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compute the closure of the range of this o with respect to {C, R? 6}.
Let {I',, t,} and {I",, 2.} be standard measure spaces with C, = L=(I'",, ,) and
Co=L=(I'y, tt.). Put {r, py=A{r, py=A{"y, p} X}, ttz}.  Then C=L~(I", p).
In order to avoid possible confusion, we denote by {6:"} and {#;"} the flows
in I", and I', induced by {C, 6'} and {C,, 6*}. We then have

05.(Yyy Yoy M) = (077, 07, €7N), 8, L€ R, M€ RY
a;,ko("/u Yoy >") = (71’ Vs 7"0_17\J>; (71, 72) € Fl X FZ’ A € RT- .

Put
T(Yyy Voy N) = (O%ogiVay Yoy N)y (Y3, Yoy M) €7, X Iy X RX .
We have then
TG, T(Vyy Yoy N) = (077, 077, €7N) 5
T ek, T(7yy T N) = (OFegags Yoo N) - q.e.d.
Therefore, our assertion follows.

CHAPTER III. NON-ABELIAN COHOMOLOGY IN PROPERLY
INFINITE VON NEUMANN ALGEBRAS

II1.0. Introduction. So far we have studied the flow of weights on
a factor. As the reader has already noticed, what we have treated there
is nothing else but the first cohomology of R in the unitary group of a
factor with respsct to the modular automorphism group. The techniques
developed there can also be applied to the general case, not only to the
modular automorphism group. The first cohomology of a locally compact
group G in the unitary group 1 of a von Neumann algebra M with
respect to an action « of G on M is related to the structure of the crossed
product W*(M, G, @) and its automorphism group. We shall regard a
one cocycle in the unitary group as a twisted unitary representation and
then follow the well-established multiplicity theory of unitary representa-
tions, instead of following the algebraic theory of cohomology. Of course,
integrable actions of the group in question will play the role corresponding
to that of integrable weights. The result of particular interest is the
stability of the single automorphism or of the one parameter automorphism
group appearing in the discrete or the continuous decomposition of a
factor type III, (see Section 5).

In §1, developing elementary properties of twisted *-representations,
we shall lay down our strategic point of view. We shall see in §2 that,
as for weights, there exists a unique square integrable twisted unitary
representation, called dominant, which dominates all other square inte-
grable twisted representations, Theorem 2.12. As a corollary, it will be
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seen that the fixed point subalgebra of an integrable action is isomorphic
to the reduced algebra of the crossed product. Section 3 is devoted to
the case of abelian groups. A characterization of a dominant action
will be given in terms of the spectrum; and also it will be shown that
I'(@), the exterior invariant of a ([3, part II]) is the kernel of the
restriction of the dual action & to the center of the crossed product
W*(M, G, o), a generalization of [30; Theorem 9.6].

In §4, we shall study the Galois type correspondence between the
closed subgroups and the intermediate von Neumann subalgebras for an
integrable action of an abelian group. Section 5 is devoted to the study
of stability of automorphisms (or one parameter groups of automorphisms)
of semi-finite von Neumann algebras.

I11.1. Elementary properties of twisted *-representation. Let M
be a properly infinite von Neumann algebra equipped with a continuous
action a of a locally compact group G. We assume the o-finiteness of
M always.

DEFINITION 1.1. A o-strong® continuous function a:seGr—a(s)e M
is called an a-twisted *-representation of G in M if the following con-
ditions are satisfied:

alst) = a(Ea(alt), s, teG ;

a(s™) = a; ' (a(s)*) .
If all a(s) are unitaries, then it is called an a-twisted unitary represen-
tation of G in M.

We denote by Z,(G, M) (resp. Z, (G, W(M))) the set of all a-twisted
*-representations (resp. unitary representation) of G in M, where U(M)
denotes the unitary group of M. A straightforward computation gives
the following:

LemMMA 1.2. If ae€Z. (G, M), then all a(s) are partial isometries such

that
a(s)a(s)* = a(l) and a(s)*a(s) = a,(a(l)),seG,

where 1 means, of course, the identity of G.

We denote a(l) by e,. It is also straightforward to observe that by
the formula:

&(z) = a(s)a(wa(s)*, veM,, , seG,

we can define a new action ,a of G on the reduced von Neumann algebra

M, (=e,Me,). We denote the fixed point subalgebra of M, under this
new action ,a by M°. If p is a projection in M? then the map: se G
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pa(s) € M is also an a-twisted *-representation of G in M, which will be
called the reduced a-twisted *-representation by p and denoted by ar.
We call it also a subrepresentation of a.

DEFINITION 1.3. We say that ¢ and b in Z,(G, M) are equivalent
and write ¢ = b if there exists an element ¢ € M such that

a(s) = ¢*b(s)a,(c) , seG;
b(s) = ca(s)a,(c*) .
We write ¢ < b if ¢ = b* for some projection ¢ in M°.
The reader should be aware of the following 2 X 2-matrix arguments:

LEMMA 1.4. Let P= MQF, be the 2 x 2-matriz algebra over M,
and & be the action a1 of G on P. Given a,be Z,(G, M), we define
ce Z«@G, P) by

C(S) = a’(s) ® e, + b(S) ® €2 se@ ’

with o fived matriz unit {e;;} in F,. Then the following two statements
are equivalent:

(i) a<b (resp. a =b):
(i) e, ®e,=eRey, (resp.e, e, ~e,Qey) in P
We leave the proof to the reader.

