
524 A. CONNES AND M. TAKESAKI

compute the closure of the range of this ƒÏ with respect to

Let be standard measure spaces with and

Put Then

In order to avoid possible confusion, we denote by and the flows

in and induced by and We then have

Put

We have then

q.e.d.

Therefore, our assertion follows. 

CHAPTER ‡V. NON-ABELIAN COHOMOLOGY IN PROPERLY 

INFINITE VON NEUMANN ALGEBRAS

‡V.0. Introduction. So far we have studied the flow of weights on 

a factor. As the reader has already noticed, what we have treated there 

is nothing else but the first cohomology of R in the unitary group of a 

factor with respect to the modular automorphism group. The techniques 

developed there can also be applied to the general case, not only to the 

modular automorphism group. The first cohomology of a locally compact 

group G in the unitary group of a von Neumann algebra M with 

respect to an action ƒ¿ of G on M is related to the structure of the crossed 

product W*(M,G,ƒ¿) and its automorphism group. We shall regard a 

one cocycle in the unitary group as a twisted unitary representation and 

then follow the well-established multiplicity theory of unitary representa-

tions, instead of following the algebraic theory of cohomology. Of course, 

integrable actions of the group in question will play the role corresponding 

to that of integrable weights. The result of particular interest is the 

stability of the single automorphism or of the one parameter automorphism 

group appearing in the discrete or the continuous decomposition of a 

factor type ‡V, (see Section 5). 

In •˜1, developing elementary properties of twisted *-representations, 

we shall lay down our strategic point of view. We shall see in •˜2 that, 

as for weights, there exists a unique square integrable twisted unitary 

representation, called dominant, which dominates all other square inte-

grable twisted representations, Theorem 2.12. As a corollary, it will be
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seen that the fixed point subalgebra of an integrable action is isomorphic 

to the reduced algebra of the crossed product. Section 3 is devoted to 

the case of abelian groups. A characterization of a dominant action 

will be given in terms of the spectrum; and also it will be shown that 

F(ƒ¿), the exterior invariant of ƒ¿ ([3, part ‡U]) is the kernel of the 

restriction of the dual action a to the center of the crossed product 

W*(M,G,ƒ¿), a generalization of [30; Theorem 9.6]. 

In •˜ 4, we shall study the Galois type correspondence between the 

closed subgroups and the intermediate von Neumann subalgebras for an 

integrable action of an abelian group. Section 5 is devoted to the study 

of stability of automorphisms (or one parameter groups of automorphisms) 

of semi-finite von Neumann algebras. 

‡V.1. Elementary properties of twisted *-representation. Let M 

be a properly infinite von Neumann algebra equipped with a continuous 

action ƒ¿ of a locally compact group G. We assume the ƒÐ-finiteness of 

M always. 

DEFINITION 1.1. A ƒÐ-strong* continuous function  

is called an ƒ¿-twisted *-representation of G in M if the following con-

ditions are satisfied:

If all a(s) are unitaries, then it is called an ƒ¿-twisted unitary represen-

tation of G in M. 

We denote by Zƒ¿(G M)(resp. Zƒ¿(G,(M))) the set of all ƒ¿-twisted 

* -representations (resp. unitary representation) of G in M, where (M) 

denotes the unitary group of M. A straightforward computation gives 

the following: 

LEMMA 1.2. If a•¸Zƒ¿(G,M), then all a(s) are partial isometries such 

that

where 1 means, of course, the identity of G. 

We denote a(1) by ea. It is also straightforward to observe that by 
the formula:

we can define a new action aƒ¿ of G on the reduced von Neumann algebra 

Meal(=eaMea). We denote the fixed point subalgebra of Mea under this 

new action aƒ¿ by Ma. If p is a projection in Ma, then the map
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pa(s)•¸M is also an ƒ¿-twisted *-representation of G in M, which will be 

called the reduced ƒ¿-twisted *-representation by p and denoted by ap. 

We call it also a subrepresentation of a. 

DEFINITION 1.3. We say that a and b in Zƒ¿(G, M) are equivalent 

and write if there exists an element c •¸ M such that

We write if for some projection q in Mb. 

The reader should be aware of the following 2x 2-matrix arguments:

LEMMA 1.4. Let be the matrix algebra over M,

and ƒ¿ be the action Given we define

with a fixed matrix unit {eij} in F2. Then the following two statements 
are equivalent:

(i)

(ii)

We leave the proof to the reader.

DEFINITION 1.5. With the same notations as in Lemma 1.4, we call

a and b disjoint and write if and are centrally or-

thogonal in Pc. We say that a and b are quasi-equivalent and write a•`b

 have the same central support,

Given a and b in Zƒ¿(G,M), we set

It is not hard to see the following properties of I(a,b):

LEMMA 1.6. (i) Given a, b and, c in Zƒ¿(G,M), we have

(ii) If x=uh is the polar decomposition of x•¸ I(a,b), then we have
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The proof is straightforward, so we leave it to the reader. 

DEFINITION 1.7. We say that ƒ¿ •¸ Zƒ¿(G,M) is of infinite multiplicity 

if Ma is properly infinite. 

LEMMA 1.8. If a and b in Zƒ¿(G,M) are of infinite multiplicity, then

PROOF. The implication is trivial.

Suppose Let and be as in
Lemma 1.4. It follows then that and are both properly
infinite projections in PC by assumption; so they are equivalent to their
central support in Pc, P being ƒÐ-finite. Therefore, we have

q. e. d.

We close this section with the following: 

REMARK 1.9. If ƒ¿ is a continuous action of a separable locally 

compact group G on a von Neumann algebra M with separable predual, 

then for an M-valued function a:s•¸G a(s)•¸ M to agree almost every-

where with an ƒ¿-twisted *-representation a•L of G in M, it is sufficient 

that a satisfies the conditions in Definition 1.1 for almost every pair s, t 

in G, cf [18].

‡V.2. Tensor product and integrability of twisted *-representations. 

Let M and N be von Neumann algebras equipped with continuous 

actions ƒ¿ and ƒÀ of a locally compact group G respectively. We understand

naturally the covariant system Given

and we define

It is of our particular interest when This means

that b is an ordinary unitary representation of G of the Hilbert space 

THEOREM 2.1. Let M be a von Neumann algebra equipped with a

continuous action ƒ¿ of a locally compact group G. Put

If ƒÉr. is the right regular representation of G on then

and

PROOF. We may assume that M acts on a Hilbert space in such 

a way that is standard, so that there exists canonically a uni-

tary representation U of G on such that ƒ¿s(x) = U(s)xU(s)*,x•¸M, 

s•¸G. The crossed product W*(M,G,ƒ¿) of M by ƒ¿ acts on the Hilbert
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space In this situation, the recent result of Digernes, [8],
says that the commutant is generated by

Hence we have

q.e.d.

Since the left and right regular representations of G are equivalent 

in as twisted unitary representation with respect to the trivial 

action of G on , we have also

with the left regular representations ƒÉlof G. 

The next proposition is classical in homological algebra. 

PROPOSITION 2.2. For any  we have

PROOF. Suppose that M acts on a Hilbert space Then P acts on

We define a unitary b in by the

following:

We compute then

where we use the right invariant Haar measure drs in the construction 

of. We compute further the last term:

Hence we get

Therefore, our assertion follows, since b is unitary. q.e.d.

DEFINITION 2.3. Given a ƒÐ-finite properly infinite von Neumann 

algebra M equipped with a continuous action ƒ¿ of a separable locally 

compact group G, an ƒ¿-twisted unitary representation a of G in M is 

said to be dominant if  and a is of infinite 

multiplicity.
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From now on, we assume always that the von Neumann algebras and 

the groups in question are ƒÐ-finite and separable respectively. 

COROLLARY 2.4. Any dominant ƒ¿-twisted unitary representations 

are equivalent. 

PROOF. Let a and b be dominant ƒ¿-twisted unitary representations 

of G in M. By Theorem 2.2, we have

Therefore, we have only to show that if a and b in

 are of infinite multiplicity, then

implies with a factor of type

means that hence by Lemma 1.8. q.e.d.

COROLLARY 2.5. is dominant, then

DEFINITION 2.5. A continuous action ƒ¿ of G on M is said to be 

integrable if the set qƒ¿ of all x in M such that the integral

exists in M with respect to the left invariant Haar measure dls in G, is 

ƒÐ-weakly dense in M. We say that a•¸Zƒ¿(G, M) is square integrable if 

the action aƒ¿ of G on Mea is integrable.

We note here that the integral is defined as the limit of

the increasing net indexed by the net of compact subsets K

of G. The very much similar arguments as those in the case of weights 
show that

is a hereditary *-subalgebra of M

generated linearly by the positive part

The integral

makes sense for any x •¸ pƒ¿. 

The following further properties of Eƒ¿ are easily verified:

lies in the fix point algebra

for any increasing bounded net {xi} in M+,



530 A. CONNES AND M. TAKESAKI

where ,Eƒ¿(x)=+•‡ if x•¸ M+ is not in , and sup yi=+•‡ if {yi} is 

not bounded in Mƒ¿. 

From property (f), we conclude immediately the following: 

LEMMA 2.7. Any subrepresentation of a square integrable ƒ¿-twisted 

*-representation of G in M is also square integrable
.

EXAMPLE 2.8. Let and ƒ¿=1. For a unitary representation 

 U is square integrable as a twisted unitary represen-

tation with respect to the trivial , action ƒ¿ in the sense of Definition 2.6 

if and only if is square integrable in the sense that

for a dense set of ƒÌin . 

EXAMPLE 2.9. Let M=L•‡(G) and ƒ¿ be the translation action of G 

from the right. It is immediately seen that pƒ¿ = L•‡(G)•¿L1(G,dls) and

LEMMA 2.10. Let M and N be von Neumann algebras equipped with 

continuous actions ƒ¿ and ƒÀofG respectively. If either ƒ¿ or ƒÀ is inte-

grable, then the tensor product on is integrable. q.e.d. 

We leave the proof to the reader. 

LEMMA 2.11. The regular representation of G is square integrable 

in  

PROOF. Let ƒÉr. be the right regular representation of G on L2(G). 

Let ƒ¿s=Ad(ƒÉr(s)), s •¸ G. It follows that the action a leaves the maximal 

abelian algebra  globally invariant and is the right transla-

tion action of G on Hence which contains 

a net converging ƒÐ-strongly to 1. Therefore, Pƒ¿, hence qƒ¿, is ƒÐ-weakly 

dense in , which means that ƒÉr is square integrable in

q.e.d.

