.(Br), the K homology [9] 

of the classifying space Br. In this case the conjectured isomorphism 

becomes 

K.(Br) = K.[C T] i = 0,1 

If true, this implies that for F torsion free there are no non-

trivial idempotents in C T. This assertion (which is known as the 

generalized Kadison conjecture) is a much stronger statement than the 

classical conjecture [27] that for T torsion free there are no non-

trivial idempotents in the group algebra C(T). 
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It is a pleasure to thank J. L. Brylinski and R. MacPherson for 

many enlightening conversations on "delocalized" equivariant cohomol-

ogy. We also thank J. P. May, J. F. McClure, S. Illman, and R. Lashof 

for very helpful comments. 

This note is expository. We shall carefully outline the proofs of 

some, but not all, of the stated results. Complete proofs and details 

will appear elsewhere. As indicated above our aim is to show how index 

theory leads to the conjectured isomorphism K (X.T) = K. [C0(X)>«r]. 

§1. T finite: Chern character 

Let T be a finite group acting by a continuous (right) action on 

a locally compact, Hausdorff, and paracompact topological space X. 

X x r » X (1.1) 

H (X;C) is the Cech cohomology of X with compact supports. 

H (X;C) = U HJ(X;C). 
J€M ° 

X denotes the one-point compactification of X. For j > 0 the 

inclusion map HJ(X;C) * HJ(X+;C) is an isomorphism. For j = 0 

there is the exact sequence 

0 » H°(X;<C) » H°(X+;C) » C > 0 (1.2) 
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H (X;C) denotes those elements of H (X;C) which are fixed by the c c 
action of T on H*(X;C). 

Define X C X x r by: 

X = {(x.-r) e X x r | x-r = x} (1.3) 

T acts on X: 

(x,-r)a = (xa.a -ret) (X,T) € X X r 

a € T 

(1.4) 

Set 

H°(x,r) = 17 H2j(x/r;c) 
j€M c 

H^X.T) = !7 H2j+1(X/r;(D) 
jelN c 

(1.5) 

For TT £ T, let X = {x e X | XT = x}. X is the disjoint union of 

the X'. 

X = U X' 

Hence 

H*(X/T;C) = H*(X;C)r e H^X^C) (1.6) 

Equivariant K theory K*(X) (i = 0,1) has been defined by M. F. 

Atiyah and G. B. Segal [4,30]. If X is compact, then Kr(X) is the 
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Grothendieck group of T-vector-bundles on X. If X is not compact, 

extend the action of X to X , the one-point compactification of X, 

by requiring that the point at infinity be fixed by all t € T. 

Restriction to the point at infinity gives a map 

K°(X+) >K°(-)=R(r) (1.7) 

where R(T) is the representation ring of T. K„(X) is the kernel of 

this map. So by definition there is a short exact sequence 

0 » K°(X) » K°(X+) » R(r) > 0 (1.8) 

and an isomorphism 

Kj(X) = Kj(X+) (1.9) 

For X compact define the equivariant Chern character 

chr : K°(X) » H°(X,r) (110) 

as follows. Suppose that E is a T-vector-bundle on X. If x £ X 

then E is mapped to itself by T. 

T : E » E x £ X (1-11) 
x x v ' 

Let X.,X„ X be the (distinct) eigen-values of this linear 
1 2 r transformation. If i ^ j , X. * X. so that E = E ©E « . . . I E 1 J X X X X 

where E is the eigen-space for X.. At the vector-bundle level this 

gives a direct-sum decomposition 
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E | x"* = E1 © E2 ffi ... e Er (1-12) 

where the action of t on E is multiplication by X.. Define 
ch^(E) e n H^fX^C) by: 

ch^(E) = Y ^chfE1) (113) 
1=1 

In (1.13) ch(E ) is the ordinary (i.e. non-equivariant) Chern 
i 0 r „ .. iT character of E . Then ch_ : K_(X) > ffl H^X^C) 

-rer c is: 

chr(E) = © cly(E) (114) 
Trcr 

Compare [33]. 
More generally, X may be non-compact. To define ch„ : 

K„(X) » H (X,r), let T denote the subgroup of T generated by 
i. tr : R(r ) > C is: 

trT(») = tr(»{T)). v € R(r^) (1.15) 

Thus if <p '■ r > GL(n,(C) is a representation of T , then tr (•/>) 
is the usual trace of the matrix <P(T). 

The action of T on X is trivial so there is the isomorphism 
T 

K* (X^) = K
1
(X

nf
) 8 R(T ). Using this isomorphism, restriction from 

(X,T) to (X1,T ) gives a map 

if : K*(X) > K^X") 8 R(r^) (1.16) 
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Let ch* : K1(X'T) 8 R(r ) > H^X^iC) be 
Z "" c 

, 1 ch = ch 8 tr (1.17) 

In (1.17) ch : K 1 ^ ) ► rf*(X'T;C) is the ordinary (i.e. non-

equivariant) Chern character. For f € K_(X) define ch_(f) € 
r 

by k e iffx^c) 
er c 

chr(f) = e chV(f) (l.is) 
1 -rer 

(1.19) Theorem. Let T be a finite group acting by homeomor-

phisms on a locally compact, Hausdorff, and paracompact space X. Then 

for i = 0.1 chr : K̂ .(X) > IT(X,r) gives an isomorphism of vector 

spaces over <C K*(X) 8 C » H1(X,r). 

Remarks. H (X.T) is defined by (1.5). In constructing ch„ the 

isomorphism (1.6) has been used. The proof of (1.19) will be outlined 

in the next section. 

§2. r finite: Sheaf theory 

X, r are as in SI. 

The proof of Theorem (1.19) uses the Segal spectral sequence [30, 

31]. The underlying idea of the proof is that both K„(X) 8 C and 
1 TL 

H (X,T) have a Mayer-Vietoris exact sequence. The two agree locally, 

171 



and therefore are isomorphic. To give a precise argument we shall need 

a sheaf-theoretic interpretation of H (X,T). 

For x € X, I denotes the isotropy group at x. 

Ix = {-r € r | XT = x} (2.1) 

(2.2) Lemma. Given any x e X, there exists an open subset U 

of X with x € U and with I C I for all p € U. 
p x 

I C I P x 

Proof. Let "tl be the collection of all open subsets U of X 

with x € U. Suppose the lemma is false. Then for each U € "U there 

exists (p..,Tr ) € U x r with PIITIT = P.t and -r.. £ I. Since T is 

finite we may choose H C <W with II cofinal in "H and with T.. 

constant for D £ l Set x = TIT f°r 0 £ 1 Then limit p.. = p so 
» 

P2 = P- Since % € I this is a contradiction. Q.E.D. 

Using lemma (2.2) we can now define a sheaf R(I) on X. For 

x € X the stalk of R(I) is R(I ), the representation ring of I . 

If W is an open subset of X, then a (continuous) section of R(I) 

on W is a function s which assigns to each x £ W, s(x) e R(I ) 

satisfying: 

(2.3) For each x € W there exists an open set U with x € U 

and with I C I for all p € U and with s(p) = ps(x) for all p x 
p € U where p : R(I ) » R(I ) is the restriction map. 

x p 

R(I) is a T-sheaf [21]. Let <p : Ix > GL(n,(D) be a 
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representat ion of R(I ) . For -i € I" l e t fr € R(I ) be 

(vnr)(a) = <p(Tanr X) " 6 1 ^ (2.4) 

Then <p I > ft is the (right) action of T on R(I). Since I 

acts trivially on R(I ), the T-sheaf R(I) descends to give a sheaf 

R(I) on X/r. 
Set R,p(I ) = R(I ) ® <D. By the same construction there is a T-<L X X z 

sheaf R,p(I) on X whose stalk at x € X is Rr(I). ^(1) descends 

to give a sheaf SLpfl) on X/I\ Denote the i-th cohomology group 

with compact supports of X/r using the sheaf ILp(I) by 

H^x/r^ci)). 

(2.5) Lemma. For each i = 0,1,2.... there is a canonical 

isomorphism H1(X/r:C) = H^X/rig^I)). 

Proof. According to (1.3) X C X x r. For (x.-r) € X, set 

IT..(x,Tr) = x. 17 : X/r » X/r is the map of quotient spaces deter­

mined by IT-. Consider the Leray spectral sequence [21,24] (with 

compact supports) of IT. This spectral sequence converges to 

H*(X/r;C). The E 2 term is: 

E 2 , Q = Hc(X/r;Sq(17 M ) (2-6) 

In (2.6) Hq(TT y) denotes the sheaf on X/r whose stalk at y e X/r 

is H (IT y;<C). Each II y is a finite set, so: 

Hq(H Jy) = 0 for q > 0 (2.7) 
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c(I ) denotes the set of conjugacy classes of I . There is the 

standard identification R(I ) 8 C = H (c(I );<C). This identification 
x Z x 

gives an isomorphism of sheaves on X/f-

H°(U 1y:C) = Bf.ll) (2.8) 

(2.6), (2.7), and (2.8) prove the lemma. Q.E.D. 

Proof of (1.19). G. B. Segal [30,31] has constructed a spectral 

sequence which converges to K_(X) and has for its E„ term 

H (X/T;R(I)). Similarly there is a spectral sequence converging to 

K*(X) 8 C with E„ term H*(X/r;R_(I)). Also, there is a Segal 
1 Z * c -1L 
spectral sequence for H (X.T), but this spectral sequence is trivial 

and has E 2 = Em = H*(X,r). 