DEFINITION 1.5. With the same notations as in Lemma 1.4, we call
o and b disjoint and write o | b if ¢, R e, and ¢, X e, are centrally or-
thogonal in P°. We say that ¢ and b are quasi-equivalent and write a~b
if ¢,®e, and ¢, X e, have the same central support, (namely e, R e, +
e, X ey), in P°.
Given ¢ and b in Z (G, M), we set
Ia, b) = {x € e,Me,: xb(s) = a(s)a,(x), s G} .
It is not hard to see the following properties of I(a, b):
I(b, @) = I(a, b)* ; I(a,a) = M*; I{,b)=M";
2 ©, € l(a, a) , %, € I(a, b) ,
= i i €P° =
7= 3, T B 6 {xneﬂb, @),  aneld,b);
a ) b<= Ia,bdb) = {0}.
LEMMA 1.6. (i) Given a,b and, ¢ in Z, (G, M), we have
I(a, b)I(b, ¢) C I(a, ¢) .

(ii) If x = uh is the polar decomposition of x € I(a, b), then we have
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hel®d,b) and wuella,bd).
The proof is straightforward, so we leave it to the reader.

DEFINITION 1.7. We say that a e Z,(G, M) is of infinite multiplicity
if M*® is properly infinite.

LemMMA 1.8. If a and b in Z (G, M) are of infinite multiplicity, then
a=b=a~5b.

Proor. The implication “=" is trivial.

—: Suppose a ~b. Let P=MQF, & and ce Zz;(G, M) be as in
Lemma 1.4. It follows then that ¢, ® e, and ¢, ® ¢, are both properly
infinite projections in P° by assumption; so they are equivalent to their
central support in P°, P being o-finite. Therefore, we have

e, Re ~e, Re, +e,Re,~eRe, in P°. g.e.d.
We close this section with the following:

REMARK 1.9. If « is a continuous action of a separable locally
compact group G on a von Neumann algebra M with separable predual,
then for an M-valued function a: se G — a(s) e M to agree almost every-
where with an a-twisted *-representation &’ of G in M, it is sufficient
that o satisfies the conditions in Definition 1.1 for almost every pair s, ¢
in G, cf [18].

II1.2. Tensor product and integrability of twisted *-representations.

Let M and N be von Neumann algebras equipped with continuous
actions @ and B of a locally compact group G respectively. We understand
naturally the covariant system (M @ N, a ® B} on G. Given a € Z,(G, M)
and be Z,G, N), we define a Q b€ Z,25(G, MRQ N) by

(@®Db)(s) =als) ®b(s), se@.

It is of our particular interest when N = ¥R) and 8 = 1. This means
that b is an ordinary unitary representation of G of the Hilbert space R.

THEOREM 2.1. Let M be a von Neumann algebre equipped with a
continuous action & of a locally compact group G. Put P = M (LG)).
If N, is the right regular representation of G on LXG), then 1 @\, €
Za®1(G9 P) and ‘

W*(M, G, @) = P“®»

PrROOF. We may assume that M acts on a Hilbert space § in such
a way that {M, §} is standard, so that there exists canonically a uni-
tary representation U of G on § such that a,(x) =U(s)xU(s)*, x €. M,
se€@G. The crossed product W*(M, G, @) of M by « acts on the Hilbert



528 A. CONNES AND M. TAKESAKI

space § ® LXG). In this situation, the recent result of Digernes, [8],
says that the commutant W*(M, G, a)’ of W*(M, G, ) is generated by
M Q1 and U(s) ® ).(s), seG.

Hence we have

W*M, G, @) =W*(M, G, @)’ = {M' Q@1 U{U(s) QN (8): s€G}Y
= M & ¥LXG) N {U(s) @ N (s): s GY
= pudin q.e.d.

Since the left and right regular representations of G are equivalent
in {(LX@)) as twisted unitary representation with respect to the trivial
action of G on ¥(L*@A)), we have also

Puet = W*(M, G, )
with the left regular representation \; of G.

The next proposition is classical in homological algebra.

PRrOPOSITION 2.2. For any ac Z, (G, WM)), we have

a@N=1®N i P=MQRQYLNRF).

Proor. Suppose that M acts on a Hilbert space . Then P acts on
® R LY G) = LX(9; G). We define a unitary b in M Q L*(G) C P by the
following:

(b8)(8) = a(s™)&(s), e LX(9; G), seG .
We compute then
[6(1 ® N (E)EN(8) = a(s™)é(st) ;

{{a(®) ® M(D)]a @ 1).(b)EN(8) = alt)aa((st)™))&(st) ,
where we use the right invariant Haar measure d,s in the construction
of L¥9; G). We compute further the last term:

a(t)a(a((st)™) = a@®ala(t™'s™) = al®)alalt™a;r (a(s™))
= a()aa(t™)a(s™) = a(s™) .
Hence we get
b1 X N,(2) = [at) @ MA@ @ L)(b), teG.

Therefore, our assertion follows, since b is unitary. q.e.d.

DEFINITION 2.3. Given a o-finite properly infinite von Neumann
algebra M equipped with a continuous action a of a separable locally
compact group G, an a-twisted unitary representation @ of G in M is

said to be dominant if e @ N, = a®1 in M Q YLXGF)) and a is of infinite
multiplicity.
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From now on, we assume always that the von Neumann algebras and
the groups in question are o-finite and separable respectively.

COROLLARY 2.4. Any dominant a-twisted unitary representations
are equivalent.

ProOF. Let o and b be dominant a-twisted unitary representations
of G in M. By Theorem 2.2, we have

eR1IZa@N, 1N, ZbbRN =2bR1
in MQ YLNG)). Therefore, we have only to show that if ¢ and b in
Z (G, (M)) are of infinite multiplicity, then ¢« 1 =X 1 in MR F.,
implies ¢ = b in M with F, a factor of type I.. But e ®1=bX®1 in
M F,, means that ¢ ~ b; hence ¢ = b by Lemma 1.8. g.e.d.

COROLLARY 2.5. If ae Z, (G, WM)) s dominant, then
M =W*M, G, @) .
DEFINITION 2.6. A continuous action @ of G on M is said to be
integrable if the set q, of all # in M such that the integralg a,(x*x)d;s
exists in M with respect to the left invariant Haar measure g,s in G, is

o-weakly dense in M. We say that ¢ e Z,(G, M) is square integrable if
the action ,x of G on M, is integrable.