THEOREM 2.12. Let M be a ƒÐ-finite properly infinite von Neumann 

algebra equipped with a continuous action ƒ¿ of a separable locally 

compact group G. 

(i) There exists a dominant ƒ¿-twisted unitary representation a 

of G in M, which is unique up to equivalence. 

(ii) An ƒ¿-twisted *-representation b of G in M is square integrable 

if and only if .
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PROOF. Since M is properly infinite, replacing ƒ¿ by aƒ¿, we may 

assume that Mƒ¿ is properly infinite. Choosing a factor F•‡ of type I•‡, 

contained in Mƒ¿, we may identify {M,ƒ¿} with a covariant system 

 Identifying once again F•‡. with the tensor product 

 and a factor B of type I•‡, we can consider a 

-twisted unitary representation in  

B=M. We have then

Hence is of infinite multiplicity. Therefore,  is 

dominant. 

For the second assertion, we need the following results. 

LEMMA 2.13. If b •¸ Zƒ¿(G,M) is square 2ntegrable, then

PROOF. Let e denote the left hand side of the equality. By Lemma

belongs to For any unitary

we have hence that

is a central projection in Since

we have only to show

for any non-zero central projection f in Since
is of the form with a central

projection p in Mb. We consider now M on a Hilbert space  and L2(G)
with respect to the right Haar measure drs on G. We note, however,

that Then acts on Choose an

with and a continuous function f on G with compact support.
Put

We have then
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Hence y is bounded; so  Furthermore, we have, for 

any and r, s •¸ G,

Hence y belongs to  and Clearly

LEMMA 2.14. For any b •¸ Zƒ¿(G,M), there exists with 

infinite multiplicity such that . If b is square integrable, then we 

can chose a square integrable b.

PROOF. Let e=eb and z be the central support of e in the whole 

algebra M. Since ƒ¿s,(z) is the central support of ƒ¿s(e)=b(s)*b(s), s •¸ G, 

we have ƒ¿s(z)=z. Therefore, we have  in 

the obvious sense. It follows from Theorem 2.12 (i) that there exists a 

dominant . We then restrict our attention to {Mz,ƒ¿}. 

Let {en} and {un} be families of orthogonal projections and partial isome-

trics in M respectively such that ƒ°•‡n=1 en= z,u*nun = e and unun* = en, n= 

1, 2, • • •,, where the existence of such families is guaranteed by the proper 

infiniteness and the ƒÐ-finiteness of M. Put

It follows that for any s, t •¸ G,
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Since the map: s •¸ Gb1(s) •¸ M is ƒÐ-strongly continuous, b1 is an ƒ¿-twisted 

unitary representation of G in Mz. Put

It follows that Mb=(Mz)b1+(M1-z)b2. By the definition of a dominant 
representation, (M1-z)b2 is properly infinite. We will show that (Mz)b1 is 

properly infinite. Put wn,m=unu*m,n m=1.2, .... It follows that

Hence Wn,m •¸ (Mz)b1; so b1 is of infinite multiplicity. By construction,

hence . 

Suppose now b is square integrable. Since b2 is square integrable 

by definition, we need only to show that b1 is square integrable. Let 

{xi} be a net in  such that lim1 xi=e. Let xi,n=unxiu*n. We have then 

hence  Since limi xi,n=en, the ƒÐ-strong closure  contains all 

en's; hence bƒ¿1 is integrable. Thus, b1 is square integrable, and so is b. 

q. e. d. 

PROOF OF THEOREM 2.12. (ii), By Lemma 2.14, we may assume that
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b is a square integrable ƒ¿-twisted unitary representation of G in M with 

infinite multiplicity. Consider and  as well as

 Let

It follows from Lemma 2.13 that the central support of in 
Pc majorizes  Since  is contained in  

 is properly infinite in Pc because Mb is. Hence 
so  By Proposition 2.2, we have

if  is dominant. Thus because a is of infinite mul-

tiplicity. q.e.d. 

COROLLARY 2.15. Let M be a ƒÐ-finite von Neumann algebra and G 

a separable locally compact group. If a is an integrable action of G 

on M, then the fixed point algebra Mƒ¿ of M under ƒ¿ is isomorphic 

to a reduced algebra of the crossed product W*(M, G, ƒ¿). 

PROOF. Seeing that integrable on with a factor 

F•‡. of type I•‡, and that we may assume that 

Mƒ¿ is properly infinite. Let b(s)=1, s •¸ G, and a be a dominant ƒ¿-twisted 

unitary representation of G in M. By Theorem 2.12,that is, 

there exists an isometry u in M such that u*u= 1, uu* •¸ Ma and 

u*a(s)ƒ¿s(u)=1, s •¸ G. Let e=uu*. It follows that ƒ¿r(x)=x if and only 

if aƒ¿s)=uxu*. Hence On the other hand, we have

 by Corollary 2.5. q.e.d. 

COROLLARY 2.16. Let M be a ƒÐ-finite von Neumann algebra and G 

a finite group. If ƒ¿ is a free action of G on M in the sense that 

ƒ¿g(x)a=ax for every x •¸ M implies either g=e or a=0, then any pair 

of ƒ¿-twisted representations of G in M are equivalent; i.e., the equivalence 

classes in reduces to a singleton. 

PROOF. The discreteness and the free action of G yield, [21], that 

the relative commutant of M in W * (M,G,ƒ¿) is Mƒ¿•¿ C, where C denotes 

the center of M. This means that if M is properly infinite then every 

is quasi-equivalent to a dominant one by Theorem 2.12. The 

finiteness of G implies that M is properly infinite if and only if Mƒ¿ is 

also. Hence any a is dominant if M is properly infinite. 

Suppose M is finite. Considering  and  we conclude from 

the above arguments that Mƒ¿•¿C is the center of Mƒ¿. Hence the uni-

queness of the center valued trace in a finite von Neumann algebra implies
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that the restriction of the center valued trace of M to Mƒ¿ is indeed the 

center valued trace of Mƒ¿, which means that for any projections 

e, f •¸ Mƒ¿e•` f in M if and only if e •`f in Mƒ¿. Thus our assertions 

follows from the well exposed 2x2 matrix arguments. q.e.d. 

DEFINITION 2.17. A continuous action ƒ¿ of a locally compact group 

G on a von Neumann algebra M is said to be stable if for every a •¸ 

 there exists such that ag=b*ƒ¿g(b). A single automor-

phism ƒ¿ of M is said to be stable if every   is of the form u=ƒÒ 
*ƒ¿(ƒÒ) for some 

Of course, the stability of an automorphism ƒ¿ of M implies that any 

automorphism ,ƒÀ of the form Ad (u)•Eƒ¿(and in particular any ƒÀ with 

•aƒ¿-ƒÀ•a<2, [11]) is conjugate to ƒ¿ under Iut (M). The converse is also 

true when M is an infinite factor, (cf. Theorem 3.1). 

We will discuss further the stability of a single automorphism and 

a one parameter automorphism group together with its application in 

Section 5. 

‡V.3. Integrable action of abelian groups, duality and invariant 

ƒ¡. In this section, we study integrable actions of an abelian group. Let 

G be a separable locally compact abelian group with dual group G. We 

choose Haar measures ds in G and dƒÁ in G so that the Plancherel formula 

holds. We denote by <s,ƒÁ> the value of ƒÁ •¸ G at s •¸ G. An action ƒ¿ of G 

on M is by definition dominant if the trivial ƒ¿-twisted unitary represention 

1 of G in M is dominant. 

THEOREM 3.1. Let M be a properly infinite von Neumann algebra 

with separable M*. For a continuous action ƒ¿ of a separable locally 

compact abelian group G on M with properly infinite Mƒ¿, the following 

conditions are equivalent:

(i) ƒ¿ is dominant;

(ii) For any there exists such that

(iii) There exists a continuous action such that

PROOF. i Since Mƒ¿ is properly infinite,

Denoting the regular representation of G on we have
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For each ƒÁ •¸ G, let ƒÊ(ƒÁ) denote the unitary on L2(G) given by

It follows then that

Hence, putting we have

Thus, the isomorphism assures the ex-

istence of a unitary with

Suppose that for any ƒÁ •¸ G, there exists a unitary u •¸ M

with  for any Put

It follows then that E is a closed subset of the polish space  

whose projection to the first coordinate G covers the whole dual group 

G. Therefore, there exists a -valued measurable function u(•)) on 

G such that ƒ¿s(u(ƒÁ))=<s,ƒÁ>u(ƒÁ). Put

Since  such that we have

Hence we have

Therefore we have Thus, we get

since Mƒ¿ is properly infinite.

This follows from the definition of the dual action ƒÀ.

If ƒ¿ is dominant, then we have, by [30; Theorem 4.6],

Identifying ƒ¿ with ƒ¿, the action ƒ¿=ƒÀ is the desired action of G on 

Mƒ¿. q.e.d.
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As in [3; Definition 2.2.1], we define the invariant ƒ¡(ƒ¿) of ƒ¡ as follows: 

ƒ¡(ƒ¿)=•¿{Spƒ¿e:e runs through all non-zero projections in Mƒ¿}. 

We note here that the arguments for [3; Proposition 2.2.2, and Theorem 

2.2.4 (c)] do not require the fact that M is a factor. Hence we have ƒ¡

(ƒ¿)=•¿{Spƒ¿e:e runs through all non-zero central projections in Mƒ¿}. 

THEOREM 3.2. Let M be a ƒÐ-finite von Neumann algebra equipped 

with a continuous action ƒ¿ of a separable locally compact abelian group 

G. The invariant ƒ¡(ƒ¿) is the kernel of the restriction of the dual action 

ƒ¿ofG on W*(M,G,ƒ¿) to the center of W*(M,G, ƒ¿). (Hence it is, in 

particular, a closed subgroup of G.)

PROOF. We consider  and  as before. 

Trivially, we have  hence  by [3, 2.2.4]. 

Hence we may assume that M is properly infinite and a is dominant. 