Consider the map of Segal spectral sequences induced by ch„ : 

K (X,T) 8 C > H (X,T). According to the preceding lemma this is an 
Z 

isomorphism at the E„ level. Since the Segal spectral sequence for 

H (X,T) is trivial, this implies that E_ = E^ in the Segal spectral 

sequence for Kr(X) 8 <D. Therefore at the level of E_ = E , chr : 1 TL 2 oo J 
K„(X) 8 C > H (X,T) is an isomorphism, and a fortiori ch„ : 

Z 
K*(X) 8 ID > H*(X,r) is itself an isomorphism. Q.E.D. 

Remark. Set n£(X,r) = II H2J(X/r:R(I)) Hi(X.r) = im ° 
IT H2j+1(X/r;R(I)). By lemma (2.5) H*(X/r-,<C) = H^X/TiR-CI). 
j€IN C 

Therefore the evident sheaf map R(I) > E^f1) induces a map 

Hi(X,r) > H1(X,T). Thus we have: 
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Hj(x.r) 

Kr(x> — * r r — » H i < x - n 

This is the analog of the standard maps in the non-equivariant case. 

H*(X.Z) 

K <X> ch > " c ^ * 

§3. T finite: Homotopy quotient 

X, T are as in SI. 

The traditional approach to equivariant cohomology is to use 

X x Er, the homotopy quotient. Er is a contractible space on which 
r 

r acts freely 

Er x r — > Er (3.1) 

r acts on X x Er by the diagonal action. 

(x,p)Tf = (xT.pTf) X £ X 

p e Er 
i e r 

(3.2) 
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X x ET is the quotient space. 
r 

x x Er = (XxEr)/r (3.3) 
r 

If F is a r-vector-bundle on X, then F « ET = (FxEr)/r is a 
r 

vector bundle on X x Er. K (XxEr) is the representable K theory. 
r r 

K°(XxEO = [XxEr.ZxBU] 

K^XxEr) = [XxEr.u] 
r r 

(3.4) 

In (3.4) [X,Y] is the set of homotopy classes of maps from X to Y, 

and U = limit U(n). 

For simplicity assume that X is compact. Map K„(X) to 

H*(XxEr;(C) by 
r 

F f » ch(FxEr) (3.5) 
r 

In (3.5) ch : K (XxEr) » H*(XxEr;(C) is the ordinary (nonequivar-
r r 

iant) Chern character. The map (3.5) is the traditional homotopy 

quotient Chern character. 

We have the standard identification 

H*(XxEr;<D) = H*(X/T;C) = H*(X;<D)r (3.6) 

Granted (3.6), the traditional Chern character F| > ch(FxEr) is the 
r 
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composition 

K°(X) 
ch 

-—> H°(X,D 17 H2 j(X/r;C) 
jew 

(3.7) 

In (3.7) chr : K°(X) > H°(X,r) is as in §1 above. H°(X.r) 

77 H ^ X ^ C ) 
TT 

IT H2j(X/r;C) is the projection of H°(X.r) = 
jelN L-r€r j€IN 
onto the direct summand corresponding to the identity element of 7\ 

According to (1.19) ch„ : K_(X) ® C » H (X,T) is an isomorphism. 
1 ' Z 

Therefore the traditional homotopy quotient Chern character gives for 

compact X a map 

Kj:(X) 6) C 11 H2j(X;C) 
J€IN 

(3.8) 

which is always surjective, but fails to be injective whenever the 

action of T on X is not free. In fact, the map (3.5) is just the 

ordinary non-equivariant Chern character plus the observation that for 
r 

a T-vector-bundle F on X ch(F) will be in 17 H2j(X;C) 
jQN 

Since 17 H2J(XxEr;C) = 77 H2J(X/r:C) is the direct summand of 
jem r jew 

H (X,T) corresponding to the identity element of T, one could call 

H (X,r) the "del ocalized" equivariant cohomology of X [6]. 
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§4. f finite: Integration over the fiber

In §4, f is a finite group and X is a COO manifold. X is

Hausdorff, finite dimensional, second countable, and without boundary.

f acts on X by diffeomorphisms.

(4.1) Lemma. For, E f, X' 00
is a C sub-manifold of X.

Proof. Choose a f-invariant Riemannian metric for X. X' is

then a totally geodesic sub-manifold. Q.E.D.

Let W be another COO manifold with a given COO action of f.

00
Assume given a f-equivariant C submersion p mapping W onto X.

p W--X (4.2)

At each w E W the derivative map p' : T W-- T Ww pw is surjective.

Let T
W

be the kernel of this map, so there is an exact sequence of ffi

vector-spaces.

O--T --TW--T x--ow w pw

The dual of (4.3) is:

o __ T* X-- T*W -- T* -- 0pw w w

(4.3)

(4.4)

the projection T* -- W. is itself a COO manifold acted on by

*T

f.

U
wEW

*T
W

is a f-equivariant

*T

vector-bundle on
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With i = 0,1 integration over the fiber gives a map 

H (T ,T) > H (X,T). To define this map we need 

(4.5) Lemma. Let T € r, and let w € W . Then the derivative 

map p' : T (W ) > T (X ) is surjective. 

Proof. Given v € T (X ), choose a T-invariant Riemannian 

metric for W. There is then a unique v € T W with 
w 

v € T W (4.6) 

P'(v) = v (4.7) 

VTT = v. so the geodesic emanating from w with initial velocity 

vector v is fixed by T. This implies v € T (W ) and the lemma is 

proved. Q.E.D. 

(4.8) Lemma. Let -r £ T. Then pw ■ (T ) » X is a submer­

sion with oriented even-dimensional fibers. 

T -1 -1 i Proof. If x e X , set p x = p x fl W . Lemma (4.5) implies 
—1 °° T -v-1 that p x is a C sub-manifold of W . Moreover, (pit) x fl 

H T & — 1 
(T ) = T (p x). Since the cotangent bundle of any manifold is an 

almost complex manifold, the lemma is proved. 

Q.E.D. 

Integration over the fiber (e.g. see [12]) now gives maps 
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9 H 2 J ( T ^ ; ( D ) > ffl H2J(X"1';C) 
Jem c jew c 

9 H2j+1(rMlf;C) > ® H2J+1(X^;C) 
jem c jew c 

Taking the direct sum over i € T, then yields the desired map 

(PTT)H = HX(T*.r) . H^X.r) (4.9) 

§5. T finite: Td(T*,r) 

T, X, p : W » X, T, T are as in §4. 
r denotes the subgroup of T generated by i. Suppose given on 

W a T -vector-bundle F. For w £ W , let XifX_,...,X be the -r 1 2 r 
(distinct) eigen-values of T : F > F . F is the direct sum 

F = F1 ffi F 2 ® ... e Fr (5.1) 

where the action of t on F is multiplication by X.. Define 
ch"r(F) € ® H2J(W'T;C) by: 

j£lN 

ch^fF) = Y Xi c h( F i) (5-2) 
i=l 

In (5.2) chfF1) is the ordinary non-equivariant Chern character of 

Let AJF be the j-th exterior power of F and set 
F1. 
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clA F = ^ (-l)Jch'T(AjF) 
J=0 

(5.3) 

In (5.3) £ = dim_(F ). Note that A F is the trivial line bundle 

W x C with t acting trivially. 

(5.4) Lemma, ch X,F is an invertible element of the ring 
[r2j,wTf 

jeiN 
i s 1. 

H (W ;C) if and only if none of the eigen-values X1,X„, 

Proof. Let m. be the multiplicity of X.. The zero-dimensional 
r m. T i component of ch X_..F is IT (1-X ) 

1 i=l * 
Q.E.D. 

If nr € r and w € W , then T and T (W ) are both contained 

in T (W). Define T -equivariant IR vector-bundles 9, v on W by 

9 = T (1 T (W ) 
w w wv ' 

(5.5) 

i) = T /T n T (w ) 
w w w w 

(5.6) 

The action of TT on 9 is trivial, but the action of i on u is 

quite non-trivial. In fact (5.4) applies to v ® C, so ch X^fuKC) 
K IR 

2i T is an invertible element of ffl H J(W ;<C). 
jeiN 

Define Td(T*,-r) e II H 2 J ( T X T ; C ) by: 
j€IN 

Td(T , f ) = ir 

Td(98C) 
IR 

ch X_ (u«€) 
1 IR 

(5.7) 
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In (5.7), Td(68(C) is the usual non-equivariant Todd class of 9 ® <C. 

ir : H (W ;C) » H (T ;C) is the map of cohomology induced by ir : 

T > W . 

Td(T ,f) is defined: 

Td(T*,r) = 8 Td(T*,-r) (5.8) 
-rer 

Td(TX,r) e [ e e H^CT^C) 

§6. T finite: Index Theorem 

T. X, p : W » X, T, T* are as in §4. 
0 1 co oo i 

Let E , E be C T-vector-bundles on W. C (E ) is the 
oo i co Q c° 1 

vector space of all C sections of E . Let D : C (E ) » C (E ) 
be a pseudo-differential operator such that: 

D is T-equivariant (6.1) 

For each x € X, D restricts to 

p x to give an elliptic pseudo- (6.2) 

differential operator 
co o i — 1 c o l i — 1 , D : C (EU|p x) » C (E'lp x). 