We note here that the integral S a,(x*x)d,s is defined as the limit of
the increasing net S a,(x*x)d;s indexe?l by the net of compact subsets K
of G. The very mulizh similar arguments as those in the case of weights
show that

a) q. is a left ideal of MM;

b) p. = qtq., = {y*x: 2, yeq,} is a hereditary *-subalgebra of M
generated linearly by the positive part pf = p, N M,;

¢) pi= {xeMJ,: S a(x)d;s exists};

d) The integral

B = | ads

makes sense for any z € p,.
The following further properties of E, are easily verified:
e) K. (x) lies in the fix point algebra M*;
) E,(uxv) = uE (x)v, x € P, u, v M%
g) E. (x*x) =0 and E, (x*x) = 0= 2 = 0;
h) E, (supz;) = sup E,(x;) for any increasing bounded net {x;} in M,,
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where E, (x) = + o if x € M, is not in pf, and sup y, = +c if {y;} is
not bounded in M=,

From property (f), we conclude immediately the following:

LeMMA 2.7. Any subrepresentation of a square integrable a-twisted
*-representation of G in M s also square integrable.

ExAMPLE 2.8. Let M = £(9) and @ = 1. For a unitary representation
{U, $} of G on 9, U is square integrable as a twisted unitary represen-
tation with respect to the trivial action « in the sense of Definition 2.6
if and only if {U, §} is square integrable in the sense that

|| (UGzIe) ks <+
for a dense set of & in 9.

EXAMPLE 2.9. Let M = L>(G) and a be the translation action of G
from the right. It is immediately seen that p, = L=(G) N LYG, d;s) and

B = | f@ds.

LEMMA 2.10. Let M and N be von Neumann algebras equipped with
continuous actions & and B of G respectively. If either a or B is inte-
grable, then the tensor product a ® L on M K N is integrable. q.e.d.

We leave the proof to the reader.

LEMMA 2.11. The regular representation of G is square integrable
i Z(G, YLHG))).

PrOOF. Let A, be the right regular representation of G on L*G).
Let a, = Ad (\.(8)), seG. It follows that the action « leaves the maximal
abelian algebra L=(G) = A globally invariant and «|, is the right transla-
tion action of G on . Hence p, N A = L=(G) N LYG, d,s), which contains
a net converging o-strongly to 1. Therefore, p,, hence q,, is o-weakly
dense in ¥(L*G)), which means that )\, is square integrable in

Z (G, YLAG))) . q.e.d.

THEOREM 2.12. Let M be a o-finite properly infinite von Neumann
algebre equipped with a continuous action & of a separable locally
compact group G.

(i) There exists a dominant a-twisted unitary representation o
of G in M, which is unique up to equivalence.

(ii) An a-twisted *-representation b of G in M is square integrable
+f and only if b < a.
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PrRoOF. Since M is properly infinite, replacing a by ,®, we may
assume that M* is properly infinite. Choosing a factor F',, of type I,
contained in M* we may identify {M, a} with a covariant system
{(NR F.., 38X 1} on G. Identifying once again F,, with the tensor product
YLH @) ® B of ¥LXG)) and a factor B of type I., we can consider a
(B ® 1)-twisted unitary representation 1 @ N, ® 1 of G in N QR J(LHG) R
B =M. We have then

M(1®lr®1) D Nﬂ ® N,.(G)’ ® B .
Hence 1 @\, ®1 is of infinite multiplicity. Therefore, 1@, ® 1 is

dominant.

For the second assertion, we need the following results:

LEMMA 2.18. If be Z, (G, M) is square integrable, then

V{suppz*z: 2 Ib @\, 0 QD) =¢,XR1 in M IYLHG)).

PrOOF. Let ¢ denote the left hand side of the equality. By Lemma
1.6, e belongs to [M @ (L*G))]*®*". For any unitary u € [M Q L(G))]*®Y,
we have IO Q@ N, bQ@ Lu = I(b ® N,, b ®1); hence u*euw = e, so that e
is a central projection in [M @ L(L¥G))]*®". Since I(b @\, b ® l)e =
Ib ® N, b®1), we have only to show

I @ Ny bR L)S + {0}

for any non-zero central projection f in [MQ R(L*(G))]|*®". Since
[MQ LHG))]*® = M® Q ¥LYG)), f is of the form p ® 1 with a central
projection p in M®. We consider now M on a Hilbert space $ and L G)
with respect to the right Haar measure d,.s on G. We note, however,
that d,s7' = d;s. Then M ® ¥(LXG)) acts on L¥9; G). Choose an « € P«

with xp = # # 0 and a continuous function f on G with compact support.
Put

W) = @) | FOOLL, e L(S; 6) -
We have then

Y&l =

| e @(] roswa.e)|d.s
= | LIroer@eaoird.ds
-
-

@], har@e®)rd.s ).

G

@ (], he@swrdis)d,

G
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= [ [FO (Bt a)e®) (e)d, b

= | 1F O P Byt 1a
= (1P Ea(z @) |11
Hence y is bounded; so y e M & &(L*G)). Furthermore, we have, for
any £ ILX9; G) and r, s€@,
[y(pb(r) ® 1)EI(s) = () pb(7) ng ®Et)d,t

= (@) | FOsBE
(16(r) ® N(o)lx, @ LIW)EN®) = brl(a, ® D@)El(sr)
= bl @) | F@ed.t

= @) | FOed.
= (@) | FOsbL

Hence y belongs to I(b® N, b® 1) and y(p Y1) =y. Clearly y =+ 0 if
f #0. q.e.d.

LEMMA 2.14. For any be Za(G,v M), there exists be Z (G, W(M)) with
infinite multiplicity such that b < b. If b is square integrable, then we
can chose a square integrable b.