It follows from the previous section that there exists a continuous action 

ƒÆ of the dual groun G on Mƒ¿ such that

by [30; Theorems 4.5 and 4.6], where ƒ¿ and ƒÆ mean the dual action of 

ƒ¿ and ƒÆ in the sense of [30; Definition 4.1]. Representing Mƒ¿ on a Hilbert 

space  we see that M acting on is generated by the operators:

The action ƒ¿ on M is implemented by the unitary representation

of G defined by

Hence have we  so that where

If e is a central projection in Mƒ¿, then we have

Hence Me(ƒ¿e,ƒÁ)•‚{0} if and only if eƒÆƒÁ(e)•‚ 0. If ƒÆƒÁ=l on the center of 

Mƒ¿, then eƒÆƒÁ(e)•‚0 for any non-zero central projection e in Mƒ¿; hence
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ƒÁ•¸ƒ¡(ƒ¿). A slight modification of the arguments for [30; Lemma 9.5] 

shows that if ƒÆƒÁ0•‚l on the center of Mƒ¿, then there exists a neighborhood 

V of ƒÁo in G and a non-zero projection e in the center of M" such that 

eƒÆƒÁ(e)=0 for every ƒÁ •¸ V. Hence we have Me(ƒ¿e,ƒÁ)={0} for every ƒÁ •¸ V. 

Since ƒ¿e is integrable, our assertion follows from the next lemma.

q.e.d.

LEMMA 3.3. If ƒ¿ is an integrable action of a locally compact abelian 

group G on M, then for any open subset V of G, the spectral subspace 

M(ƒ¿,V)•‚{0} if and only if M(ƒ¿,ƒÁ)•‚{0} for some ƒÁ •¸ V.

PROOF. Trivially, for any Hence we have

only to prove that for every implies

By a simple application of Fubini's theorem, we conclude that

for any and where hence

by the linearity for Put

We have then x(ƒÁ) •¸ M(ƒ¿,ƒÁ) for any x •¸ Pƒ¿. Suppose that M(ƒ¿,ƒÁ)={0} 

for any ƒÁ •¸ V. Then we have x(ƒÁ) 0 for every ƒÁ •¸ V. If f is a function 

in L1(G) with supp f •¼ V, then we have for any x •¸ Pƒ¿ and ƒÁ•¸ G

Hence ƒ¿f(x)=0 for every x •¸ Pƒ¿, so ƒ¿f(M)= {0} since ƒ¿f is ƒÐ-weakly 

continuous and Pƒ¿ is ƒÐ-weakly dense in M. Hence ƒ¿f=0 whenever 

supp f •¼ V. Thus M(ƒ¿,V)={0}. q.e.d. 

COROLLARY 3.4. Let ƒ¿ be a continuous action of a separable locally 

compact abelian group G on a ƒÐ -finite von Neumann algebra M. Then 

the crossed product W*(M,G,ƒ¿) is a factor if and only if ƒ¡(ƒ¿)=G and 

ƒ¿ is ergodic on the center of M.

PROOF. Suppose that W* (M,G,ƒ¿) is a factor. By Theorem 3.2, 

ƒ¡(ƒ¿)=G. Since for any central fixed 

point x under  is in  Hence must be 

a scalar. Hence ƒ¿ is ergodic on the center of M. 

Suppose that [ƒ¡(ƒ¿)=G and ƒ¿ is ergodic on the center of M. Since 

ƒ¿ Ad ƒÉ on enjoys the same property, we may assume that 

M is properly infinite and ƒ¿ is dominant. Then there exists an action 

ƒÆ of G on Mƒ¿ such that {M,ƒ¿} {W*(Mƒ¿,G,ƒÆ), ƒÆ}. By Theorem 3.2, ƒÆ 

acts trivially on the center Cƒ¿ of Mƒ¿. Therefore, Cƒ¿ is contained in the
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center C of M. But ƒ¿ acts ergodically on C, so that C •¿ Mƒ¿={ƒÉ,1}; 

Hence Cƒ¿ = {ƒÉ1}. Thus Mƒ¿ is a factor. q.e.d.

COROLLARY 3.5. If ƒ¿ is a continuous action of a separable locally 

compact abelian group G on a ƒÐ-finite von Neumann algebra .M with ƒ¡

(ƒ¿)=G, then any square integrable ƒ¿-twisted unitary representation 

of G in M with infinite multiplicity is dominant.

PROOF. Replacing ƒ¿ by a dominant action of G of the form aƒ¿, we 

may assume that ƒ¿ is dominant. By Theorem 2.12.ii, every square 

integrable ƒ¿-twisted unitary representation of G in M is majorized by a 

dominant one in the ordering  We have only to prove that ƒ¿e on 

Me is dominant for any properly infinite projection e of Mƒ¿ such that 

e•`1 in M. Let {u(ƒÁ):ƒÁ•¸ƒ¡} be a unitary representation of G in M such 

that ƒ¿s(u(ƒÁ))=<s,ƒÁ>u(ƒÁ), so that Ad u(ƒÁ)| Mƒ¿=ƒÆƒÁ is a continuous action 

of G on Mƒ¿ with {W*(Mƒ¿,G,ƒÆ),ƒÆ} N {M,ƒ¿}. By Theorem 3.2, the action 

of ƒÆ on the center Cƒ¿ of Mƒ¿ is trivial. Hence e and ƒÆƒÁ(e) have the 

same central support in Mƒ¿, and are properly infinite in Mƒ¿; hence e•` 

ƒÆƒÁ(e). Therefore, there exists a partial isometry ƒÒƒÁ in Mƒ¿ such that 

ƒÒƒÁ* ƒÒƒÁ=ƒÆƒÁ(e) and ƒÒƒÁƒÒƒÁ*=e. Let wƒÁ= ƒÒƒÁu(ƒÁ)e. Then we have wƒÁ* wƒÁ=e 

and wƒÁwƒÁ*=e, and also ƒ¿e8(wƒÁ)=<s,ƒÁ>wƒÁ. Hence {Me, ƒ¿e} satisfies condition 

(ii) in Theorem 3.1. Thus ƒ¿e is dominant. q.e.d.

We close this section with the following:

REMARK 3.6. So far we have mainly dealt with actions and/or weights 

of infinite multiplicity. The contrast between the following two state-

ments (i) and (ii) might illustrate some of the reasons why the infinite 

multiplicity has been useful. 

(i) If ƒ¿ is a continuous action of a separable locally compact group 

G on M with infinite multiplicity, then M(ƒ¿, V) contains a non-zero partial 

isometry for any open subset V of G with V•¿ƒ¡(ƒ¿)•‚ƒÓ. More strongly, 

if ƒ¡(ƒ¿)=G in addition, then M(ƒ¿,V) contains a unitary for every non-

empty open subset V of G. 

(ii) Let M be an abelian von Neumann algebra and ƒ¿ an ergodic 

continuous action of R. If u is a non-zero partial isometry in M(ƒ¿,V ) 

for a bounded interval V, then u is unitary andƒ¿t(u)=eistu for some 

s •¸ V. 

The first assertion can be proven by approximating ƒ¿ with inte-

grable actions. The second statement can be shown by some modification 

of the Paley-Wiener Theorem for the Fourier transform of distribution 

with compact support.
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‡V.4. Galois correspondence. In this section, we shall show that 

given an integrable action ƒ¿ of a locally compact abelian group G on a 

von Neumann algebra M with Mƒ¿ a factor, there is a Galois type cor-

respondence between closed subgroups of G and globally ƒ¿-invariant von 

Neumann subalgebras of M containing Mƒ¿, which generalizes a result 

in [30;•˜7].

THEOREM 4.1. Let M0 be a factor equipped with a continuous action 

ƒ¿ of a locally compact abelian group G. Let M =W*(M0,G,ƒ¿). If N 

is a von Neumann subalgebra of M such that M0 •¼ N and ƒ¿p(N)=N 

for every p •¸ G, where ƒ¿ means the dual action of G on M then there 

is a closed subgroup H of G such that

therefore N is of the form N=W*(M0,H,ƒ¿) with H=H•Û. 

We divide the proof into a few steps.

LEMMA 4.2. Let P be a factor and A an abelian von Neumann algebra.
If Q is a factor such that

PROOF. Representing A as a maximal abelian von Neumann algebra 
on , we have

hence

Therefore, there is at most only one normal conditional expectation from 

Q onto by [3; Theoreme 1.5.5(a)]. Since there are in general 
many normal conditional expectations from onto  there 
exists a unique normal conditional expectation, say , from Q onto 

To each normal state w on A, there corresponds a normal con-
ditional expectation onto  by the formula:

By the uniqueness of a conditional expectation, we have, for any x •¸Q, 

ƒÃ(x)=ƒÃƒÖ(x), so that

Therefore, we get  for every x •¸ Q; thus   q.e.d. 

PROOF OF THEOREM 4.1. We put
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By [30; Theorem 7.1], the algebra MH of all fixed points in M under 

ƒ¿p, p •¸ H, is W*(M0,H,ƒ¿) with H={g•¸G:<g,p> =1 for every p •¸ H}, 

where the technical assumption in [30; Theorem 7.1] on the existence of 

a relatively invariant weight on M0 is not essential because of the com-

mutation theorem for the general crossed product due to T. Digerness 

[8]. Replacing G by H and M by W*(H0,H,ƒ¿), we may assume that 

H={0}, and must show that N=M. 

We consider the crossed products, W*(M,G,ƒ¿)= M, W*(N, G,ƒ¿)=N 

and W*(MO,G,ƒ¿)=M0. We have then

The action ƒ¿ of G on N is faithful, and the fixed paint algebra NG in 

N under ƒ¿ is M0, hence a factor. Hence N is a factor by Corollary 3.4. 

By [30; Theorem 4.5], we have

Therefore, if we can identify the algebras M0, and M with 

and , then Lemma 4.2 is applied to the commutants:

 Hence  Since N is the 

fixed point algebra in N=M under the action ƒ¿ of G, we have M=N. 

Thus, we must show that M is identified with   in such a 

way that MO coincides with  under this identification. 

Let be the Hilbert space on which M0 acts. Then M acts on the 

Hilbert space and M acts on  and is generated by 

the following three types of operators:

It follows then that M0 is generated by {x, ƒÒ(p); x •¸ M0, p •¸ G} and iden-

tified with  where the action of L•‡(M0; G) is 

given by the following:

for every x(•E) •¸ L•‡(M0;G). We define an automorphism ƒÎ of L•‡(M0;G) by

It follows from the proof of [30; Theorem 4.5] that M is the tensor 

product of  and its relative commutant B in M where B is
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generated by u(G) and ƒÒ(G). Thus we have

q.e.d.

THEOREM 4.3. Let M be a factor equipped with an integrable ac-

tion ƒ¿ of a locally compact abelian group G. If ƒ¡(ƒ¿)=G, then there 

exists a bijective inclusion reversing correspondence between the closed 

subgroups H of G and the ƒ¿-invariant von Neumann subalgebras N of 

M containing the fixed point algebra Mƒ¿ in such a way that

PROOF. We put

with F•‡. a factor of type I•‡. It follows then that ƒ¿ is dominant, since 

the fixed point algebra Mƒ¿ under a is Hence, by Theorem 

4.1, the correspondence between H and ƒ¿-invariant von Neumann sub-

algebras N of M containing Mƒ¿ given by

is bijective and inclusion reversing. It is now trivial that NHN •½N and 

HNH•½H. For a given N, we put Trivially we have

HN=HN. If x •¸ NHN, then  equivalently x •¸ N. 