D is trivial at infinity. (6.3) 
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In brief, D is a T-equivariant family of elliptic pseudo-

differential operators. 

(6.3) asserts that each operator D is trivial at infinity, and 

that there exists a compact set A in X with D trivial for 

x € A. If W is compact, then (6.3) is automatically satisfied. 

The index of D is an element of K„(X). For example, suppose 

that W is compact. Assume also that dim„[Kernel D ] and 

dim_[Cokernel D ] are locally constant functions on X. Since p : 

W » X is surjective, X is compact and Kernel D, Cokernel D are 

T-vector-bundles on X. Then in this case 

Index (D) = Kernel D - Cokernel D (6.4) 

More generally, W is not compact and dimff,[Kernel D ], 

dim(r[Cokernel D ] are not locally constant functions on X. Thus 

there is a difficulty in defining Index (D) € K„(X). This problem can 

be overcome in various ways. See [1,5]. One very pleasant way is to 

use Kasparov KK theory [23] and the Green-Julg theorem [18,22]. In 

this approach, Sobolev spaces are used to quite directly construct from 

D an element of KK(C,C0(X)>cr). Here C (X) is the abelian C* 

algebra of all continuous complex-valued functions on X which vanish 

at infinity. C„(X) x T is the crossed-product C algebra arising 

from the action of T on C_(X). The Green-Julg theorem gives an 

isomorphism KK(C,C„(X)xr) = K„(X) so starting from D we obtain 

Index (D) e K°(X). Applying chj, : K°(X) > H°(X,r) yields 

chf(Index D) € H°(X,r). 

The symbol a of D is a map of T-vector-bundles on T ■ 

x_0 * rl , c C-, 
CT : TT E > ir E (6.5) 
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TT E is the pull-back via it of E . By definition the support of a 

* 0 1 is the set of all v € T such that cr(v) : E > E is not an v ' irv irv 
isomorphism of C vector-spaces. (6.3) implies that the support of a 

is a compact subset of T . Hence a determines an element in 
0 ** 0 H 0 a K„(T ), and applying ch„ : K„(T ) > H (T , T) we obtain chr(o) £ 

The usual cup product gives a pairing 

H ^ T ^ C ) ® H ^ T ^ I C ) > H 1 + J(T*' T;C) (6.6) 
c C C 

Using this pairing form ch(a) U Td(r ,T). 

ch(a) U Td(-r*,r) € H°(T*,r) (6.7) 

With (pir)x : H°(T*,r) > H°(X,r) as in (4.9) we then have: 

(6.8) Theorem (Atiyah-Singer [4,5]). 

chr(Index D) = (pTr)Jch(cr) U Td(T ,T)) 

Proof. See [4,5]. 
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§7. r countable: Chern character for proper actions

00
X is a C manifold. X is Hausdorff. finite dimensional.

second countable. and without boundary. r is a countable discrete
00

group acting on X by a C (right) action X x r ~ X.

*Form the reduced crossed-product C algebra Co(X) ~ r. See

Appendix 1 below for a precise definition of this C* algebra. Define

the equivariant K

algebra.

itheory Kr(X) to be the K theory of this C*

(7.1) DeFinition. = 0.1.

[10] is an excellent reference for C* algebra K theory. In

the Kasparov notation [23]. we are defining Ki(X) to be

iKK (~.cO(X)xr).

(7.2) DeFinition. The action of r on X is proper if the map

X x r ~ X x X which takes (x.~) to (x.x~) is proper.

00
For a proper C action each isotropy group is finite. the Palais

slice theorem [26] is valid. and the quotient space Xlr is Hausdorff

and is an orbifold.

Any action of a finite group is proper. If r is finite. then

the Green-Julg theorem [18.22] asserts that Ki(X) as defined by

Atiyah and Segal [4.30] is isomorphic to Ki[CO(X)~].

For the remainder of §7 assume that the action of r on X is
00

C and proper.

Set X {(x.~) € X x r I x~ = x}.
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~ -1 *• co r acts on X by (x,-r)a = (xa.a -ra). X is a C sub-manifold of 

X x T. The action of T on X is proper so X/r is an orbifold. 

Define the equivariant cohomology H (X,T) i = 0,1 by: 

H°(x,r) = e H2j(x/r;c) jem c 

^(x.r) = e H2j+1(x/r:(D) jem c 

(7.3) 

The Chern character ch„ : K„(X) » H (X,T) is defined as 
CO CO 

follows. C (X) denotes the compactly supported C complex-valued 
CO -y 

functions on X. If f £ C (X) and t € V, then f is: 

fT(x) = f(xnr) (7.4) 

Consider the algebra C (X.T) whose elements are all finite 

formal sums > f [TT] where f € C (X) and T € r. Addition and 
-rer 

CO 
multiplication in C (X,T) are c 

[ I *,[•*]] + [ I \ M ] = I (VhT)[^] 
-r€r -r€f -rer 

(^[-»])(ha[«]) = f ^ t ™ ] 

(7.5) Lemma. The inclusion C (X.T) C C (X) x T induces an 
00 

isomorphism KQ[C (X,T)] = KQ[C0(X)>4r]. 

Proof. C°{X,D is a dense sub-algebra of CQ(X) xi T which is 

closed under holomorphic functional calculus. Q.E.D. 
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Remarks. See Appendix 1 below for a detailed proof that C (X,T) 

is closed under holomorphic functional calculus. Lemma (7.5) is not 

valid when the action of T on X is not proper. 

00 
Next, let us take the cyclic cohomology of C (X.T). We use the 

notation and conventions of [16]. As a topological vector space 
00 00 
C (X,T) = C (Xxr)

.
 The evident isomorphism is: 

[J f,["»]] (x.a) = fQ(x) (7.6) 

C (Xxr) is topologized by the C topology, and thus C (X,T) is 

topologized. Following [16] the cyclic cohomology groups H (C (X,T)) 

and Hodd(C°°(X,r)) are taken with this topology on C°(X,r). 

To identify HeV(C°°(X,r)) and Hodd(C<°(X.r)) in familiar 
r " topological terms, let fi.(X) be the vector-space of all j-

dimensional de Rham currents on X which are fixed by T. The de Rham 

complex 

o « — n£(x) «-£- nj(x) «-£- ... *-$- if (X) « — o 

has for its j-th homology H (X/r;C), the j-th homology group of 

X/r using countable locally finite chains with coefficients C. This 

is isomorphic to the j-th Borel-Moore [11] homology of X/r with 

unrestricted supports and coefficients C. 
i c0 

0 (X) denotes the compactly supported C i-forms on X. If 

u € Q (X) and i £ T, then (J is: 

u'r(v1.v2 Vj) = ̂ (VjTf.VgT Vj-r) (7.7) 
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v,, v. € T X 
1 I X 

n^(X,T) denotes the vector-space whose elements are all finite formal 

J W(T[>] with u ^ n j i x ) . d : n*(x.r)—m*+ 1(x.r) is: 
c 

sums 

-rer 

Ser 
I «,l>] = J (du^l/r] (7.8) 

-rer 

A d d i t i o n i n fi^X.T) and m u l t i p l i c a t i o n n 1 (X,T) x n J ( X , r ) 

n 1 + j ( X , r ) a r e : 

Ser 
1 ^ [ T ] + 1 ^ M = ^ ( V V 1 ^ 

ser 
( 7 . 9 ) 

-rer 

( ^ [ ^ ] ) ( r j a [ a ] ) = ( U / T J ^ C T O ] (7 .10 ) 

As a v e c t o r - s p a c e fi (X,T) = fi (Xxf) . The e v i d e n t isomorphism i s : 

I M ,™ 
Ser 

<VV2 V = V v i - V 2 v i } (7 .11 ) 

v,,v0 v. e T, ->(x*r) 
1 2 1 ( x , T f ) 1 ' 

Let Z be a j - d i m e n s i o n a l c l o s e d de Rham c u r r e n t on X w i t h Z 

f ixed by r . <pz € H J ( C c ( X , r ) ) i s : 

*z<Vai a j ) a 0 d a l d a 2 - - d a j ( 7 . 1 2 ) 

a „ , a . a . € C (X,T) 
0 1 j c v ' 
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(7.13) Remark. In (7.12) d and multiplication are as in (7.8) 

and (7.10). The integration over Z is done via the isomorphism of 

vector-spaces fiJ(X,r) = fiJ(X*r) and the inclusion X C X x r. 

Set $(Z) = <fz 

(7.14) Theorem. 

CO £*V CO 
0 : 8 H0.(X/r:C) > H (C (X.O) 

♦ : • H" (X/r;C) » Hodd(c"(X.D) 
jem ZJ x c 

are isomorphisms. 

Proof. Let D be the bicomplex Dn,m = tf (X). Thus D™'1" is 
n-mv ' 

all de Rham currents of dimension n-m on X which are fixed by V. 

The two coboundaries in D are 

. T-»n,m T-n+l.m , „ d1 : D > D dj = 0 

d2 : Dn.m , Dn.m+1 ^ = g 

si denotes C (X,T) with a unit adjoined. Let C be the (b,B) 

bicomplex for the (topologized) algebra it. Thus CT' = Cr (si,si ), 

the C vector space of all continuous n-m+1 linear forms on si. The 

two coboundaries are 

H : c11'"1 > C n + 1 ' m d, = b, the Hochschild coboundary 
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d2 : C n , m » Cn'nH"1 d2 = B 

Map D to C by * : D > C where 

*(Z)(a0,a1....,a ) a()da1da2...daj. 