ProoF. Let ¢ = ¢, and z be the central support of ¢ in the whole
algebra M. Since a,(z) is the central support of «,(e) = b(s)*b(s), se@,
we have a,(2) = 2. Therefore, we have {M, o} = {M,, a} P {M,_,, a} in
the obvious sense. It follows from Theorem 2.12 (i) that there exists a
dominant b,e€ Z,(M,_,, W(M,_,)). We then restrict our attention to {I,, a}.
Let {e,} and {u,} be families of orthogonal projections and partial isome-
tries in M respectively such that 32, e, = 2, ufu, = ¢ and u,uf =e,, n =
1,2, ---, where the existence of such families is guaranteed by the proper
infiniteness and the o-finiteness of M. Put

b(s) = 3 wab(s)ar,(u) .

It follows that for any s, te@G,

b(a,b,) = [ Subeaw || 3 o b ws |
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= 3 wbeauiun)a,b) ()
= 3 ub(s)(eb(®)a, (us)
= 3 u,b()a, (e (us)
= le(lst) ;
bs™) = 3 wbls e (ud) = 3 w05 (ble) e )
= a7 (3 a(w)b(e) uz ) = ar' b)) ;
b (L) = 3 wb(Dur = S u.ous = Sie, = z.

Since the map: se G — b,(s) € M is o-strongly continuous, b, is an a-twisted
unitary representation of G in M,. Put

B(s) = by(s) + bys) .

It follows that M?® = (M) + (M,_,)>. By the definition of a dominant
representation, (M,_,)* is properly infinite. We will show that (M) is
properly infinite. Put w, , = w,uk, n, m = 1.2, ---. It follows that

W nWym = €y and w, ,wik, =e,

b.(8)et, (10, 0.(8)* = (35 b ()et, (uf) ) (w,,)(3 bl (up))

= 3 (Wb(O)(usw wun)b(s) ug)

= U b(8) (U W U )D(8) * U

= u,b(s),(e)b(s)*uy = ueur, = W,y -
Hence w,,., € (M,)"; so0 b, is of infinite multiplicity. By construection, b < b,;
hence b < b.

Suppose now b is square integrable. Since b, is square integrable
by definition, we need only to show that b, is square integrable. Let
{x,} be a net in p,» such that lim, x;, = 6. Let x,, = w,x,uf. We have then

by(8)0s(@:,)bi(8)* = u,b(8),(w:)b(s)uz ;

hence x;,, €p,e. Since lim,x,, = ¢,, the o-strong closure p,z contains all
¢,’s; hence by is integrable. Thus, b, is square integrable, and so is b.

q.e.d.
Proor or THEOREM 2.12. (ii). By Lemma 2.14, we may assume that
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b is a square integrable a-twisted unitary representation of G in M with
infinite multiplicity. Consider M &® J(L*G)), b ® N, and b R 1 as well as
P=MQRUAL(GF) R F, Let

¢(s) = b(s) @ N(8) Q €1 + b(s) O 1 R €5 .

It follows from Lemma 2.13 that the central support of 1R 1X e, in
P° majorizes 1® 1R e, Since M*Q@1Qe, is contained in Pigige,,»
1®1®e, is properly infinite in P° because M’ is. Hence 1R 1 X e, >
1®1R e, in P 50 bQ@1L<bXN,. By Proposition 2.2, we have

PRL<b@NM=1@N =a®1

if a e Z, (G, W(M)) is dominant. Thus b < @ because ¢ is of infinite mul-
tiplicity. q.e.d.

COROLLARY 2.15. Let M be a o-finite von Neumann algebra and G
a separable locally compact group. If a is an integrable action of G
on M, then the fixed point algebra M* of M under « is isomorphic
to a reduced algebra of the crossed product W*(M, G, «).

PROOF. Seeing that a ® 1 is integrable on M @ F. with a factor
F. of type L., and that (M Q F..)*® = M*Q F., we may assume that
M= is properly infinite. Let b(s) = 1, s€ G, and a be a dominant a-twisted
unitary representation of G in M. By Theorem 2.12, b < @, that is,
there exists an isometry w in M such that «*u = 1, uu* e M* and
w*a(s)a,(u) = 1,seG. Let ¢ = uu*. It follows that «,(x) = « if and only
if ,a,(uxu*) = wwu*. Hence M*= M;. On the other hand, we have
M =W*(M, G, &) by Corollary 2.5. g.e.d.

COROLLARY 2.16. Let M be a o-finite von Neumann algebra and G
a finite group. If a is a free action of G on M in the semse that
a,(x)a = ax for every x € M implies either g = e or & = 0, then any pair
of a-twisted representations of G in M are equivalent; i.e., the equivalence
classes in ZXG, ) reduces to o singleton.

PrROOF. The discreteness and the free action of G yield, [21], that
the relative commutant of M in W*(M, G, ) is M* N C, where C denotes
the center of M. This means that if M is properly infinite then every
ac ZXG, ) is quasi-equivalent to a dominant one by Theorem 2.12. The
finiteness of G implies that M is properly infinite if and only if M* is
also. Hence any a € ZX(G, 1) is dominant if M is properly infinite.

Suppose M is finite. Considering M & F., and @ & ¢, we conclude from
the above arguments that M*NC is the center of M* Hence the uni-
queness of the center valued trace in a finite von Neumann algebra implies
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that the restriction of the center valued trace of M to M* is indeed the
center valued trace of M<% which means that for any projections
e, feMe~f in M if and only if ¢ ~ f in M¢% Thus our assertions
follows from the well exposed 2 X 2 matrix arguments. g.e.d.

DEFINITION 2.17. A continuous action « of a locally compact group
G on a von Neumann algebra M is said to be stable if for every ac
Z(G, 0y) there exists b e, such that a, = bxa,(b). A single automor-
phism « of M is said to be stable if every wcl, is of the form w =
v*a(v) for some vell,.