Hence N=NHN. For a given H, we have  

Hence we get

q. e. d.

EXAMPLE 4.4. Let G be a locally compact abelian group, and
Putting

we obtain unitary representations u of G and ƒÒ of G with

Thus we may define an action ƒ¿ of GxG on M by
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Since together generate M, we have

hence

For a pair f, g of functions in L2(G), we define an operator x f ,9 •¸ M

by

We have then

Therefore, by the Plancherel formula, we get

so that

This means that the action ƒ¿ of GxG is integrable. Thus, the ƒ¿-

invariant von Neumann algebras on L2(G) are labeled by the closed sub-

groups of GxG by Theorem 4.3. The von Neumann algebras considered 

in [28] are of the special case where the corresponding subgroups are 

of the form H•~K with H a closed subgroup of G and K a closed 

subgroup of G. 

Since there are many von Neumann algebras not corresponding to 

any closed subgroup of GxG, the invariance of a von Neumann algebra 

under the action a in Theorem 4.3 is not removable in this general 

setting. The same is true for Theorem 4.1 because the tensor product 

with F•‡ a factor of type I•‡ gives counter examples for the Galois cor-

respondence without ƒ¿-invariance. 

The following result strengthens and refines a generalized commuta-

tion theorem [28]. 

PROPOSITION 4.4. In the setting of Example 4.4, let H be a closed 

subgroup of GxG and H•Û={(q,t)•¸GxG:<s,q>=<t, p> for every 

(s, p) •¸ H. The fixed point algebra MH under ƒ¿3,2 for every (s,p) •¸ H 

is generated by u(t)ƒÒ(q) with (q,t)•¸ H•Û. 

PROOF. In general, we have

Hence belongs to MH if and only if
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The action of (GxG)/H on MH, denoted by the same notation ƒ¿, 

induced by the original action of GxG is integrable; hence MH is gen-

erated by the eigen operators. Let x be an eigen operator in MH cor-

responding to (g,t) •¸ ((GxG)/H)=H•Û. It forllows then that (u(t)ƒÒ(q))*x 

belongs to the fixed point algebra Mƒ¿={ƒÉ1}. Hence x=ƒÉu(t)ƒÒ(q) for 

some ƒÒ •¸ C. Thus Mx is generated by {u(t)ƒÒ(q):(q,t)•¸H•Û). q.e.d.

‡V.5. Stability of automorphisms. In this section, we shall show 

that if ƒ¿ is an automorphism (resp. one parameter automorphism group) 

of a semi-finite von Neumann algebra N scaling a trace down, then 

every unitary one cocycle is a coboundary. This, in turn, improves the 

isomorphism criterion for the factors of type  ‡Vin terms of the con-

jugacy of discrete as well as continuous decompositions. 

THEOREM 5.1. Let N be a semi-finite von Neumann algebra. 

(i) If ƒÆ is an automorphism of N such that there exists a faithful 

semi-finite normal trace ƒÑ on N such that ƒÑ0ƒÆ•…ƒÉƒÑ for some 0<ƒÉ<1, 

then (a) there exists a continuous action ƒ¿ of the torus T on the fixed 

point algebra NƒÆ such that

(b) every unitary u •¸ N is of the form u= ƒÒ*ƒÆ(ƒÒ) for some unitary v •¸ N. 

(ii) If {ƒÆt} is a one parameter automorphism group of N such that 

ƒÑ0ƒÆt=e-tƒÑ for some faithful semi-finite normal trace ƒÑ on N, then (a) 

there exists a one parameter automorphism group {ƒ¿s} of the fixed point 

algebra NƒÆ such that

(b) every ƒ¿-twisted unitary representation {ut}of R in N is of the form 

ut=ƒÒ*ƒ¿t(ƒÒ) for some unitary ƒÒ •¸ N. 

PROOF. (1) Let ƒÆ be an automorphism of N with ƒÑoƒÆ•…ƒÉƒÑ. We 

first claim that for any non-zero projection p •¸ NƒÆ there exists a non-

zero projection q•…p such that {ƒÆn(q)} is orthogonal. Let e be a non-

zero projection such that e•…p and ƒÑ(e)<+•‡. Let f=úD•‡n=0 ƒÆn(e). 

We have then

It is clear that {ƒÆn(q):n•¸Z} is orthogonal. Therefore, the usual exhaus-
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t ion arguments entail the existence of a projection q •¸ N such that 

{ƒÆn(q):n•¸Z} is orthogonal and ƒ°n•¸zƒÆn(q)= 1. 

We put, for 0•…s•…1,

It follows then that ƒÆ(u(s))= e2ƒÎiSu(s),0•…s •… 1. Therefore
, {u(s):0•…s•…1} 

induces a continuous action a of the torus T= R/Z on NƒÆ by

where we identify the torus T with the half open unit interval [0,1). 

Thus, our assertion (a) follows from [15]. 

For the second assertion, (b), we observe first that if NƒÆ is properly 

infinite, then ƒÆ is dominant. But we claim that N is properly infinite 

if and only if NƒÆ is also. By the usual reduction arguments, it is suf-

ficient to prove the claim that the finiteness of NƒÆ implies that of N. 

Suppose NƒÆ is finite. Let  be a faithful semi-finite normal trace on 

NƒÆ invariant under ƒ¿, the existence of such a  being guaranteed by 

the compactness of T. Let be the weight on N dual to It follows 

from [30; Proposition 5.16] that is invariant under ƒÆ. Since  is a 

faithful semi-finite normal trace on N,is of the form: for 

some non-singular positive self-adjoint operator h affiliated with the 

center C of N. We have then

Hence we get ƒÆ(h)•…ƒÉh. From this, repeating more or less the same 

arguments as above, we can construct a continuous unitary representa-

tion ƒÒ(s) of T in C such that

Hence the action ƒ¿•L of T on NƒÆ induced by {ƒÒ(s)} is trivial, and ƒÆ is 

still dual to this new ƒ¿•L This means that  and 

(translation on l•‡(Z)). Thus N must be finite. In this case, let u be 

an arbitrary unitary in N, and u={un} in the decomposition

Put ƒÒn+1=ƒÒnƒÒn if n•†1 and ƒÒ0=1, ƒÒn=ƒÒn+1un, Hun if n<0. We have then 

ƒÒ*ƒÆ(ƒÒ)=u
. If N is properly infinite, then every ƒÆ with ƒÑ0 ƒÆ•…ƒÉƒÑ is 

dominant, so that for any  the new action ƒÆ= Ad u o ƒÆ is dominant; 

hence the ƒÆ-twisted unitary representation of Z in N generated by u is 

dominant, which means that u=ƒÒ*ƒÆ(ƒÒ) for some

(ii) We apply (1) to {ƒÆn: n •¸ Z}. Let N1 denote the fixed point sub-
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algebra of N under {ƒÆn: n •¸ Z}. It follows then that the restriction ƒÆ|N1 

of ƒÆ to N1 is periodic with period one. The action {ƒÆn:n •¸ Z} of Z on 

N is integrable by (i) and •¸| N1 is integrable as an action of the torus 

T=R/Z. Hence ƒÆ itself is integrable, because

Let ƒÕ be a strictly semi-finite faithful weight on NƒÆ. It follows then 

that the weight is a faithful weight on N invariant under ƒÆ. 

By [30; Theorem 5.4], there exists a non-singular self -ad joint operator 

h affiliated with N such that  For any x •¸ N+ , we have

hence we have Putting we have

Thus, the one parameter unitary group {u(t): t •¸R} gives rise to a one 

parameter automorphism group {ƒ¿t: t •¸ R} of NƒÆ such that {N,ƒÆ} 

{W*(NƒÆ, R, ƒ¿), ƒ¿} by [15]. This proves (a). 

To prove the second assertion (b), we first show that Nƒ¿ is semi-

finite if and only if Let  

 It follows then that e is dominant and 

is semi-finite then so is PƒÆ. Hence W*(N,R,ƒÆ)

PƒÆ is semi-finite. Our claim then follows from [30; Section 9], and as-

sertion (b) in this case is standard. 

If NƒÆ is properly infinite, then Na is also for every a 

which means that a is dominant since ƒÑ0 aƒÆt= e-tƒÑ, t •¸ R. Thus a  1.

q.e.d.

COROLLARY 5.2. (i) Let N1 and N2 be properly infinite semi-finite 

von Neumann algebras equipped with one parameter automorphism 

groups ƒÆ1 and ƒÆ2 respectively which transform some faithful semi-finite 

normal traces ƒÑ1 and ƒÑ2 respectively in such a way that

Then W*(N1,R,ƒÆ1 ) W*(N2,R,ƒÆ2) if and only if there exists an isomor-

phism ƒÎ of N1, onto N2 such that ƒÆ1s=ƒÎ-10 ƒÆƒÎ, s •¸ R. 

(ii) If {N1,ƒÆ1} and {N2,ƒÆ2} are discrete decompositions of the same 

factor of type ‡VƒÉ, 0<ƒÉ<1, then there exists an isomorphism ƒÎ of N1 

onto N2 such that ƒÆ1 =ƒÎ-10ƒÆ20ƒÎ.
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(iii) If {N1,ƒÆ1} and {N2,ƒÆ2} are discrete decompositions of the same 

factor of type ‡V0, then there exist central projections e1 •¸ N1 and e2 •¸ N2, 

and an isomorphism ƒÎ of N1,e1 onto N2 ,e2 such that ƒÆ1,el=ƒÎ-10ƒÆ2,e20 ƒÎ, 

where ƒÆ1,e1 (resp. ƒÆ2,e2) is an automorphism of N1,e1 (resp. N2 ,e2) induced 

by ƒÆ1 (resp. ƒÆ2) as described in [3; Definition 5.4.1.].

PROOF. This is a straightforward consequence of Theorem 5.1 and 

[30;•˜8] and [3, Theorems 4.4.1 and 5.4.2], q.e.d.

COROLLARY 5.3. An automorphism ƒ¿ of a factor M of type II,, is 

stable if and only if a does not preserve the trace z of M. 