Here we require that the unit 1 of Q acts as the identity on 
Q (X,T) and that d(l) = 0 . * is a map of bicomplexes. Filter D 
and C by FqD = ^ Dn,m, F ^ = ]) C^1". Consider the resulting 

m>q m>q 
spectral sequences. Using the method of [16] it can be shown that at 

1 2 
the E level * is an isomorphism. This implies that at the E 
level 0 is an isomorphism. Since the spectral sequence for D has 
2 •» E = E , this proves the theorem. Q.E.D. 

Set H (X/r;C) = © H (X/r;C). The pairing of [16]: evv ' ' " 2i eV jQN J 

K0(c"(X,r)) x Hev(c"(X.r)) » C (7.15) 

combines with (7.5) and (7.14) to become a pairing 

f) a> ^ Kj:(X) x H (X/r.C) » C (7.16) 

This pairing can be interpreted as a map 

K°(X) * H"v(X/r.<D) » C (7.17) 

CO ^ W CO rt 

where H (X/T.C) is the dual vector-space of H (X/J\C). 
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If dim H (X/r,C) < «>. then H (X/r,C) = ffi H J(X/r ;(C) and 
j€IN 

(7.17) becomes 

K°(X) » H°(X,r) (7.18) 

If H (X/r,C) i s not f i n i t e dimensional, then we can choose open se ts 

X j C X - C L C . . . in X such that : 

T maps X. to i t s e l f . (7.19) 

dimc H^v(X/r.(C) < » (7.20) 

U X = X 
1=1 

(7.18) then applies to each X. to give 

Kj(X.) »H°(X..r) (7.22) 

But K°(X) = limit K°(X.) and H°(X.r) = _Hmi_t H°(X1 ,T). Therefore 

passing to the limit we obtain 

chf : K°(X) > H°(X.r) (7.23) 

which is the desired map ch„. 

Let T act on X * R by (x.t)-r = (x-r,t). chj, : Kf(Xx|R) » 

H (X,T) is defined by requiring commutativity in the diagram 
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ch 
K°(XxR) £ > H°(Xx|R,r) 

i c hr i 
IC(X) ■ » H^X.T) 

("7.24) 

In (7.24) the vertical arrows are the standard "integration over the 
fiber" isomorphisms. 

(7.25) Theorem. For i = 0,1 

ch : K*(X) ® C > H^X.T) 
1 Z 

is an isomorphism of C vector-spaces. 

Proof. The two agree locally, and both have a Mayer-Vietoris 
exact sequence. The theorem is now proved by an induction argument. 

Q.E.D. 

§8. Proper actions: Integration over the fiber 

00 
T, X are as in §7. The action of T on X is C and proper. 

This implies that a T-invariant Riemannian metric can be chosen for 
X. Each X is, therefore, a C sub-manifold of X. 

00 00 
Let W be another C manifold with a given C action of T. 

00 
Assume given a T-equivariant C submersion p mapping W onto X. 

p : W » X (8.1) 
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It is not difficult to prove that the action of T on W must be 
proper. 

T, T , and TT : T > W are as in (4.3) and (4.4). With 
H (X,T) as in (7.3) there is an integration over the fibre map: 

(plr)H : H ^ T V ) ► H^X.T) (8.2) 

To describe (Plr)« w e need 

(8.3) Definition. A subset A of X is r-compact if the image 
of A in X/r is compact. 

i ^° 
Denote by fir(X) the vector-space of all C i-forms u on X 

such that: 

u is T-invariant. (8.4) 

support (<d) is r-compact. (8.5) 

The de Rham complex 

o — > n°(x) -^-* n*(x) -^-> ... -^-> n"(x) — > o 

has for its j-th homology HJ(X/r;C). 
Lemma (4.8) is valid in the present context, so for each i € T, 

pTT : T > X is a submersion with oriented even-dimensional 
fibers. By definition r C T X T and X C X x T. Map T to X 
by pir x 1 where 
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(pTrxl)(v,-r) = (pirv,-r) (8.6) 

Then pir x 1 : T > X is a submersion with oriented even-
dimensional fibers. 

The key point for (8.2) is: 

(8.7) Lemma. Let A be a T-compact subset of T . Then for 
-1 each (X,T) e X, A D (PTTXI) (X,TT) is compact. 

Proof. Let I. - be the isotropy group of (X,TT). The image 
[X,y) 

—1 ~* of A H (pirxl) (x.nr) in T /T must be compact. But this image is 
equal to A n (PTT*1) (x,-r)/I, .. Since I, . is finite the lemma 

(x,-r) (X,T) 
is proved. Q.E.D. 

The usual integration over the fiber of differential forms [12] 
now gives a map of de Rham complexes n_(T ) > fir(X) and this 
yields the desired map (8.2). 

§9. Proper actions: Td(T , T) 

T, X, p : W > X, T, T* are as in §8. 
Td(T*,r) £ ffi H ^(T*/rX) i s defined essen t i a l ly as in §5, with 

jeiN 
certain nuances which are indicated below. 

~i co 
nr(X) is the vector-space of all T-invariant C i-forms on X. 

The de Rham complex 

o — > n°(x) - ^ n*(x) -^-» ... -$-* f£(x) — > o 
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has for its j-th homology IT(X/T;<C). 
Z(-T) denotes the centralizer of -r. 

Z(-r) = {a e r | a~l-ia = -1} (9.1) 

Note that Z(-ir) acts on W . Suppose given on W a Z(ir)-vector-
bundle F. For w € W let ^ j . ^ 2 ^ be the (distinct) eigen-

F . As a Z(nr)-vector-bundle F is then the 

(9.2) 

where the action of t on F is multiplication by X.. Define 

values of 1 ■ F — w 
direct sum 

F = F1 e F2 ® . 

—* F . w 

.. ® Fr 

ch^F) € ffi H2j(w'Vz(-r);C) by 

ch^JF) = J X.ch(F1) (9.3) 
1=1 

In (9.3) ch(F ) is the ordinary non-equivariant Chern character of 
F1, descended to e H2J(wVz(-r) ;(C). This is found as a differential 
form by choosing a Z(ir)-equivariant connection for F . The differen­
tial form for ch(F ) so obtained is Z(-r)-invariant and thus deter­
mines an element of e H2j(wVz(-r) ;<D). Set 

jeiN 

c l A ^ F = ^ (-l)Jch'T(AJF). where 6 = dim^F^. 
j=0 

Exactly as in (5.5) and (5.6) define Z(T)-equivariant IR vector-
bundles 8, v on W . ch X_1(u8C) is an invertible element of 

1 IR 
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9 H2J(w'r/Z(-r);C). 
j€IN 

Define Td(T ,T) 
jem 

Define Td(-r*,i) 9 H2J'(T'^/Z(T) ;<C) by: 

Td(T*,-r) = TT* 
Td(6®C) 

ch \_jCu8C) 
(9.4) 

In (9.4) Td(68C) e 9 H2j(w"7z(-r) ;C) is the usual non-equivariant 
IR j€lN 

Todd class of 9 ® C, descended to 9 H 2 J(W"7Z(T) ;<C). This is found 
IR j€(N 

as a differential form by choosing a Z(nr)-equivariant connection for 

9 0 <C. The differential form for Td(98C) so obtained is Z ( T ) -
K IR 

2i T equivariant and thus determines an element of 9 H (W /Z(-r);C). In 
j€IN 

(9.4) ir* : HH(wVz(-r) ;C) > H^T^/Zf-r) ;<C) is the map of cohomology 
induced by TT : T*"7z(-r) > wVz(-r). 

(9.5) Lemma. Let L = {if. ■ir„,'r„, . . .} be elements of finite order 

in T such that any element of finite order in T is conjugate to one 

and only one of the TT.. Then X/r = U X /Z(-r). 
1 -r€L 

Proof. The evident map U X /Z("r) > X/r is one-to-one and 
-r£L 

onto. Q.E.D. 

(9.6) Remark. With L as in (9.5), the identity element of T 

must be an element of L. (The identity element of T is of finite 

order, and is the unique element in T of order one.) 

Applying (9.5) to T , we have 

T V = U T*Vz(-r) (9.7) 
-r€L 
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Using (9.7) and (9.4) define Td(-r*,r) by: 

Td(T*,r) = !7 Td(T*,-r) (9.8) 
-r€L 

Td(TM,r) e e H2J(T*/r:c). 
j€IN 

§10. Proper actions: Index Theorem 

T, X, p : W » X, T, T* are as in §8. 
0 1 °° °°, i 

Let E , E be C T-vector-bundles on W. C (E ) is the 
00 1 CO 0 03 1 

vector-space of all C sections of E . Let D : C (E ) > C (E ) 
be a pseudo-differential operator such that: 

D is r-equivariant. (10.1) 

For each x £ X, D restricts to p x to (10.2) 

give an elliptic pseudo-differential 

operator D : c"(E°|p_1x) > (/"(E1 |p_1x) • 

D has r-compact support. (10.3) 

In brief, D is a T-equivariant family of elliptic pseudo-

differential operators. 

(10.3) asserts that each operator D is trivial at infinity and 

that there exists a r-compact subset A in X with D trivial for 

x € A. 
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The index of D is an element of K°(X) = KK(<C,C (X)xr). 

Applying chr : K°(X) > H°(X,r) yields chr(Index D) e H°(X,r). 