Of course, the stability of an automorphism « of M implies that any
automorphism A of the form Ad(u)-a (and in particular any @ with
la — Bl < 2, [11]) is conjugate to « under Int (M). The converse is also
true when M is an infinite factor, (cf. Theorem 3.1).

We will discuss further the stability of a single automorphism and
a one parameter automorphism group together with its application in
Section 5.

II1.3. Integrable action of abelian groups, duality and invariant
I'. In this section, we study integrable actions of an abelian group. Let
G be a separable locally compact abelian group with dual group G. We
choose Haar measures ds in G and dv in G so that the Plancherel formula
holds. We denote by (s, ¥)> the value of Ye G at seG. An action a of G
on M is by definition dominant if the trivial a-twisted unitary represention
1 of G in M is dominant.

THEOREM 3.1. Let M be a properly infinite von Neumann algebra
with separable M,. For a continuous action & of a separable locally
compact abelian group G on M with properly infinite M=, the following
conditions are equivalent:

(i) «a is dominant;

(ii) For any ve @, there exists w e WM) such that oa,(w) = <s, VDu,
seG;

(iii) There exists a continuous action S of G on M= such that

(W™=, G, B), B} = (M, a) .
PROOF. (i) = (ii): Since M* is properly infinite,
{M, a} = {M Q &(L@G), a ®1}.
Denoting the regular representation of G on L*G) by N\, we have
(M YLNG)), a @1} = {MQ YLAG)), a @ Ad \} .
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For each ve@G, let #(7) denote the unitary on L*G) given by

HME(s) = (s, &(s), e L(G), s€G .
It follows then that
Ad (M) = <8 () .
Hence, putting u(7) = 1 Q p(7), we have
{a, ® Ad (M)Hw()) = <5, Vu(7) .
Thus, the isomorphism {M, a} = {M Q L(L(GF)), @ ® Ad A} assures the ex-
istence of a unitary we M with a,(u) = ﬁs: u.

(ii) = (i): Suppose that for any 7 e (@, there exists a unitary we M
with a,(u) = (s, Y>u for any se€G. Put

E = {7, u)eG x WM): au) = (s, V)u, scG}.

It follows then that E is a closed subset of the polish space G x U(M)
whose projection to the first coordinate G covers the whole dual group
G. Therefore, there exists a M(M)-valued measurable function u(+) on
G such that e,(u(?)) = (s, YYu(y). Put

w= Szu(v)dv e M® L~G) c M® ALXG)) .
Since A(s) € L=(G) such that M(s)(7) = (s, 7), We have
1® Ms) = Sf (s, V>, e MR L~G) .
Hence we have
w*@, ® L)(w) = Sju(v)*as(u(v))d“/ - Sf@, Y>dv

=1 Ns), seG.
Therefore we have 1Q1=1QN in Z,g,(G, WM KL G))). Thus, we get
M Q ULHG)), a @ Ad N} = {M Q ¥LHG)), a ® 1}
={M, o},
since M* is properly infinite.
(iii) = (ii): This follows from the definition of the dual action 5.
(i) = (iii): If « is dominant, then we have, by [30; Theorem 4.6],
{M, a} = {M Q YLA(G)), a ® Ad ) = (M Q ¥LHG)), ¢ @ Ad N}
= (M Q YLNG)), a} .
Identifying a with @, the action & = 8 is the desired action of G on
M-, q.e.d.
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As in [3; Definition 2.2.1], we define the invariant I'(a) of « as follows:
I'l@) = N {Spa’:e runs through all non-zero projections in M9} .

We note here that the arguments for [3; Proposition 2.2.2. and Theorem
2.2.4 (c)] do not require the fact that M is a factor. Hence we have

I'() = N {Spa’: e runs through all non-zero central projections in M<} .

THEOREM 3.2. Let M be a o-finite von Neuwmann algebra equipped
with a continuous action & of a separable locally compact abelian group
G. The invariant I'(®) is the kernel of the restriction of the dual action
& of G on W* (M, G, @) to the center of W*(M, G, c). (Hence it s, in
particular, a closed subgroup of G.)

PrROOF. We consider M & ¥LXG)),a®1 and a® Ad ) as before.
Trivially, we have I'(e) = I'(&¢ ® 1); hence I'(@) = I'(e Q@ Ad \) by [3, 2.2.4].
Hence we may assume that M is properly infinite and @ is dominant.
It follows from the previous section that there exists a continuous action
6 of the dual group G on M* such that

(M, o} = {W*(M°, G, 0), 0} ;
{(Me, 6} = {(W*(M, G, @), &}

by [30; Theorems 4.5 and 4.6], where & and § mean the dual action of
« and 4 in the sense of [30; Definition 4.1]. _Representing M* on a Hilbert
space 9, we see that M acting on L¥9; () is generated by the operators:

T(@)E() = O,(@)E(V), w0M", & € LX(9; G) ;
WOYNEM) = &7 + 1), 7, 7, € G .
The action @ on M is implemented by the unitary representation
{v, L¥$; G}
of G defined by
V() = (8, MEM ,  seG.
Hence have we a,(w(7)) = (s, 7>u(7), so that M(«, v) = M*u(7), ¥ € @, where
M, 7) = {xe M: ax) = (s, Vou(7)}.
If ¢ is a central projection in M=, then we have
eM(a, Ve = ef,(e)M*u(v), v € G;
M, V) = e, (e) Miu(Y) .

Hence M,(a®, 7) # {0} if and only if ef,(e) = 0. If 6, = ¢ on the center of
Me=, then ef,(e) = 0 for any non-zero central projection e in M* hence
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vYel'(@). A slight modification of the arguments for [30; Lemma 9.5]
shows that if 6, # ¢ on the center of M*, then there exists a neighborhood
V of v, in G and a non-zero projection ¢ in the center of M¢ such that
ef,(e) = 0 for every Y€ V. Hence we have M,(a’, v) = {0} for every ve V.
Since a’ is integrable, our assertion follows from the next lemma.

q.e.d.