PROOF. Suppose a does not preserve the trace z on M. It follows 

that ƒÑ0ƒ¿=ƒÉƒÑ for some ƒÉ>0 by the uniqueness of the trace. Con-

sidering ƒ¿-1, we may assumeƒÉ<1. Let ƒÀ=Ad(u) oƒ¿with u a unitary 

in M. Then we have W* (M,ƒ¿)W* (M,ƒÀ), and they are of type ‡VƒÉ. 

By Theorem 5.1, we have W*(M,ƒ¿), so that Mƒ¿ 

W*(M,ƒ¿). Thus Ma and Mƒ¿ are both properly infinite, which means 

that ƒ¿ and ƒÀ are both dominant. Therefore, there exists a unitary ƒÒ•¸M 

such that u=ƒÒ*ƒ¿(ƒÒ), which means that ƒÀ=Ad (ƒÒ)-1 0ƒ¿0 Ad (ƒÒ). 

Suppose conversely ƒ¿ preserves the trace ƒÑ. Let e be a projection 

in M with ƒÑ(e)<+•‡• Since e ƒ¿(e), there exists a unitary u •¸ M 

such that e=uƒ¿(e)u*, where we note here that the equivalence between 

finite projections is unitarily implemented. Let ƒÀ=Ad(u)0ƒ¿. It follows 

then that ƒÀ preserves a normal positive linear functional 

Hence  is not integrable, so that is not conjugate to any 

integrable action of Z. But there is a unitary ƒÒ •¸M as seen in •˜2 that 

{(AdƒÒoƒÀ)n} is integrable, even dominant. Hence ƒÀ and Ad (ƒÒ) • ƒÀ are 

not conjugate; therefore either ,ƒÀ=Ad(u) o ƒ¿ or Ad (ƒÒ) o ƒÀ=Ad (ƒÒu) o ƒ¿

is not conjugate to ƒ¿. Therefore, ƒ¿ is not stable. q.e.d. 

PROOF OF THEOREM ‡U.1.6. Let {ƒÖ1,ƒÖ2} and{ƒÖ1,ƒÖ2} be two quasi-

commuting pair of dominant weights on an infinite factor M with sep-

arable predual such that ƒ¿(ƒÖ1,ƒÖ2)=ƒ¿(ƒÖ1,ƒÖ2 ), say a for short. By the 

uniqueness of a dominant weight, there exists a unitary u •¸ M such that 

ƒÖ1=ƒÖ1 ,u. Replacing ƒÖ2 by ƒÖ2,u, we reduce the situation to the following: 

given three dominant weights  and on M such that and 

 are quasi-commuting with  we must show 

that there exists a unitary u in MƒÖ such that 

Let M=W*(N, R, ƒÆ) and {u(s):sƒÆR} be a continuous decomposition 

of M and the one parameter unitary group in M associated with this 

decomposition. We may assume that ƒÖ is the weight on M dual to a
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For short, put and

We have then

For each s •¸ R, put

It is easily seen that {as} and {bs} are both continuous and parameter 
families of unitaries in N such that

By Theorem 5.1, there exists a unitary u •¸ N such that

Hence we get, for any s •¸ R,

Thus it follows that q.e.d.

CHAPTER IV. THE FLOW OF WEIGHTS AND THE 
AUTOMORPHISM GROUP OF A 

FACTOR OF TYPE III

‡W.O. Introduction. The aim of this chapter is to extend the exact 

sequence of [3,4.5] to the general case from type ‡VƒÉ case, 0<ƒÉ<1, for 

the automorphism group Aut (M) and/or the outer automorphism group 

Out (M)=Aut (M)/Int(M) of a factor M of type ‡V in terms of the 

flow FM of weights on M and a continuous decomosition M=W*(N,R,ƒÆ) 

of M. Since FM is f unctorial to each a e Aut (M) there corresponds a 

unique automorphism mod (ƒ¿) of the flow FM as the restriction of ƒ¿ •¸ 

Aut  to PM. Assuming M to be a factor of type ‡U•‡, we will see 

that mod (ƒ¿) is precisely the translation of L•‡(R*+) by multiplying ƒÉ(ƒ¿)>0 

where this positive number ƒÉ(ƒ¿) is determined by ƒÑ0ƒ¿=ƒÉ(ƒ¿)ƒÑ for the 

trace ƒÑ on M. With this evidence, we call mod the fundamental homo-

morphism of Aut (M) in general. Considering the topologies in Aut (M) 

and Aut (FM) as in preliminary, we will show that mod is continuous; 

hence ker mod contains the closure of Int (M). 

We next extend the modular automorphism group  from the ad-

ditive group R to the multiplicative group Z 1(FM) of unitary one cocycles 

with respect to the flow FM of weights. To each c •¸ Z1(FM) and a
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faithful integrable weight on M, we associate an automorphism  of 

M by  for each x •¸ M(ƒÐƒÕ, {ƒÉ}). The relative corn-

mutant theorem, Theorem ‡U.5.1, then enables us to characterize these 

automorphisms as those which leave the centralizer elementwise fixed. 

We then show that for a smooth c •¸Z1(FM) there exist a map:

from the space  of faithful weights to Aut (M) and a map:

from into the unitary group of M such that

which coincide with ƒÐƒÕt and if cƒÉ=ƒÉit. In this setting, the 

modular period group T(M) of M is generalized to B1(FM) in the sence 

that ƒÐƒÕc is inner if and only if c•¸B1(FM), see [30; Theorem 9.4]. Thus 

we obtain a homomorphism of Hl(FM), the first unitary cohomology 

group of the flow FM, into Out (M)=Aut(M)/Int (M). Assuming M to 

be semi-finite, we will see that  

and cƒÉ= fFƒÉ(f*),f •¸ L•‡(R*+). From this, we view ƒÐƒÕc and  as 

functional calculus of the "generator" of the modular automorphism 

group {ƒÐƒÕt}.

In the last section, fixing a continuous decomposition M=W*(N,R,ƒÆ), 

we obtain an exact sequence:

where

and ƒÃN is the canonical homomorphism of Aut (N) onto Out (N). 

‡W.1.The fundamental homomorphism. Let M be an infinite factor 

with separable predual, and FM the smooth flow of weights on M. 

Recall that FM is just the action: of R*+on the classes of in-

tegrable weights of infinite multiplicity. Let Aut (FM) be the group of 

automorphisms FM, (i.e., automorphisms of the abelian von Neumann 

algebra PM which commute with the action FM of R*+). For any ƒ¿ •¸

Aut (M), the permutation: of classes of integrable weights of 

infinite multiplicity defines a unique element mod (ƒ¿) of Aut (FM) such 

that

DEFINITION 1.1. We call mod the fundamental homomorphism. 

This name comes from the following: 

PROPOSITION 1.2. If M is a factor of type ‡U•‡ with separable
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pmdual, then the map: ƒÉ•¸ R+*  FMƒÉ•¸ Aut (FM) is an isomorphism and 

for any ƒ¿ •¸ Aut (M) and a faithful semi--finite normal trace ƒÑ we have

where mod (ƒ¿) is identified to ƒÉ•¸ R+* with mod (ƒ¿)=FMƒÉ.

PROOF. By assumption, FM is transitive with trivial kernel, so that 

every automorphism of FM is of the form FMƒÉ, ƒÉ•¸R*+. Hence for any 

ƒ¿•¸Aut (M) there exists ƒÉ>0 such that for every integrable 

weight  of infinite multiplicity. Since M is a factor, we have ƒÑoƒ¿-1=ƒÊƒÑ 

 for some ƒÊ>0. LetƒÃ>0. As in the proof of Theorem ‡U .4.7, 

choose an h •¸ M, 1-ƒÃ•…h•…1+ƒÃ, such that is an integrable 

weight of infinite multiplicity. We have then  for 

some unitary u •¸ M, so that for every x •¸ M+,

Thus we get hence and
Therefore  being arbitrary. q. e. d.

PROPOSITION 1.3. If M is a factor of type ‡VƒÉ,

with separable predual, then the map: is a homo-
mor phism of onto with kernel and for any

and a generalized trace we have

(ii) If M is of type ‡V1, instead, then mod (ƒ¿)=1 for every ƒ¿•¸

Aut (M). 

PROOF. (i) We know that the flow FM is transitive with kernel 

S(M)•¿ R*+, so that the first assertion follows. Now let ƒ¿•¸ Aut (M) and 

 be as above, and be such that

for any integrable weight ƒÕof infinite multiplicity on M. As above
, 

for any ƒÃ>0 there exists an h •¸ MƒÕ, 1-ƒÃ•…h •…1+ƒÃ, such that 

 is integrable and of infinite multiplicity. For some unitaries 

 we have  and so that for any x •¸ M+ 
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Hence we get

generator of the modular period group T(M). Then

As we have

we get

The right hand side tends to 1 when ƒÃ0, so that ƒÉ1ƒÉ2-1 belongs to S(M). 

(ii) We know that the flow FM is trivial for a factor of type ‡V. 

q. e. d.

PROPOSITION 1.4. (i) If M is an infinite factor with separable 

predual, then Aut (FM), equipped with the simple convergence topology 

with respect to the norm topology in (PM)*, is a polish topological group. 

(ii) If M is a factor of type ‡VƒÉ,ƒÉ•‚0, with separable predual, 

then the isomorphism of R*+/S(M)•¿ R*+onto Aut (FM), given by Proposi-

tion 1.3, is a topological isomorphism. 

PROOF. (1) This follows from the fact that Aut (FM) is a closed 

subgroup of the automorphism group Aut (PM) of the separable abelian 

von Neumann algebra PM. 

(ii) The map:ƒÉ•¸ R*+  FMƒÉ•¸ Aut (FM) is continuous, so the isomor-

phism of R*+/R*+•¿S(M) onto Aut (FM) is continuous whose domain is 

compact. Hence it is a homomorphism, q.e.d. 

We are now going to show the continuity of the fundamental homo-

morphism mod. Let M be an infinite factor with separable predual. 

We represent Aut (M) on the predual M* by considering the transpose 

of each automorphism, then consider the pointwise convergence topology 

in Aut (M) as in the preliminary. What we are going to prove is that 

mod is a continuous homomorphism of Aut (M) into Aut (FM). 

LEMMA 1.5. Let M be a von Neumann algebra with separable predual, 

and the unitary group of M with the uniform structure of the ƒÐ-

strong* convergence. Let ƒ¿ be a continuous action of a separable locally 

compact group on M. Then the set Zƒ¿1(G,) of all -valued continuous 

functions on G such that ugh=ugƒ¿g(uh), g, h•¸ G, is a Polish space with 

respect to the uniform convergence topology on compact sets in G. 