The symbol o of D is a map of T-vector-bundles on r '■ 

x 0 x 1 CT : v E > TT E . (10.4) 

By definition the support of a is the set of all v € T such that 

CT(V) : E » E is not an isomorphism of C vector-spaces. 

(10.3) implies that the support of a is a T-compact subset of T . 
0 * * 

Hence a determines an element of K„(T ) = Kn[Cn(T )xr]. Applying 

chf : K°(T*) > H°(T*.r) we obtain ch (a) € H°(-r*,r). 

The usual cup product gives a pairing 

Ha(T*/r;C) 9 H J(T*/T;C) » H1+J(T*/r;C) (10.5) 
c C C 

Using this pairing form ch(a) U Td(T ,T). 

ch(a) U Td(TX,r) € H°(T*.r) (10.6) 

With (PTr)x : H°(T*.r) » H°(X.r) as in (8.2) we then have: 

(10.7) Theorem. 

ch„(Index D) = (pir) fch(a)irTd(T*,r)). 
1 ** 
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§11. Twisted homology and K homology 

Let Y be a Hausdorff topological space which has the homotopy 
type of a CW complex. Let F be an 1R vector bundle on Y. 
F - {0} denotes F with the zero section deleted. The j-th 

F homology group of Y, twisted by F, is denoted H.(Y) and is 
defined 

Hj(Y) = H.(F,F-{0};C) (11.1) 

p Thus H.(Y) is the j-th singular homology group, with coefficients 
the complex numbers C, of the pair (F,F-{0}). Equivalently, choose 
a Euclidean structure for F. Then H^fY) = H.(BF,SF;C) where BF, SF 
are the unit ball and unit sphere bundles of F. 

00 
Let V be a C manifold. Choose a Riemannian metric for V. 

BTV is then an almost-complex manifold with boundary STV. BTV is 
oriented by its almost-complex structure so there is the Poincare 
duality isomorphism 

HJ(BTV) = H2n_.(BTV,STV) n = dim(V) (H-2) 

Since H (V) = H (BTV), (11.2) can be viewed as an isomorphism 

H c ( V ) = H2n-i ( V ) n = d i m ( V ) ( 1 1 3 ) 

Note that in (11.3) V is not required to be oriented. In particular 
(11.3) gives isomorphisms 
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8 H2j(V) = 9 H^V(V) 
jem c jew J 

9 H2J+1(V) = 9 HIY ,(V) 
iem c tern J 

(11.4) 

More generally, suppose given a direct sum decomposition of K 

vector bundles TV = E 9 F. Then Poincare duality gives an isomorphism 

HJ(E) = H^ n j(V) n = dim(V) (11.5) 

From (11.5) we have isomorphisms 

9 H2j(E) = 9 H^.(V) 
j€IN C j€IN J 

• H2J+1(E) = 9 £ AW) 
jew c jem *•> L 

(11.6) 

If F is an R vector bundle on Y and f : Z » Y is a 

continuous map, then f determines a map of twisted homology 

f* : Hj F(Z) ►Hj(Y) (11.7) 

In (11.7) f*F is the pull-back of F via f. 

Quite similar remarks hold for K homology. If F is an IR 

vector bundle on Y, then the j-th K homology of Y, twisted by 
p F, is denoted K.(Y) and is defined J 

KF(Y) = K.(F,F-{0}) j=0.1 (11-8) 
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K homology is the homology theory associated to the TL x BU 
spectrum. A concrete realization of this theory is obtained by using 
the K-cycle definition of [9]. If Z C Y, then a K-cycle for (Y,Z) 
is a triple (M,E,<p) such that: 

(i) M is a compact Spin manifold which may have non-empty 
boundary. 

(ii) E is a C vector bundle on M. 
(iii) f '■ M > Y is a continuous map with <p(3M) C Z. 

As in [9] the equivalence relation on these K cycles is the equiva­
lence relation generated by: 

(i) Bordism 
(ii) Direct sum-disjoint union 
(iii) Vector bundle modification. 
In the six term exact sequence 

KQ(Z) » KQ(Y) ► K0(Y.Z) 

K^Y.Z) < KX(Y) < KX(Z) 

the boundary map K.(Y,Z) » Ki+i(Z) takes (M,E,^>) to 
(3M,E|aM,.p|aM). 

The (homology) Chern character 

ch : Kn(Y,Z) > ffi H9 . (Y,Z,ia) 
U jelN Zi 

ch : K (Y,Z) » ffi H (Y.Z. 
1 jeiN Z J l 

(11.9) 
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ch(M,E,f) = ^(chELTTd(M)n[M,aM]) (11.10) 

In (11.10) <pM : Hx(M,aM,Q) » HX(Y.Z,<Q) is the map of rational 

homology induced by <p. [M,9M] is the orientation cycle of M. 

§12. Improper actions: Integration over the fiber 

00 00 
r is a countable group acting by a C action on a C manifold 

X. The action X * T » X is not required to be proper. See 

Appendix 2 below for the case when T is not countable. 

As in §7, Q-.(X) * r denotes the reduced cross-product C 

algebra arising from the action of T on C„(X). The equivariant K 

theory K_(X) is defined as in (7.1) by: 

Kj(X} =K.[C0(X)xr] i =0,1 (12.1) 

To define the equivariant cohomology H (X.T) let S(r) = 

(i 6 T | i is of finite order}. The identity element of T is in 

S(T). Set 

X = {(x.-r) € X x r | x - r = x and -rC S(T)}. (12.2) 

X is a C sub-manifold of X x r. The reason for this, is that 

given t € S(T) we can choose a Riemannian metric for X which is 

invariant under T. For T € T of infinite order, X might not be a 

manifold. If the action of T on X is proper, then all isotropy 
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groups are finite, so the X of (12.2) agrees with the X of (7.3). 
" -i *■ 

T acts on X by (x,-r)ct = (xa.a tot). The quotient space X/r may 

be non-Hausdorff and quite pathological. Thus standard algebraic 

topology may not apply to X/r. We can, however, form the homotopy 

quotient X x ET. Denote the j-th homology group of X x ET, 
r r 

" TX ~ 
twisted by the K vector bundle TX x ET. by H. (XxEr). The 

r J r 
equivariant cohomology H (X.T) i = 0,1 is defined: 

O TV *• 
H (X.T) = ® H* .(XxEr) 

jeiN J r 

1 TX ^ 
H^X.T) = (8 Hi* (XxEr) 

(12.3) 

The next lemma asserts that for proper actions H (X.T) as 

defined in (7.3) agrees with H (X.T) as defined in (12.3). 

(12.4) Lemma. If the action of T on X is proper, then there 

are isomorphisms 

9 i ~ TV ~ 
e H J(x/r;c) £ e H'.(XxEr) jew c jew J r 

9 i+1 " TV ~ 
e H J (x/r;c) s e H'. ,(XxEr) 
jeiN c jem Zi x r 

Proof. Projection on the first factor gives a map of pairs 

(TXxEr,TXxEr-{o>) — » (TX/r,TX-{0}/r). (12.5) 
r r 
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The fibers of this map are classifying spaces of finite groups. 
Therefore with coefficients C the map induces a homology isomorphism. 

Set HTX(X/r) = H.(TX/r.TX-{0}/r;C). The proof is now completed 
by observing that in the context of rational homology manifolds (11.4) 
remains valid. Hence there are Poincare duality isomorphisms: 

e H2j(x/r;c) == e H™(x/r) 
j€IN C jeiN J 

9 i+1 ~ TY ~ 
ffi H J (x/r;C) = © H'. Jx/r) 

jeiN c jem 2 J + 1 

(12.6) 

Q.E.D. 

Let W be a C manifold on which T is acting by a proper C 
00 

action. Assume given a C T-equivariant submersion p mapping W 
onto X, T, T , TT are as in (4.3) and (4.4). Integration over the 
fiber maps H^^.T) to H^X.T). 

(PTT)H : H ^ A r ) > H^X.r) (12.7) 

The action of T on X is not required to be proper, so in (12.7) 
H (X,T) is as in (12.3). The action of T on W is proper. To 
define (Plr)„ w e need: 

TV ^ ~ (12.8) Lemma. Let H. (WxEr) be the j-th homology of W * EJ\ J r r 
twisted by p TX x Er. Then there are isomorphisms 

r 
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H U(T ,r) = © Hr:(WxEr) 
jew J r 

1 w TY ^ 
H ^ T ,r) = e id* (WXET) 

j€m J r 

(12.9) 

Proof, p ■ W > X determines a map W > X which will also 
be denoted p. p TX is the pull-back via p of TX. Set 

H. (w/r) = H.(P Tx/r,p TX-{o}/r) (12.10) 

Projection on the first factor gives a homology isomorphism 

HTX(WxEr) ► HTX(W/r) (12.11) 

Since the action of T on W is proper we may choose a T-invariant 
Riemannian metric for W. This gives a direct-sum decomposition of K 
T-vector-bundles on W. 

TW --; T e p*TX (12.12) 

In the context of rational homology manifolds (11.6) remains valid to 
give isomorphisms 

e H2j(T/r :c) = 9 £ x (w/r) 
jeiN c jem Z3 

(12.13) 

® H2J+1(T/r ;c) s e H™..(w/r) 
jeiN c jew ^ + 1 
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3f 
The r-invariant Riemannian metric for W identifies r and T , so 
we have the evident isomorphism. 