LEMMA 3.3. If a 1s an integrable action of @ locally compact abelian
group G on M, then for any open subset V of G, the spectral subspace
M(e, V) = {0} iof and only +f M(e, 7) = {0} for some veV.

ProOF. Trivially, M(@, ) C M(a, V) for any veG. Hence we have
only to prove that M(«, v) = {0} for every Ye V implies M(x, V) = {0}.
By a simple application of Fubini’s theorem, we conclude that a(x)cp}
for any feLYG),f =0, and x<€p), where a,x) = Saf(s)a“(x)dS; hence
as(p,) C b, by the linearity for f e LYG). Put

i) = | Ghamis, wep..

We have then z(7)e M(«, 7) for any xe€p,. Suppose that M(e, v) = {0}
for any ve V. ThenAwe have x(v) =0 for every Y€ V. If f is a function
in LY@) with supp fCV, then we have for any zep, and 7eG

a(x) (1) = FME@) = 0.

Hence ay(x) =0 for every xzep,; so a(M)= {0} since a; is o-weakly
continEous and p, is o-weakly dense in M. Hence a, =0 whenever
supp f < V. Thus M(«, V) = {0}. q.e.d.

COROLLARY 3.4. Let @ be a continuous action of a separable locally
compact abelian group G on a o-finite von Neumann algebre M. Then
the crossed product W*(M, G, ) is o factor if and only if I'(®) = G and
« is ergodic on the center of M.

Proor. Suppose that W*(M, G, o) is a factor. By Theorem 3.2,
I'(@) = G. Since W*(M, G, @) = [M ® LHG))]*®**?, for any central fixed
point x under @, * @1 is in [M Q {(L¥G))]*®**. Hence 2 Q1 must be
a scalar. Hence « is ergodic on the center of M.

Suppose that I'(@) = G and a is ergodic on the center of M. Since
a® Adn on (LXGE)) enjoys the same property, we may assume that
M is properly infinite and @ is dominant. Then there exists an action
6 of G on M" such that {M, a} = {W*(M=, G, 6), }. By Theorem 3.2, 6
acts trivially on the center C* of M*. Therefore, C* is contained in the



FLOW OF WEIGHTS 539

center C of M. But a acts ergodically on C, so that Cn M* = {\l};
Hence C* = {\1}. Thus M~ is a factor. g.e.d.

COROLLARY 8.5. If @ is a continuwous action of a separable locally
compactAabelia,n group G on a o-finite von Neumann algebra M with
') = G, then any square integrable a-twisted unitary representation
of G in M with infinite multiplicity s dominant.

Proor. Replacing a by a dominant action of G of the form ,x, we
may assume that a is dominant. By Theorem 2.12.ii, every square
integrable a-twisted unitary representation of G in M is majorized by a
dominant one in the ordering “<”. We have only to prove that a°® on
M* is dominant for any properly infinite projection e of M* such that
6~1in M. Let {u(Y):veI'} be a unitary representation of G in M such
that a,(u()) = (s, VOu(7), so that Ad u(7)|y« = 6, is a continuous action
of G on M* with {W*(M¢, G, 6), 6} = {M, «}. By Theorem 3.2, the action
of 6 on the center C* of M is trivial. Hence ¢ and 6,(¢) have the
same central support in M*, and are properly infinite in M*; hence ¢ ~
0,(e). Therefore, there exists a partial isometry v, in M* such that
viv, = 0,(e) and v,v}f =e. Let w, = v,u(7)e. Then we have wiw, =e
and w,w; = e, and also ai(w,) = (s, Y>w,. Hence {M,, a°} satisfies condition
(ii) in Theorem 3.1. Thus @° is dominant. g.e.d.

We close this section with the following:

REMARK 8.6. So far we have mainly dealt with actions and/or weights
of infinite multiplicity. The contrast between the following two state-
ments (i) and (ii) might illustrate some of the reasons why the infinite
multiplicity has been useful.

(i) If a is a continuous action of a separable locally compact group
G on M with infinite multiplicity, then M(«, V) contains a non-zero partial
isometry for any open subset V of G with VNI'(a)# @. More strongly,
if I'le) = G in addition, then M(e, V) contains a unitary for every non-
empty open subset V of G.

(ii) Let M be an abelian von Neumann algebra and « an ergodic
continuous action of R. If w is a non-zero partial isometry in M(«, V)
for a bounded interval V, then « is unitary and «,(u) = e¢**n for some
seV.

The first assertion can be proven by approximating « with inte-
grable actions. The second statement can be shown by some modification

of the Paley-Wiener Theorem for the Fourier transform of distribution
with compact support.
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III.4. Galois correspondence. In this section, we shall show that
given an integrable action @ of a locally compact abelian group G on a
von Neumann algebra M with M= a factor, there is a Galois type cor-
respondence between closed subgroups of G and globally a-invariant von
Neumann subalgebras of M containing M?% which generalizes a result
in [30; §7].

THEOREM 4.1. Let M, be a factor equipped with a continuous action
a of o locally compact abelian group G. Let M = W*(M, G, «). If N
s @ vom Neulna,nn subalgebra of M such that MO(;N and &,(N) =N
Jor every peG, whereA& means the dual action of G on M then there
18 o closed subgroup H of G such that
N = {z e M: &,(x) = « for every pe H};
H=1{peG:a,x) = for every xcN};
therefore N is of the form N = W*(M, H, &) with H = H*.
We divide the proof into a few steps.

LEMMA 4.2, Let P be a factor and A an abelian von Neumann algebra.
If Q@ is a factor such that PRQ1CQC PR A, then Q = PR 1.