PROOF. Let d be a bounded complete metric of  giving the uni-
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form structure of the ƒÐ-strong* convergence. Let {KN} be an increasing 

sequence of compact sets in G such that where  means 

the interior of Kn. Put

It is not hard to see that is a complete metric on Z1ƒ¿(G, giving the 

uniform structure in question. Furthermore, Zƒ¿1(G,) is a closed subset 

of the separable complete metric space of C(G, ) of all continuous 

valued functions on G with the same metric , q.e.d . 

 PROPOSITION 1.6. In the same situation as above, let 

ƒ¿g(u}=u, g •¸ G}. Then the map with (dW)g= 

w*ƒ¿g(w) induces a Borel isomorphism d of the quotient Borel space 

onto a Borel subset B of Zƒ¿1(G,). 

PROOF. Since  is a closed subspace, is a Polish space. Now 

we claim that the map d is continuous. By Akemann's result [1]
, the 

ƒÐ-strong* topology in a bounded set in M is given by the uniform con-

vergence topology on every weakly compact set in M*. It follows then 

that the map: is continuous on every weakly 

compact set L in M*, where we consider the weak topology in M
*; 

hence the set  is weakly compact in M* for any 

compact subset K of G and weakly compact subset L of M*. Hence if 

{WN} is a sequence in  converging to w, then  converges 

to  uniformly for g •¸ K and hence ƒ¿
g(wn) 

tends to ƒ¿g(w) uniformly in for g •¸ K. Since  is a topological group
, 

w*n ƒ¿g(wn) converges to w*ƒ¿g(w) uniformly for g •¸ K. Hence d(wn) con-

verges to d(w) in , which means that d is continuous. Further-

more, d(w1)=d(w2),w1,w2 , if and only if . Therefore
, d 

induces a continuous injective map d from into . Hence 

it follows from [17] that the induced map d is a Borel isomorphism from 

 onto a Borel subset B of  q. e. d . 

PROPOSITION 1.7. Let M and  be as before. 

(i) The space  of all faithful weights on M is a Polish space 

with respect to the topology of uniform convergence of the  

in  on compact subsets of R with  fixed; and this topology is 

independent of the choice of . 

(ii) For a faithful weight on M, the set  

is a Borel subset of , and there exists a Borel map 
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PROOF. (1) With  fixed, the topology in  is identified 

with that in ZƒÐ1ƒÕ(R,) under the correspondence: 

Hence the first half of the assertion follows from Lemma 1.5. Let {ƒÕn} 

be a sequence in converging to ƒÕ. Then  •-* in

uniformly on compact subsets of R. For any other faithful weight ,

in  uniformly on compact subsets of R. Hence the topology in  is 

independent of the choice of p.

(ii) We apply Proposition 1.6 to G = R and ƒ¿=ƒÐƒÕ. It follows then 

that p fir, if and only if  Let f be a Borel 

cross-section from to , and put Then u is 

a Borel map and  construction. q.e.d. 

PROPOSITION 1.8. Let M be as above, and Aut (M) be equipped with 

the simple norm convergence topology in M*. For any , the map: 

 is continuous in the topology on  defined 

above. 

PROOF. Let ƒÕ be a faithful normal state on M. If an . in 

Aut (M), then  Hence by  

 uniformly on compact subsets of R. For any  , we have

Thus we have only to prove that an  in  uni-

formly on compact subsets of R. Hence we will show that ƒ¿n(u)ƒ¿(u) 

in  uniformly for u in a compact subset of K of . For any u, ƒ¿

,ƒÀ•¸ Aut (M) and w •¸ M*, we have

so that the map is continuous, because 

the ƒÐ-strong* topology and the ƒÐ-weak topology in  coincide. Hence 

 is compact, so that the ƒÐ-weak uni-

form structure and the ƒÐ-strong* uniform structure agree in A. For 

any fixed w •¸ M*, the set B={w oƒ¿n:n=0,1, • • • • } is compact in the 

norm topology. For anyƒÃ>0, there exist u1, u2,•c um, in K such that 

inf for every u •¸ K and n=0, 1,•c by Akemann's 

characterization [1] of the ƒÐ-strong* topology in M. Let n0 be large 

enough so that  for ever n •† n0 and i=1,2•cm. 

We have then, for any u •¸ K and n > n0,
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Thus {ƒ¿n(u)} converges to ƒ¿0(u) ƒÐ-weakly and uniformly for u •¸ K; hence 

it converges to ƒ¿0(u) ƒÐ-strongly uniformly on K. q.e.d. 

We are now at the position to state the continuity of ƒÁM. 

THEOREM 1.9. Let M be an infinite factor with separable predual. 

Then the fundamental homomorphism mod is a continuous homomor-

phism of Aut (M) into Aut (FM), where we consider the simple norm 

convergence topologies in M* for Aut (M) and in (PM)* for Aut (FM) 

respectively. Hence mod (ƒ¿)=l for every ƒ¿ •¸ INt (M). 

PROOF. We know, as in the preliminary, that Aut (M) is a Polish 

topological group as well as Aut (FM). Hence we just have to prove 

that ƒÁM is a Borel map. 

By construction, mod (ƒ¿)=L for every ƒ¿ •¸ Int (M). Let ƒÖ be a 

dominant weight on M, and pƒÖ be the isomorphism of the center CƒÖ of 

MƒÖ onto PM defined in Theorem I.1.11 and the proof of Theorem ‡U.2.2. 

We claim that for any ƒ¿•¸ Aut (M) with ƒÖoƒ¿-1=ƒÖ

To see this, let u be an isometry in M with Then we have

by Theorem I.1.11 (ii);

hence

Let u(.) be the Borel map from the set WƒÖ of dominant weights on M 

to the unitary group  of M defined in Proposition 1.7(ii) such that 

for any dominant weight ƒÕ. By Proposition 1.8, the map 

h:ƒ¿•¸Aut (M)h(ƒ¿)=Ad(u(ƒÖ0ƒ¿-1))0ƒ¿ •¸ Aut (M) is a Borel map, since 

the map Ad: ƒÒ •¸  Ad ƒÒ•¸ Aut (M) is continuous. We then have

therefore

This shows that mod is a Borel map, q.e.d. 

THEOREM 1.10. Let M be a factor of type ‡VƒÉ,ƒÉ•‚1, with separa-
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ble predual. Viewing the fundamental homomorphism mod as a homo-
morphism of Out (M) = Aut (M)/Int (M) into Aut (FM) by the trivial 
identification, the following three conditions for a e Out (M) are equi-
valent:

(i) mod(a)=l; 

(ii) There exists a faithful normal state ƒÓ onM and a represen-

tative ƒ¿0 of a such that

(iii) For any ƒÃ > 1 such that there exists a 

faithful normal state ƒÓ on M and a representative ƒ¿0 of a satisfying 

(ii) and

To prove the theorem, we need the following lemma which is a 

slight refinement of Lemma 1.2.3 and [3; Lemma 5.2.4]. 

LEMMA 1.11. If is a faithful weight on a factorof type IIIƒÉ, 

, then for any ƒÃ > 1 with there exists a posi-

tive h<Cƒµ such that, with  and e = s(h),

where means of course the modular operator corresponding to {Me, ƒÓ}. 

PROOF. This follows from Lemma 1.2.3 and the observation that the 

operator in the proof of Lemma 1.2.3 is indeed in Cƒµ1 because 

each spectral projection of H is given by the left support projection of 

M(ƒÐƒµl, V) for each closed subset V of R whichbelongs to Cƒµ1. q.e.d. 

PROOF OF THEOREM 1.10. Suppose and ƒÖ is a 

dominant weight on M. There exists a representative ƒ¿1 of a such that 

and Let be a positive operator such that 

satisfies the condition in Lemma 1.11. It follows then that 

Since with, we have by 

Theorem 11.5.1. Therefore, we have

Being lacunary, ƒÓ is strictly semi-finite, so that the restriction ƒÑ of ƒÓ 

to MƒÓ is a faithful semi-finite normal trace. Since ƒ¿1 leaves ƒÒ invariant 

and CƒÓ elementwise fixed, we have ƒ¿1(p)•`p inMƒÓ for every projection 

p •¸ MƒÓ. Let p be a projection in MƒÓ such that. It follows 

then that is a normal state of M. Let u be a unitary 

in MƒÓ such that upu* = ƒ¿1(p). Put ƒ¿2 = Ad  We have then



556 A. CONNES AND M. TAKESAKI

and that a2 leaves  elementwise fixed. Let w be an isometry 

of M such that ww* = p. Put

We have that is a faithful normal state on M, and as 

leaves  elementwise fixed. Since and w*a2(w) 

is unitary, a0 belongs to ƒ¿. Thus (iii) follows.

Trivial.

Let ƒ¿0 •¸ Aut (M) and  be a faithful normal state on M

satisfying the condition in (ii). We consider the tensor products 

 w and ab. From the proof of Theorem ‡U.5.1, 

it follows that the center  of  is a von Neumann subalgebra of 

. Since leaves  elementwise 

fixed. Hence•@ is fixed elementwise by a . Therefore, we have 

mod . q.e.d.

IV.2. The extended modular automorphism groups. Throughout this 

section, let M be an infinite factor with separable predual, PM, PM, FM 

and so on be as before. Let Z1(FM) be the set of all ff-strongly* con-

tinuous functions {cƒÉ} on R+ with values in the unitary group of PM 

such that

and B1(FM) be the set of all elements in Z1 '(FM) of the form: 

 for some unitary v •¸ PM. Under the pointwise multiplication, 

Z1(FM) is an abelian group, and B1(FM) is a subgroup of Z1(FM). Put

For each t R, let t denote the element in Z1(FM) defined by

PROPOSITION 2.1. If is an integrable faithful weight on M, then 

to each c •¸Zl(FM) there corresponds a unique automorphism of M such 

that

PROOF. (i) The uniqueness of ff follows from Lemma ‡U.2.3. Let 

 be a continuous decomposition of M, and ƒÑ be a faithful 

semi-finite normal trace on N such that. Let 
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be the one parameter unitary group in M canonically associated with 

the decomposition W*(N, R, ƒÆ) = M. We know that the dual weight 

is dominant, and that and 

for every x in the center C of N and ƒÉ > 0. For a fixed, 

we put

It follows then that bs is a unitary in C and

Hence there exists a unique automorphism such 

that

Thus we have shown that exists for a dominant weight ƒÖ on M. 