H't/.r) S H V . H i=0.1 (12.14) 

Combining (12.11), (12.13) and (12.14) proves the lemma. Q.E.D. 

(11.7) applies to give a map 

TY ~ TV " H1 (WxET) » H (XxEr) (12.15) 
J r J r* 

(pir)x : H X(T ,T) » H^X.T) is obtained by composing the isomorphism 
of (12.9) and the map of (12.15). 

9t §13. Improper actions: Td(T ,T) 

T, X, p : W > X, T, TH are as in §12. The action of T on W 
is proper, but the action of T on X is not required to be proper. 

Td(T ,T) is defined as in §9. There is no change since the 
action of T on W is proper. Suppose now that p1 : W. > X and 
P9 : W„ > X are both T-equivariant C submersions. Assume that 

03 
p. maps W. onto X. Let f : W. > W„ be a C T-equivariant 
map such that p1 = p„f. According to (12.9) there are isomorphisms 
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H (T.,D = ® H*A(W.xEr) 
1 j€m J *r 

1 * TV *■ 
U\r r) = © HlA (W xET) 

1 jem J r 

(11.7) applies to give a map 

(13.1) 

TY ̂  TY ^ 
H. (W^Ef) » H. (WgxET) (13.2) 

Combining (13.1) and (13.2) yields a Gysin "wrong way" map 

fH : H^.r) ► H^Tg.r) (13.3) 

It is immediate from the definition of integration over the fiber 

that there is commutativity in the diagram 

H^Tj.D — * — » H^Tg.D 

H^x.r) 

(13.4) 

Let us now consider the K-theory versions of f and (pir),.. 

These shall be denoted: 

f, : K . C C ^ X I — ► K.[c0(T2)xr] (13.5) 

(PTT), : K.[C 0(T )XT] » K.[C0(X)xf] (13.6) 
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To define these it is convenient to recall the definition of K-

oriented map. 

(13.7) Definition. Let Vj, V„ be C manifolds and let h : 
c V. > V„ be a C map. h is K-oriented if a Spin structure is 

given for the IR vector bundle TV.. © h TV„. 

It is well known [3] that a K-oriented map h : V1 » V_ 

induces a Gysin "wrong way" map K (V.) > K (V„). From the Kasparov 

point of view [23], h determines an element of KK (C_(V.),Cn(V9)) 

and this gives the Gysin map K (V.) > K (V„). 

If T acts by diffeomorphisms on V1 and V„ we require: 

(i) The T action of V. is proper. 

(ii) h is T-equivariant. 

(iii) A T-equivariant Spin structure is given for TV. © 

h * T V 
When (i), (ii), (iii) are satisfied, h determines an element of 

KK (Cn(V1 ))«r,C„(V9))«r) and thus h induces a Gysin map 
lycyv^xr]—>Kx[c0(v2)xn. 

For (13.5) let f : W > W„ be as above, f' : r. > T is 

the derivative of f. Since the action of T on W. is proper, a T-

invariant Riemannian metric can be chosen for W.. This identifies T. 
I l a M M 

with T. so f' becomes a map from T1 to T„. 

-^ * T* (13.8) 

One now easily checks that the T-equivariant IR vector bundle TT^ ffi 

f' TT„ is of the form E 9 E = E ® C and thus is a F-equivariant C 
2 R 
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vector bundle on T.. (i), (ii), (iii) are satisfied and we have f, 

K.[C 0(T*)*T] ► K.[C0(T*)*r]. 

(13.9) Remark, f, depends only on the homotopy class (as a C 

r-equivariant map with p„f = p1) of f. If f : W. > W„ and g : 

W„ » W_ are as above then (gf), = g(f|- Note that f is not 

required to be a proper map. 

For (13.6) one checks easily that the r-equivariant K vector 

bundle TT** ffi (pir)*TX is of the form F ffl F = F ® C and thus is a T-
1R 

equivariant (C vector bundle on T . (i). (ii). (iii) are satisfied 

and we have (PTT), : K.[C0(-r*)xr] > K.[C0(X)x-r]. 
-1 * —1 

If x £ X, (pir) x = T (p x) is an even-dimensional almost-
complex manifold. Let D be the Dirac operator of (pir) x. Then 

{D } is a r-equivariant family of Dirac operators parametrized by X. 
0 * Hence {D } can be viewed as an element of KKr(C_(T ),Cn(X)). 

{Dx} € KK°(C 0(T*),C 0(X)) (13.10) 

Applying Kasparov's map 

KK°(C 0(T*),C 0(X)) ► KK°(C0(T*)xr.C0(X)xr) 

0 * 
to {D } yields the element in KK (C Q(T )xr,CQ(X)>«r) which gives 
(PTT), : K.[C 0(T )xT] ► K.[C0(X)xir]. 

Remark. There is commutativity in the diagram 
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^[CQ^XI 

("I'I 

K1[C0(r2),r] 
/ 

(13.11) 

K.[C0(X)xT] 

For the next proposition, let ch_ U Td(T ,T) be the map which 
sends f e K. [C0(T*)X)T] to chf(f) U Td(-r*,r) € H ^ A f ) . 

(13.12) Proposition. There is commutativity in the diagram 

K.[C 0(T*)*T] ' ► K.[C 0(T*)XT] 

chf U Td(Tl,r) chr U Td(T2,r) 

H^T^.r) ■7 * H^r^.r) 

§14. Improper actions. K (X.T) 

r, X, K*(X), H^X.T) are as in §12. By definition K*(X) 
K.[C0(X)>4r], and 

O TY ~ 
H (x,r) = e H'.(XxEr) 

jeiN J r 

1 TY ~ 
H^x.r) = e H' .(XxEr) 

jew ^ r 

(14.1) 

At the present time [17] the Chern character (as a pairing H^X.T) x 
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Kj[C„(X)xir] * C) has been defined only for certain naturally 

arising elements of H (X,T). So instead of constructing a Chern 

character K.[CL(X)xr] > H (X,T) we shall introduce a geometric K 

theory K^X.T) and a map u : K^X.T) » K.[C0(X)xr]. In every 

computed example |i is an isomorphism. We conjecture that fi is 

always an isomorphism. Moreover, there is a Chern character 

chr : K^X.T) > H^X.T) (14.2) 

The picture is: 

K^X.r) K ► K.[C0(X)>«r] 

ch„ 

^(x.r) 

(14.3) 

-» K.[C0(X)xT] • C 

In (14.3) the right vertical arrow is the tautological map. It will 

turn out that chj, : K (X.T) » H (X.T) gives an isomorphism 

ld(X,r) 0 C » H^X.T). The map H^X.T) » K.[C-(X)xr] 0 C is 
1 1 1 ° Z 
then defined by requiring commutativity in the diagram (14.3). 

For K (X.T) let ^(X.T) be the category whose objects are all 

pairs (W,p) such that: 
00 

(i) W is a C manifold with a given proper action of T 
by diffeomorphisms. 

oo (ii) p is a C T-equivariant submersion mapping W onto X. 

For such a (W,p) T, T , w are as in (4.3) and (4.4). 

Let (W...P-) and (w2'p2^ b e o bJ e c t s l n ^(X.T). A morphism 
00 

from (Wj.Pj) to (W2>p2) is a C T-equivariant map f : W1 » W 2 

with commutativity in the diagram 
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(14.4) 

f is not required to be proper. According to (13.5) a morphism f : 

W1 > W2 induces a map f, : K. [C0(T*)xir] > K. [C0(T*)*r]. 

(14.5) Definition. K^X.T) = limit K. [CQ(TX)xr]. In (14.5) the 

<6(X,r) 
limit is taken using the f, maps of (13.5). 

Let F.(X,r) be the free abelian group generated by all triples 

(W,p,f) such that (W.p) is an object of ^(X.T) and f e 
Ki^-C0^T ^Xr^' Ri(X,r) denotes the subgroup of F.(X,r) generated by 

all elements in F.(X,T) of the form: 

(i) (w.p.f+n) - (w.p.f) - (w.p.n) 
(ii) (Wj.pj.f) - (W2,p2,f,f) 

Then definition (14.5) is: 

K^x.r) = F.(x,r)/R.(x,r) (14.6) 

If the action of T on X is proper, (X,l„) is a final object 

in ^(X.T). 1„ is the identity map of X. It is then immediate from 

(14.5) and (14.6) that for a proper action K^X.T) = K [CQ{X)xr]. 

For an improper action, define p. : K (X,T) > K.[C0(X)xF] by: 

1 °° To avoid set-theoretic difficulties take W to be a C manifold 
(which is a closed subset) of some Euclidean space DT. This is 
possible by the Whitney embedding theorem. 
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M(W.p.f) = (pr),(f) (14.7) 

The commutativity of (13.11) implies that u is well-defined. 

00 
(14.8) Conjecture. Let T act by diffeomorphisms on a C 

manifold X. Then u : K (X,F) > K.[C_(X)xr] is an isomorphism of 

abelian groups. i = 0,1. 

Remark. (14.8) is part of a much more general conjecture [7,8], 

For a C algebra A which may be: 

(a) A reduced crossed-product twisted by a 2-cocycle. 
00 

(b) A reduced crossed-product arising from a C action of a 

Lie group on a manifold. 

(c) The C algebra of a foliation. 

We define a geometric K theory and conjecture that the geometric K 

theory is isomorphic to the K theory of the C algebra A. 