ProoF. Representing A as a maximal abelian von Neumann algebra
on $, we have

PRI NPRA=[PRXXUD]INPRA)
=1®A4;
hence
PRINNAC1I®A)NR=CLCPRL.

Therefore, there is at most only one normal conditional expectation from
Q onto P®1 by [3; Théoréme 1.5.5(a)]. Since there are in general
many normal conditional expectations from P&® A onto P® 1, there
exists a unique normal conditional expectation, say e, from @ onto
PR A. To each normal state @ on A, there corresponds a normal con-
ditional expectation ¢, of P® A onto P® 1 by the formula:

Pen(@) = (P Q 0)(x), 2ePR A, peP,.

By the uniqueness of a conditional expectation, we have, for any ze@,
&(x) = e,(x), so that

(P ® w)(e(x) ® 1) = p(eu(2)) = (p & W)() -
Therefore, we get e(x) ® 1 = x for every x€Q; thus @ = P® 1. q.e.d.
ProOF orF THEOREM 4.1. We put
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H={pe@G:a,x) = for every zcN}.

By [30; Theorem 7.1], the algebra M# of all fixed points in M under
&, peH, is W*(M, H, @) with H = {geG:{g, p) =1 for every pe H},
where the technical assumption in [30; Theorem 7.1] on the existence of
a relatively invariant weight on M, is not essential because of the com-
mutation theorem for the general crossed product due to T. Digerness
[8]. Replacing G by H and M by W*(H, H, o), we may assume that
H = {0}, and must show that N = M.

We consider the crossed products, W*(M, G, &) = M, W*(N, @, Q)=N
and W*(M,, G, &) = I,. We have then

M,=M,QL(GcNcI.

The action & of G on N is faithful, and thNe fixed point algebra N¢ in
N under & is M,, hence a factor. Hence N is a factor by Corollary 3.4.
By [30; Theorem 4.5], we have

M= M,Q YIXG)) .

Therefore, if we can identify the algebras M, and M with M, ® L=(G)
and M, @ YLX@G)), then Lemma; 4.2 is applied to. the commutants: M;&Q
L*(@>N'D>M;®1. Hence N'=M;®1, so N = M. Since N is the
fixed point algebra in N = 7 under the action & of G, we have M = N.
Thus, we must show that M is identified with M, ® L*G)) in such a
way that M, coincides with M, ® L*(G) under this identification.

Let © be the Hilbert space on which M, acts. Then M acts on the
Hilbert space L*9; @), and M acts on L¥9; G x G) and is generated by
the following three types of operators:

Ti(s, 1) = o' (@)i(s, 1), we M

w(r)é(s, t) =&s—rt—1r), reGq;

v(D)E(s, 8) = (&, PYE(s, ), peG . (cf. [30; (410)]).
It follows then that i, is generated by (&, v(p); x € M,, p e@} and iden-
tified with M, ® L=(G) = L*(M,; @), where the action of L=(M,; G) is
given by the following:

x&(s, 1) = a7 (x(8))(s, ¢)
for every xz(-) e L°(M,; G). We define an automorphism 7« of L=(M,; G) by
m(x)(s) = e (x(s)), a(+) € L™(My; &) .

It follows from the proof of [30; Theorem 4.5] that I is the tensor
product of 7(M, ® 1) and its relative commutant B in M where B is
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generated by «(G) and v(G). Thus we have
M, = #(M, ® L*(@) = n(M, ® 1) ® L(G) ;
M=7zM,Q1)RXB>N>a(M,®1) R L(G) = I, .
q.e.d.
THEOREM 4.3. Let M be a factor equipped with an ilztegrable ac-
tion a of a locally compact abelian group G. If I'(e) = G, then there
extsts a bijective imclusion reversing correspondence between the closed
subgroups H of G and the a-invariant von Neumann subalgebras N of
M containing the fixed point algebra M= in such a way thot
N,={xeM a,(x) =2 scH};
H, ={seG:a,x) =z 2 N}.
Proor. We put
M=M®F., and @ =a,Q¢, sc@,

with F,, a factor of type I.. It follows then that @ is dominant, since
the fixed point algebra 7* under @ is M*® F.. Hence, by Theorem
4.1, the correspondence between H and &@-invariant von Neumann sub-
algebras N of M containing M* given by

Ny ={zxeM:a,x) == scH};

Hy = {seG:a,(x) =z, xc N}
is bijective and inclusion reversing. It is now trivial that Ny DN and
Hy, D H. For a given N, we put N= N F,.. Trivially we have
Hy = Hy. If x€Ny,, then 1 ®@1€ Nyz; so @ 1€ N equivalently x € N.
Hence N = Ny,. For a given H, we have N, = N; Q F.(=(Ny)).
Hence we get

H = .H]TYH = H(NH@Feo) = HNH . q-e-d.

EXAMPLE 4.4. Let G be a locally compact abelian group, and M =
{LX@F)). Putting

{(u(s)&)(t) =&t —3s), £eLXG), s teG;
(W(P)E)E) = &, pyét), el @), peG,teG,

we obtain unitary representations % of G and v of G with
w(s)v(p)u(s) v(p)* = (s, py)1, seG, pelC.
Thus we may define an action @ of G X G on M by

a, () = u(s)v(p)xv(p)*u(s)*, seqG,pe @, xeM.



FLOW OF WEIGHTS 543

Since u(s), se @, and v(p), p € G, together generate M, we have
M*={\l:neC};
hence I'(@) = (G x G)" =G x G.
For a pair f, g of functions in L*@), we define an operator x;,e M
by
wf,gs = (Slf)g .
We have then

(uryo@)y, o) ur)*e|y) = ||& =5 BIT@e@Ee + 7l + ridsds .

Therefore, by the Plancherel formula, we get
[\ wmyos. oy ueyeinapar = (| Foies + rie + mdsdr

= (g|)ED) ,
so that

Su(r)v(p)wf,gv(p)*u(v")*dpdr = (g| L.