Now, let ƒÒ be an isometry in M with such that 

Observing that e is fixed under, we define an automorphism 

a of M by

Since the map:Me is an isomorphism of M onto Mewhich 

brings to and to,we have

Thus we must show that

To this end, we may assume that a = PM(ƒµ) for some integrableƒµ , 

since PM(ƒµ)'s generate PM. We have then

Thus a satisfies the requirement for. 

(ii) We know that by construction. Thus , namely 
a, preserves q by definition. 

(iii)then so that we get

Hence  q. e. d.

THEOREM 2.2. Let ƒÓ be an integrable weight on M. If ƒ¿ •¸ Aut (M)
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leaves M elementwise fixed, then  for some c •¸ Zl(FM). 

PROOF. Let  be dominant, and be the associated 

continuous decomposition of M and {u(s)} the one parameter unitary 

group in M appearing in the decomposition. First we assume that a 

is an automorphism of M leaving N elementwise fixed. For each s •¸ R, 

let . By Theorem 11.5.1, bs belongs to the center C of 

N and

Furthermore, we have

Hence, putting , we get. 

In the general case, there is an isometry u with uu*=e•¸ N such 

that. Suppose that ƒ¿ •¸Aut (M) leaves elementwise invariant. 

Considering the automorphism: we may assume 

that ƒ¿•¸Aut (Me) leaves Ne elementwise invariant. 

For every x •¸ Ne and s •¸ R, we have

so that . A direct computation shows that

Thus there exists, by Proposition A.1, such that , 

s •¸ R. Define an ƒ¿' •¸Aut (M) by

We have then

Putting , we have, so that. q.e.d.

EXAMPLE 2.3. Let N be an infinite semi-finite factor with separable 

predual. We identify {PN, FN} with  acted by the translation 

of R*+ as in 11.2. We then conclude the following: 

 *(i) For every c •¸ Z1(FN) there exists a unique, up to scalar multi-

ple, unitary  such that . 

(ii) With c = df as in (i), and  as integrable weight, we 

have
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PROOF. (i) This is known. 

(ii) We have first that. The integrability of ƒÓ 

implies that the spectrum of hƒÓ is absolutely continuous with respect to 

the Lebesgue measure, so that f(hƒÓ) = u makes sence. Let a be a 

partial isometry in. We have then  

so that. Therefore, we get

Therefore, and Ad (f(hƒÓ)) agree on the set of partial isometries in 

. But any element of,is the product of a 

positive element in and a partial isometry in 

 by polar decomposition. Thus q.e.d. 

This example shows what we deal with by considering it may 

be called a "functional calculus" of the "generator" of the modular auto-

morphism group. 

THEOREM 2.4. Let cps and be faithful integrableweights on an 

infinite factor M with separable predual, and 

We then conclude the following: 

(i) To each, there corresponds a unique
 in M such that

(ii) We have

PROOF. The integrability of ƒÓ follows from that of ƒÓ1 and ƒÓ2. 

Noticing that and  

we follow the arguments for the unitary cocycleRadon-Nikodym theo-

rem, without any alteration, q.e.d. 

COROLLARY 2.5. Let M be an infinite factor withseparable predual. 

Let ƒÃM denote the canonical homomorphism of Aut (M) onto Out (M) = 

Aut (M)/Int (M).
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(i) For every C •¸Z1(FM), the element of Cut (M) is inde-

pendent of the choice of an integrabl e weight p. Put . 

(ii) ƒÂM is an extension of the modular homomorphism (ƒÂM(t) = 

ƒÂM(t), t •¸B) and Ker ƒÂM = B1(FM). 

(iii) The range of ƒÂM is a normal subgroup of Out (M) with

PROOF. (i) Trivial from the previous theorem. 

(ii) The first half follows from Proposition 2.1(iii). Let ƒÖbe a 

dominant weight and c •¸ Z1(FM). Assume that . Since

leaves M; pointwise fixed, we have  by Theorem ‡U.5.1. It follows 

then that

The converse is proven the same way. 

(iii) Let ƒÖ be dominant as before, and a e Aut (M). Multiplying a 

by an inner automorphism, we assume  so that

If x is an element of then, because a and 

commute; hence

q. e. d.

THEOREM 2.6. Let M be an infinite factor with separable predual, 

and the space of all faithful weights on M with the metric d de-

fined in 11.4. Ifis twice continuously differentiable in norm, 

then there exist uniquely maps: and 

   --} ), the unitary group of M, with the following 

properties: 

(i ) IfƒÓ is integrable, then  satisfies condition (1) in Proposi-

tion 2.1. If ƒÓ and ƒÕ are both integrable, then (D ƒÓ: D ƒÕ)c is given by 

Theorem 2.4(i); 

(ii) The both maps are continuous with respect to the norm to-

pologies in Aut (M) and U(M); 

(iii) For each x •¸ M, we have

(iv) For each we have
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(v) For any ƒ¿ •¸ Aut (M) and u •¸ U(M), we have

(vi) If c1,c2 •¸ Z1(FM) are twice differentiable in norm, then

The uniqueness of these maps follows from Proposition 2.1 and the 

density of integrable weights in. 

LEMMA 2.7. Let c •¸ Z1(FM) be as in the theorem. For any ƒÃ> 0 

there exists ƒÅ> 0 such that for any faithful integrable weight on M:

PROOF. Without loss of generality, we may assume that ƒÓ is domi-

nant. Put, s •¸ R. Let {u(s)} be the one parameter unitary 

group in M which, together with MƒÓ, generate Mas a continuous de-

composition M = W *(MƒÓ,R,ƒÆ). We then have

If f is a function in the Schwartz space (R), then the M-valued func-

tion: s •¸ R M is integrable by the twice differenti-

ability of {bp} pand we have

where we recall that the measures dp and ds arethe Plancherel measures 

on R. Put

It follows then that

Let g be a function in L1(R) such that g(p) = 1for p in a neighborhood 
of 0. If f(0) =1, then
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Hence we have

Put. Then h belongs to Ll(R). Hence there exists a 
sequence ni by [25; page 50] such that 
and

If f(p) =1 for, then we have 

Thus the conclusion follows. q.e.d.

LEMMA 2.8. Let be as in Theorem 2.6. For any ƒÃ> 0, 

there exists ƒÅ > 0 such that for every faithful integrable weights ƒÓ1 and 

ƒÓ2 with d(ƒÓ1, ƒÓ2)•…ƒÅ we have

PROOF. We keep the notations in Theorem 2.4. Itfollows from 

11.4 that means . Hence, choosing ƒÅ > 0 

as in Lemma 2.7, we get

q.e.d.

LEMMA 2.9. Let be as in Theorem 2.6. Let ƒÓ be a 

faithful weight of infinite multiplicity. 

(a) {ƒÓn} is a sequence of faithful integrable weights such that 

then the sequence automorphisms converges 

to an automorphism, say of M. 

(b)does not depend on the choice of a sequence {ƒÓn} and satisfies

PROOF. Since we have, by the definition of,

it follows from Lemma 2.8 that is a Cauchy sequence of 
unitaries in M. Put
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and

It follows also from Lemma 2.8 that does not depend on the 

choice of a sequence {ƒÓn} but only on ƒÓ and ƒÓ1. By construction, we 

have

Let {ƒÓn} be a sequence of faithful integrable weights given by

 with such that and We 

have then, for any,

by the lower semi-continuity of cp. Replacing cby we have 

. Therefore, we get . Let ƒµ be an integrable faithful 

weight with. Then we have. There-

fore, Lemma 2.7 entails the last assertion of (b). q.e.d. 

PROOF OF THEOREM 2.5. With possible exception for (vi), all state-

ments for faithful integrable weights follow from Proposition 2.1, Theo-

rem 2.4 and Lemma 2.8. Let be integrable and. It 

follows then that

hence for each we have

Hence we get the first part of (vi) for integrable weights. The last two 

formulas for integrable weights follow from this and the usual 2 x 2-

matrix arguments. 

Let ƒÓ0 and ƒµ0 be arbitrarily fixed faithful integrable weights. For 

each faithful weight ƒÓ of infinite multiplicity, we put

with a sequence {ƒÓn} of faithful integrable weights converging to ƒÓ in
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the metric d. We know that this does not depend on the choice of {ƒÓn}. 

We define

for a pair ƒÓ, ƒÕof faithful weights of infinite multiplicity. With sequences 

{ƒÓn} ~and {ƒÕn} of integrable weights converging toƒÓ and ƒÕfir, we have

hence the above definition of (DƒÓ: DƒÕ)c makes sense. Given ƒÃ> 0, if 

d(ƒÓ, ƒÕ) < ƒÅ with ƒÅ> 0 in Lemma 2.8, then

Thus, by Lemma 2.9, Theorem 2.4 and continuity,all statements for 

faithful weights of infinite multiplicity hold.

Let ƒÓ be a faithful weight of infinite multiplicity and w be an 

isometry with ww* •¸ M We define

If v is another isometry with vv* •¸M such thatƒÓw = ƒÓv, then we have

so that we have  and by Lemma 2.9. Therefore, 

Thus . is well-defined. 

If ƒÓ and Jr are faithful weights of infinite multiplicity and v and 

w are isometries of M with  and , then we define

it is then shown, by the similar arguments as above, that 

is well-defined. Since any faithful weight is of the form  for some 

cp of infinite multiplicity, (Dcp: DƒÓ). is defined for a general pair ƒÓ 

ƒÕ. We then define, fixing a faithful weight ƒÓ0 of infinite multiplicity,
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It follows from the chain rule that does not depend on the choice of 

ƒÓ0. A straightforward argument shows that conditions (iv), (v), (vi) 

and (v) hold. 

Thus, the only thing remains to be shown is the continuity of 

(DƒÓ: DƒÕ)c in general. We consider. It is easily seen that 

for any  we have

Hence the continuity of (DƒÓ: DƒÕ). on ƒÓ, ƒÕ follows from the continuity 

of two maps: and 

.The continuity of the map: 

is automatic after this. q.e.d. 

EXAMPLE 2.10. Let N be an infinite semi-finite factor with separable 

predual. As in Example 2.3, let c•• df •¸ Z1(FM) and ƒÓ = ƒÑ(h4) a faithful 

weight on N. Then we have

We leave the proof to the reader. 

COROLLARY 2.11. Let M be an infinite factor with separable predual. 

Let c •¸ Z1(FM) be as in Theorem 2.6. Let ƒÓ be a faithful weight on M 

and put

for each non-singular self-ad joint positive operator h affiliated with 

 We conclude the following: 

(i) c(h) falls in the center of {h}•¿ M4; 

(ii) c1c2(h) = c1(h)c2(h) for every twice differentiable c1f c2 •¸ Z1(FM).

hence
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which means that c(h) •¸ MƒÓ.

so that the center of. 