Let sd(X,T) be the full subcategory of ^(X.T) whose objects are 

all (W,p) with the action of T on W free. For such (W,p), W 
TX is a principal T bundle over W/F. K. (XxEr) denotes the i-th K 
1 T 

homology of X x Er, twisted by TX x EF. Using the (M,E,<p) 
r r 

definition of K homology given in [9], it is not difficult to prove 

* TV limit K.[C 0(T )»T] = ICA(XxEF) (14.9) 

TX i 
The inclusion a«(X,r) C <6(X.r) induces a map K (XxEF) > K (X.T). 

1 r 
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(14.10) Lemma. If all the isotropy groups for the action of F 
TX i 

on X are torsion free, then K. (XxEF) » K (X,F) is an 
1 r 

isomorphism. 

Proof. In this case rf(X.r) = <6(X,r). 

Together Lemma (14.10) and Conjecture (14.8) become 

(14.11) Conjecture. If all the isotropy groups for the action of 
TX F on X are torsion free, then p. : K (XxEr) > K. [Cf,(X)>or] is an 

isomorphism. 

If F is torsion free and X is a point, K (',F) = K (Br), 

where Br is the classifying space of T. Q->(*) X T = C T, the 

reduced C algebra of T. Due to [2], for T torsion free 

surjectivity of ji : K_(Br) » K0QC T] implies that there are no 

projections (other than 0 and 1) in C F. 

Suppose that T (which may have torsion) acts on a tree T 
CO 

without inversion [32]. Let F act by a C action on X. Let 

G C T be an isotropy group for an edge or a vertex of T. Assume that 

for all such G |i : K (X.G) » K.[Cn(X)xG] is an isomorphism. A 

remarkable recent result of M. Pimsner [28] then implies that ji ■ 

K1(X,r) > K.[C0(X)xr] is an isomorphism. 
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§15. Chern character for improper actions 

chr : K^X.r) > H^X.T) is: 

chpCW.p.f) = (PTr)M(chr(f)UTd(T*,r)) (15.1) 

Proposition (13.12) and the commutativity of (13.4) imply that ch„ : 
K^X.T) > H^X.T) is well-defined. 

(15.2) Proposition. For i = 0,1 ch_ gives an isomorphism of 
C vector spaces K1(X,T) 8 C > H^X.T). 

Z 

Proof. Let (W.p) be an object of <€(X,r). Map K [C 0(T*)XT] 
to H1(T*.r) by 

f I > ch r(f) U Td(TX,r) (15.3) 

Theorem (7.25) implies that (15.3) is an isomorphism K . [ C „ ( T )xr] 8 
1 U Z 

C > H (T ,T). According to (13.12) this passes to the limit to 
yield an isomorphism 

limit (K.[C (T )XT]®C) > limit H ^ T ,T) (15.4) 
» * U Z > <e(x,r) -efx.r) 

For the left side of (15.4) the limit is taken using the f, maps of 
(13.5). Thus the left side is K1(X,T) 8 <C. For the right side of 

Z 
(15.4) the limit is taken using the Gysin maps f of (13.3) 
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Commutativity of (13.4) implies that integration over the fiber 

gives a map 

limit H^T ,D > Hx(X,r) (15.5) 
> 

<e(x,r) 

The proof is completed by showing that (15.5) is an isomorphism. This 

is done by using the classifying space for proper actions described in 

Appendix 3 below. Q.E.D. 

We now define a map ^ : H1(X,r) > K.[C0(X)xf] 8 C by requir-
1 Z 

ing commutativity in the diagram 

K^x.r) K . K.[c0(x)xr] 
(15.6) 

H^x.r) ► K.[c0(x)xr] » c 

In (15.6) the right vertical arrow is the tautological map. 

(15.7) Conjecture. For i = 0,1 y : H1(X,T) » K.[C„(X)xr] ® 
l U z 

C is an isomorphism of vector spaces over (C. 

Let L C T be a subset of T such that: 

(i) All -r € L are of finite order. 

(ii) Any T € r with i of finite order is conjugate to one and 

only one element of L. 

The identity element of T is in L. Z(-r) denotes the central-

izer of i in T. Z(TT) acts on X . Then: 
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H°(X,r) = © © H™ (X^ x EZ(-r)) 
i€L j€IN J Z(-r) 

1 Tx"lr -» 
H ^ X . T ) = © © H ' * (XT x EZ(-r)) 

-i€L j€IN J * Z(-r) 

In (15.8) H™ (X1 x EZ(T)) is the j - t h homology of x"* x 
J Z(T) Z(-r) 

EZ(-r), twisted by TX7 x EZ(-T). 

(15.8) 

Z(nr) 

Remark. Consider the special case when all the isotropy groups 

for the action of T on X are torsion free. (15.8) simplifies to 

O TY 
H (x.r) = © H'.(XxEr) 

jew Zi r 
(15.9) 

1 TY 
H^x.r) = © HA* (XXET). 

jeiN Z J * r 

i TY According to (14.10) K^X.T) = K!A(X*Er). Thus when all isotropy 
1 T 

groups are torsion free ch„ : K (X,T) > H (X,T) is just the 

ordinary homology Chern character (see §11 above): 

,;rx'XxEr) — > © HJ,X( 
r jeiN J r 

ch : KQ (XxEf) » © ^.(XxEf) 

ch : K. (XxEr) > © H' , (XxEr) 
1 r jem ^J r 

Suppose that X is a point, and that T may have torsion. S(T) 

is the set of all elements of finite order in T. The identity element 

of T is in S(T). Fr denotes the T-module whose elements are all 

finite formal sums ) A [TT], with X € <C. T acts on Fr by 
-r€S(-r) 
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conjugation 

-reS(-r) -r€S(-r) 

H (T,Fr) denotes the j-th homology group of T with coefficients 

Fr. Set 

H (r.Fr) = e H, (r.Fr) 
jQN ^ 

H ,,(r,Fr) = © H-.^^r.Fn 
o d d

 jeffl
 2 J + 1 

When X is a point, Conjecture (15.7) becomes 

(15.10) Conjecture. For any group T, 

u ■■ Hev(r.Fr) — ► K0[crr] ® c 

U : Hodd(F'Fr) * Klt C
r
r ] ® C 

are isomorphisms of vector spaces over C. 

With L C T as above, let H.(Z(TT);C) be the j-th homology 

group of Z(TT) with trivial action on <E. Then 

H (r.Fr) = e e H P 1(Z(T) :C) 
e V -r€L J61N *3 

Hodd{r 'Fr) = ® ® U2i+l^'r)'X) 
° -r€L JEM ^ L 
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(15.11) can be viewed as a special case of (15.8) or can be obtained 

directly as a straightforward application of Shapiro's lemma [14]. 

Appendix 1: CQ(X) x r. Proof of Lemma (7.5) 

2 Let S be a set. £ S is the Hilbert space of all functions 9 : 

S > C such that: 

(i) 9 has countable support. 

(ii) J |9(s)|2<» 
ses 

2 The inner product in £ is: 

<e,f> = \ e(s)F(iT 
s€S 

Let u : S x S » C be a function. Fix s £ S. i(s)u is the 

function from S to C: 

i(s)u : S > C 

defined by i(s)u(t) = u(s,t). Suppose that u : S x S > C 
satisfies: 

2 2 For every s € S, i(s)u €
 £
 S. Given such a u, let 9 €

 £
 S. 

u*9 is the function from S to C defined by (U*9)(s) = 
y u(s,t)9(t). 
t€S 

MS denotes the C algebra of all functions u : S x S > (C 

with: 

(i) For every s e S, i(s)u € £ S. 
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Addition. multiplication. norm. and * in ~ are:

(uv)(s. t) l u(s.r)v(r.t)
rES

lIuli sup lIu*811
11811=1

Each u E ~ determines a bounded operator T
u

on

u t------> T is an isomorphism of c* algebras ~ --+ :£( 22S).u

.M S is the sub-algebra of ~ whose elements are all u S xc

S --+ 0:: with finite support. .M+S is the sub-algebra of .MSc

whose elements are all u E ~ with T
u

generated by .M Sc and the unit of ~ . ~S is the sub-algebra of .MS

a compact operator on 22S.

~+S is the sub-algebra of ~ generated by ~S and the unit of .MS.

~S and ~+S are norm closed in ~.

Lemma 1 . .M+S is a dense sub-algebra of ~+S closed under
c

holomorphic functional calculus.

ProoF. For s E S.

t s

t f. s

let {j be:s
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u~ T identifies ~+S with all bounded operators on E2S of theu c

form AI + k where A € C, I is the identity operator of E2S. and

k is an operator such that (kos,Ot) is non-zero for only finitely

many operator such that (kos'o t ) is non-zero for only finitely many

(s.t) € S x S.

u ~ T identifies ~+S with all bounded operators on E2S of
u

the form AI + k where A € C, I is the identity operator of E2S,

and k is a compact operator on E2S. The lemma is now evident.

Q.E.D.