(ii) This follows from (i) and Theorem 2.6 (vii) q.e.d.

We now apply Theorem 2.6 to a factor given by the group measure 

space construction, and then compute the extended modular automor-

phism. Let M be an infinite factor with separable predual and ƒÓ a 

faithful weight. Suppose that there exists a von Neumann subalgebra 

N of MƒÓ with relative commutant contained in Nand a 

continuous unitary representation u(.) of a separable locally compact 

group G in M such that

By Theorem 11.6.2, there exists a non-singular self-adjoint operator ƒÏg 

affiliated with C such that

It is also easy to see, using, that if ƒ¿ •¸ Aut (M) leaves 

N elementwise fixed, then there exists a one-cocycle such 

that

where the action ƒÀ of G on N, hence on C, is given by

Let {„C,ƒÊ} be a standard measure space with C = L•‡(„C, ƒÊ), on which G 

acts in such a way that

We consider the action of G on „C x R defined by;

Let By Theorem 11.6.2, the center Cw 
of the dominant weight on is identified with 

where m means, of course, the Plancherel measure 
on R.

COROLLARY 2.12. In the above situation, if is as in 
Theorem 2.6, then the cocycle corresponding to the extended
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modular automorphism  is given by the formula:

where.

PROOF. For n =1, 2, ..., put

We define an isometry ƒÖn of L2(R) onto by

Clearly we have

Let ƒÖ be the weight on such that

where {Us} and {Vt} mean the one parameter unitary groups defined in 
Chapter II. We have then

Hence we get, so that ƒÖƒÖn converges to Tr uniformly. 

Therefore converges to uniformly; thus we get

Let and. It follows from 
the proof of Lemma 2.7 that

and that

Therefore, we get and
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where we use the fact that the differentiability of b in norm, together 
with the cocycle property, implies the continuity of b,(r, t) in t. 

We next have

Since we have

we have

q. e. d.

IV.3. The exact sequence for the group of all automorphisms. 

Given a factor M of type ‡V with separable predual, we have constructed 

various mathematical objects: the flow FM of weights, the fundamental 

homomorphism rM of Out (M) into Aut (FM), the extension ƒÂM of the 

modular homomorphism and a continuous decomposition M = W *(N, R, 8). 

Putting these things together, we compute Out (M) = Aut (M)/Int (M), 

and generalize the exact sequence in [3; Chapter ‡W]. 

THEOREM 3.1. Let M be a factor of type ‡V with separable predual. 

If M = W *(N, R, ƒÆ) is a continuous decomposition of M, then there 

exists a homomorphism ‚’ of Out (M) onto OutƒÆ,z (N) which makes the 

following sequence exact:

where

PROOF. Let ƒÖ be the dominant weight of M dual to the trace ƒÑ 

on N with z o ƒÆS = e-sƒÑ. By Theorem 2.2, if a•¸ Aut (M) leaves N point-

wise fixed, then  for some c •¸Z1(FM). By Corollary 2.5. (ii), a is 

inner if and only if. Hence the map  

Out (M) gives rise to an isomorphism of H1(FM) into Out (M) which will 

be denoted by ƒÂM again. 

Let a be an arbitrary automorphism of M. Then ƒÖ o a is again 

dominant. By the uniqueness of a dominant weight, there exists a
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unitary u •¸ M such that ƒÖ o a o Ad (u) = ƒÖ. Hence, putting

we have Out (M) = ƒÃM(AutƒÖ-(M)). Let a•¸ Auto,(M). If for some 

c•¸ Z1(EM), then a IN = c by construction. If aIN = Ad (u) for some 

u •¸ u(N), then we have a o Ad (u)-1| N = c, so that for 

some c •¸ Z1(FM) by Theorem 2.2. Hence the kernel of the homomorphism 

is precisely the image of Z1(FM) under 

ƒÐƒÖ . Since we have

r gives rise to a unique homomorphism r of Out (M) into Out (N) such 
that 

We examine the range of r. Put

Let {u(s)} be the one parameter unitary group in M which appears in 

the crossed product decomposition M = W *(N, R, ƒÆ). Let a •¸ Aut-ƒÖ (M) 

and . Since a and commute, we have   

so that•@ It is straightforward to see that

hence By Theorem ‡V.5.1, we have a = b*ƒÆs(b) for some 

b•¸u(N). Thus we get a(u(s)) = b*ƒÆS(b)u(s) = b*u(s)b, so that ao Ad(b) 

leaves u(s) fixed for every s •¸ R, which means that 9 o Ad (b) = a o Ad (b) IN 

and {8,} commute. Since & o a = &, a IN leaves v invariant by the equalities 

c~ = z o E; and E; a a = E;, so that is a Ad (b) leaves z invariant. Thus 

we conclude the inclusion:

   Suppose $ E Autg,z (N). A standard argument shows that R is ex-
tended uniquely to an a e Aut (M) such that a(xe(s)) = C3(x)u(s), x e N, 
s e R. Trivially, we have a I N = ,9. Thus we have

q. e. d.

THEOREM 3.2. In the same situation as in Theorem 3.1,

PRooF. Let C denote the center of N. The unitary group u(N) 

of N is a polish group with respect to the ƒÐ-strong* topology and U(C) 

is a closed subgroup of u(N). We consider the pointwise convergence
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topology in Aut (N) with respect to the norm topology in N*. The 

map is a continuous homomorphism with 

kernel u(C). Hence the naturally induced map 

Ad (u) E Aut (N) is a continuous isomorphism from the polish group onto 

Int (N). Hence Int (N) is a Borel subset of Aut (N) and the inverse 

map Ad-1 is a Borel map from Int (N) onto  Let T be a 

Borel transversal of in u(N), and let Then 

is a Borel map from Int (N) into u(N) such thatAd (ƒÎ(a)) = a for every 

a •¸Int (N). 

Suppose a •¸ Aut (M) commute with modulo Int (M), that is, 

 Put Int (N) and  

s •¸ R, we have then

By the one parameter group property of, we have

Put

By a direct computation, we get

Hence c is a Borel unitary 2-cocycle of the flow {C, ƒÆ}. By the triviality 

of the second cohomology group of a flow, see Appendix, 

we can find a u(c)-valued Borel function {dssuch that

Let , s •¸ R. We then obtain a u(N)-valued Borel function {a
s} 

such that for almost every s, t in R,

By Remark ‡V.1.9, there exists  such that as = as for 

almost every s•¸ R. 

By the triviality of•@ Theorem ‡V.5.1, we have an element 

such that  Thus we get 

for almost every s •¸ R. Namely, Ad (u) o ƒ¿ and {ƒÆs} commute 

in Aut (M) by continuity. q .e.d. 

REMARK 3.3. The exact sequence in Theorem 3.1 does not split in 

general.
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APPENDIX

PROPOSITION A.1. Let G and H be separable locally compact groups 

and {F,ƒÊ} a standard measure space on which G acts ergodically. Let 

E be a Borel subset of F with ƒÊ(E) > 0. Put A 

If b is an .H-valued Borel function on A such that for every g1, g2 •¸ G 

with 

for almost every then there exists an H -valued 
Borel function c on  such that

for every g1, g2 •¸ G

for almost every r•¸ F. 

PROOF. Let G0be a dense countable subgroup of G. Let

By ergodicity, we have  Hence we may assume  

Then, there exists a family {Eg: g •¸ G0} of Borel subsets of E such that

Define a G-valued Borel function a(.) on F by

and put  and p(g, r) = a(gr)-lga(r). We have then

Furthermore, for each fixed g•¸ G, p(g, .) takes only countably many 

values: indeed p(g,r) •¸ GogG0 for every r •¸ F. Define

Since we can choose E1= E where 1 means the unit of G, we have 

c(g, r) = b(g,r) for (g, r) •¸ A. Furthermore, we have

for almost every 7 •¸ F, where we use, in order to exclude a null set of
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7, the fact that p(g1, g2r) and p(g2, r), r e F, are at most countable. 

q. e. d. 

The authors learned that the following result had been proven by 

L. Brown sometime earlier. We present, however,a proof for the sake 

of convenience of the reader, since Brown's work is not yet available 

in print. 

PROPOSITION A.2. Let A be an abelian von Neumann algebra with 

separable predual, and {at: t •¸ R} be an ergodic one parameter automor-

phism group of A. Then for every n •† 2, we have Hna(R, UA) = {1}. 

PROOF. By virtue of the representation theorem for flows, due to 

Ambrose, Kakutani, Krengel and Kubo [12], [16], we may assume that 

the flow {A, ƒ¿} is built under a ceiling function from a single ergodic 

automorphism. Let {F, ƒÊ) be a standard measure space equipped with 

an ergodic transformation T. Let f be a positive Borel function on F. 

Consider the abelian von Neumann algebra  where

m means the Lebesgue measure on R. We define a one parameter auto-

morphism group {ƒÀt} and an automorphism ƒÆ of B as follows:

The representation theorem says that for a suitable 

choice of F, ƒÊ, T, and f. 

An n-cochain is by definition a unitary of 

considered as a UA-valued function on Rn. In particular, 

For each n •† 0, and ), the coboundary dc is given by the 

formula:

Thus we obtain a cochain complex:

(1)

We have then by definition  kernel of d in

range of d}. 

Let U'n be the unitary group of. For 

each c •¸ Un, we define the coboundary dc by the formula:



573FLOW OF WEIGHTS

where tj indicates that the term tj is missing. We then have a long 

exact sequence:

(2)

For each n•† 0, we define an automorphism of , denoted 

by ƒÆ again for the obvious reason, by the following:

Let ƒÎ be a map of into It defined by the following:

where we identify A with BƒÆ. It follows then that ƒÎ is an isomorphism 

of onto  which makes the following diagram 

commute:

Moreover, we have the fixed point subgroup of Un 

under ƒÆ. Therefore, cochain complex (1) is isomorphic to the following 

cochain complex:

(3)

Now, let and  for each x •¸ C. Putting 

for each x •¸ C, we obtain an injective resolution 

of the Z -module UC :

(4)

where Z acts on each group, of course, via ƒÆ and the injectivity follows 

from the divisibility of the unitary group of a von Neumann algebra. 

Hence the cohomology groups of cochain complex (3), hence (1), are iso-

morphic to the cohomology groups  n •† 1, (cf. [10; page 105]). 

This means then that

It is known, however, that

q.e.d.
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The above result, or more precisely the proof, is known in homo-

logical algebra as Shapiro's lemma.
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