Let Coo(X,f) be the algebra of §7 above. An element of Coo(X.f)c c

is a finite formal sum 1: f,X-rJ,
-r€f

00
where each f-r € Cc(X), Note that

the action of f on X is not assumed to be proper. Fix a point

x € X. Given [1: f,.(-r J] € C:(X.r)
-r€f

let ~x[ 1: f-r[-rJ] € ~ be:
-r€f

~J 1: f-r[-r J] (a.{3)
-r€f

f -1 (xa)
a (3

~ : Coo(X,r) ----+ ~ is an algebra homomorphism. Define II II on
x c

Coo(X.r) by
c

111)11 = sup lI~x1)1I
x€x

is the completion of in this norm. is

the reduced crossed-product C* algebra arising from the action of f
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v/< becomes a homomorphism of C a l g e b r a s 

+ x = CQ(X) xi T > JOT 

Thus each TJ € C_(X) xi T determines a continuous function <p from X 
to MT. 

^(X) = +X(TJ) 

For u € JiT and t e T, let ui e JT be: 

(u-r)(a,/3) = \i(ta,tp) 

Then u I » ut is a right action (by unital C algebra automor­
phisms) of T on MT. An immediate check shows that for each T7 e 
CQ(X) x T and each -r € r. 

<* (x-r) = <p (X)TT 

Thus f ■ X > JIT is a continuous T-equivariant map. The action 
of T on IT preserves A T, J T, CM", and 3( T. 

Assume now that the action of T on X is proper. A(X,JM T) 
00 denotes the algebra of all C T-equivariant functions </> : X » MT 

with: 
(i) ^(x) e A r for all x e X. 
(ii) <p has T-compact support. 
(iii) There exists a positive integer n (depending on <p) such 

that for all x € X, Support <c(x) has at most n 
elements. 
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X = X U {+} is the one-point compactification of X. Extend the 

action of T on X to X by requiring that each i 6 T fix the 

point at infinity. 

+t = + 

Let A(X,0!r) be the C algebra of all continuous T-equivariant 

functions <p : X > IT with <p(+) = 0. 

Lemma 2. If the action of T on X is proper, then TJ I * <p 

gives algebra isomorphisms 

C (X,r) ^ A(X.J T) 

cQ(x) » r = A(x.^r) 

Proof, TJ I > <p injects C (X,T) into A ( X , j r ) . For the 

sur jectivity, suppose <p € A(X,J T ) . Define T7 = 2 f [ T ] by 

^ ( x a ) = >c(x)(a,cnf) 

Then T7 € C (X.T) and f = f. 

It now follows that r\ I > <p maps C Q(X) x T into A(X.C«r). 

Since k{X,M T) is dense in A(X,3ir) this is an isomorphism of C 

algebras C Q(X) x T * A(X,air). Q.E.D. 

A denotes the unit of MT. 

fl CL = p 
A(a,|3) = < 

[0 a * p 
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Let A(X,~+r) be the C* algebra of all continuous r-equivariant

functions ~: X+ ~ ~+r such that there exists A € ~ with

~(+) = AA and ~(x) - AA € ~r for all x € X.

Similarly let A(X,~+r) be the algebra of all COO r-equivariantc

functions ~: X ~ ~+r such that there exists A € ~ with x ~c

~(x) - AA an element of A(X'~cr).

00 + + 00
Cc(X,r) and Co(X) x rare Cc(x.r) and Co(X) x r with unit

adjoined.

Lemma 3. coo(X,rt
c is a dense sub-algebra of closed

under holomorphic functional calculus.

Proof. According to lemma 2 D ~ ~D gives isomorphisms

holomorphic functional calculus is done pointwise.

The proof is now completed by using lemma 1.

Lemma (7.5) has been proved.

Appendix 2: r uncountable

Some minor technical changes are needed in order to state

Q.E.D.

conjecture (14.8) for an uncountable discrete group r. Let r be
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such a group.

manifold X.

Assume that
00

f acts by diffeomorphisms on a C

Xxf--+X

There is a slight difficulty in defining Ki(X.f) because f cannot
00

act properly on a C manifold W which satisfies the second axiom of

countability (i.e. there is a countable collection of open sets of W

such that any open set is the union of sets in this countable collec­

tion). Hence in defining Ki(X,f) we must allow COO manifolds W

which are not second countable. However. we shall require that the

orbifold W/f is second countable.

Let ~(X,f) be the category of all pairs (W,p) such that:

(i) W

f.

is a COO manifold with a given proper
00

C action of

(ii) p: W--+ X is a COO f-equivariant submersion mapping W

onto X.

(iii) W/f is second countable.

Then Ki(X,f) is defined

-~(X.f)

countable case. There is then the commutative diagram

Ki(X.f) Jl
l Ki[CO(X)XJf']

lChf 1
Hi(X,f) l K.[CO(X)~f] 0 ~

!!: 1 7L
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and we conjecture that \i and y. are isomorphisms. 
Equivalently, let 3f(T) be the category whose objects are all 

countable subgroups of T. A morphism in X(T) is an inclusion 
H1 C L . Each such inclusion produces a commutative diagram 

K^X.Hj) ^ > K.ECQCX)*^] 

Kl(X-H2> u > Ki[C
0(X)xH2^ 

and we then have 

K^X.T) = limit K^X.H) 
> 

K.[C0(X)xir] = limit K.[C0(X)xH] 
»(r) 

The case of U(n). acting on U(n) is relevant to the study of 
higher rj-invariants. Here U(n) is the Lie group of all n x n 
unitary matrices of complex numbers. U(n),. is U(n) with the 
discrete topology. U(n)„ acts on U(n) by right multiplication. 

U(n) x U(n)6 > U(n) 
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Appendix 3: Classifying space for proper actions 

Y is a CW complex and T is a discrete group. A proper r-

space over Y is a topological space Z with a given proper action of 

T and a map ir '■ Z » Y such that: 

(i) ir(z-r) = TTZ for all (z."r) € Z x r 

(ii) The map Z/r > Y determined by ir is a homeomorphism 

of Z/r onto Y. 

Two proper T-spaces (Z,TT) and (Z'.TT1) over Y are isomorphic 

if there exists a T-equivariant homeomorphism h : Z » Z1 with 

ir = ir'h. 

Let f : Y » V be a continuous map. Suppose that (Z.TT) is a 

proper T-space over V. Consider the usual Cartesian square 

Y x Z > Z 
V 

-» V 

One checks easily that (YXZ.TT) is a proper T-space over Y. Set 
V 

f*(Z,Tr) = (YXZ.TT). 
V 

In particular, let (Z.TT) be a proper T-space over Y x [0,1]. 

Fix t e [0,1] and map Y into Y x [0,1] by i : Y » Y x [0,1] 

it(y) = (y.t) 

i (Z.TT) is then a proper T-space over Y. 
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Definition. Two proper T-spaces (Z-.TT.) and (Z-.ir..) over Y 

are homotopic if there exists a proper T-space Z over Y x [0,1] 

with i.(Z,ir) isomorphic to (Zfi.Tr0) and ijfZ.ir) isomorphic to 

(z 1 > T l). 

Let Pr(Y) be the set of homotopy classes of proper T-spaces 

over Y. PV satisfies the axioms of [13]. Hence there is a universal 

example. That is, there is a space EX on which T acts properly 

such that setting BT = EX/r we have: 

(i) If (Z.ir) is any proper T-space over Y, then there 

exists a continuous T-equivariant map h : Z » EX 

(ii) Pr(Y) = [Y,BT] where [Y.gr] is the set of homotopy 

classes of continuous maps from Y to EX. 

Examples (1) If T is torsion free, any proper T action is 

principal so EX = Er and BT = Br. 

(2) If T is finite, any T action is proper and EX, Br are 

one-point spaces. • = EX = Br. 

(3) Following [32] assume that T acts without inversion on a 

tree T. Assume that the isotropy group of each vertex is finite. 

Then EX = T and BT = T/I\ 

(4) Let T be a discrete subgroup of a Lie group G. Assume 

that ir-G is finite and that H\G admits a G-invariant Riemannian 

metric with all sectional curvatures non-positive. Here H is the 

maximal compact subgroup of G. Then Er = H\G and BT = H\G/X. 

(5) Quite generally EX and Br can be constructed by the 

iterated join of [25]. Let H..EL,... be finite subgroups of T such 

that any finite subgroup of T is contained in a conjugate of some 

H.. (One could take 1L ,H to be all the finite subgroups of T.) 
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Let 2 be the d i s jo in t union 2 = HAr U HAr U . . . . Then ET i s 

the i n f i n i t e jo in of 2: 

Ef = 2 o 2 o 2 o 

BT = (2 o 2 o 2 o . . . ) / r 

Er and Bf are used in proving that the map limit 

■€(X,r) 

This isomorphism is established in three steps: 

H X ( T ,r) » Ha(X,r) of (15.5) is an isomorphism 

i tt T Y 
(1) limit H (T ,T) = limit H (W.T) 

> » 
<e(x,r) ^(x.r) 

TV TV (2) limit H! (w,r) = H! (Xxgr.r) > 
■e(x,r) 

TX i 
(3) H! (XxEr.r) = H (x,r) 

The main point is that X » ET behaves as if it were a final object 

for the category <6(X,r). If (W.p) is an object in ^(X.T), then W 

maps to X x Er by a continuous T-equivariant map. 

Note. If T acts properly on a topological space Y, then by 

definition: 

H (Y.r) = • H (Y/r;C) 
u jem ZJ 

H (Y.r) = e H (Y/r:c) 1 jew J 
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If r acts properly on Y and E is a T-equivariant K vector 

bundle on Y, then by definition: 

H?(Y,r) = e H ((£/r,E-{0}/r):(C) 

H^(Y.r) = • H ((E/r.E-{0}/r);C) 
1 j€IN ^ i 
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