This means that the action @ of G X G is integrable. Thus, the a-
invariant von Neumann algebras on L*G) are labeled by the closed sub-
groups of G X G by Theorem 4.8. The von Neumann algebras considered
in [28] are of the special case where the corresponding subgroups are
of the form H x K with H a closed subgroup of G and K a closed
subgroup of G.

Since there are many von Neumann algebras not corresponding to
any closed subgroup of G x G, the invariance of a von Neumann algebra
under the action a in Theorem 4.8 is not removable in this general
setting. The same is true for Theorem 4.1 because the tensor product
with F., a factor of type I, gives counter examples for the Galois cor-
respondence without a-invariance.

The following result strengthens and refines a generalized commuta-
tion theorem [28].

PROPOSITION 4.4. In the setting of Example 4.4, let H be o closed
subgroup of G X G and H* = {g, ) e G x G: {8, @) = (&, p) for every
(s, p) e H. The fixed point algebra M* wunder «,, for every (s, p)e H
is gemerated by wu(t)v(q) with (q, t) e H*.

PrROOF. In general, we have

a, (V@) = & py<s, Duty(@), s teG pqel.
Hence w(t)v(q) belongs to M* if and only if (q, t) € H*.
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The action of (G x G)/H on M¥, denoted by the same notation «,
induced by the original action of G x G is integrable; hence MZ is gen-
erated by the eigen operators. Let a2 be an eigen operator in M¥ cor-
responding to (g, £) € (G x G)/H)" = H*. It forllows then that (u(t)v(q))*x
belongs to the fixed point algebra M* = {\1}. Hence x = zu(t)v(q) for
some veC. Thus M¥ is generated by {u(t)v(q): (g, t) € H*}. g.e.d.

IIL.5. Stability of automorphisms. In this section, we shall show
that if @ is an automorphism (resp. one parameter automorphism group)
of a semi-finite von Neumann algebra N scaling a trace down, then
every unitary one cocycle is a coboundary. This, in turn, improves the
isomorphism criterion for the factors of type III in terms of the con-
jugacy of discrete as well as continuous decompositions.

THEOREM 5.1. Let N be a semi-finite von Neumann algebra.

(i) If 6 is an automorphism of N such that there exists a faithful
semi-finite normal trace © on N such that 060 < nt for some 0 <A <1,
then (a) there exists a continuous action « of the torus T on the fixed
point algebra N° such that

{W*(N’, T, @), @} = (N, 6} ;

(b) every unitary w e N is of the form w = v*0(v) for some unitary v € N.

(i) If {6,} is a one parameter automorphism group of N such that
Tof, = et for some faithful semi-finite normal trace © on N, then (a)
there exists a one parameter automorphism group {a,} of the fized point
algebra N° such that

{W*(N’, R, @), &} = (N, 0} ;

" (b) every a-twisted unitary representation {u,} of R in N is of the form
u, = v*a,(v) for some unitary v e N.

Proor. (i) Let 6 be an automorphism of N with 700 < at. We
first claim that for any non-zero projection pe N’ there exists a non-
zero projection ¢ < p such that {6"(¢)} is orthogonal. Let ¢ be a non-
zero projection such that ¢ < p and 7z(e) < + . Let f= Vi,0%e).
We have then

7(e) < + oo ;

W) = 570 = Favele) =

6(f) =f and z(0(f)) = M) <z(f);
g=r—-0)=+0.
It is clear that {6"(q): » € Z} is orthogonal. Therefore, the usual exhaus-
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tion arguments entail the existence of a projection ge N such that
{0"(q): m € Z} is orthogonal and 3,.,0"(q) = 1.
We put, for 0 <s <1,

u(s) = 3, e gr(q) .

It follows then that 0(u(s)) = e**u(s), 0 < s <1. Therefore, {u(s): 0 < s <1}
induces a continuous action a of the torus T = R/Z on N’ by

a(x) = u(s)zu(s)*, seT,

where we identify the torus 7 with the half open unit interval [0, 1).
Thus, our assertion (a) follows from [15].

For the second assertion, (b), we observe first that if N’ is properly
infinite, then ¢ is dominant. But we claim that N is properly infinite
if and only if N’ is also. By the usual reduction arguments, it is suf-
ficient to prove the claim that the finiteness of N’ implies that of N.
Suppose N’ is finite. Let ¢ be a faithful semi-finite normal trace on
N’ invariant under «, the existence of such a ¢ being guaranteed by
the compactness of T. Let ¢ be the weight on N dual to . It follows
from [30; Proposition 5.16] that ¢ is invariant under 4. Since ¢ is a
faithful semi-finite normal trace on N, & is of the form: & = z(h-) for
some non-singular positive self-adjoint operator & affiliated with the
center C of N. We have then

2(0(R)x) = 7o OO (1)) = NT(n6~" ()
= AP(O(x)) = NP(x) = Nc(ha), weN, .

Hence we get 0(h) < Nh. From this, repeating more or less the same
arguments as above, we can construct a continuous unitary representa-
tion v(s) of T in C such that

0(v(s)) = e**v(s) .

Hence the action a’ of T on N’ induced by {v(s)} is trivial, and @ is
still dual to this new «’. This means that N = N/ ®I[~(Z) and § =1
(translation on [°(Z)). Thus N must be finite. In this case, let u be
an arbitrary unitary in N, and % = {,} in the decomposition N = N’ [~.
Put v, = v,u, if n =1 and v, =1, v, = v,,u, if n <0. We have then
v*6(v) = w. If N is properly infinite, then every # with 700 < Az is
dominant, so that for any w e, the new action § = Ad u -# is dominant;
hence the #-twisted unitary representation of Z in N generated by u is
dominant, which means that « = v*0(v) for some v el,.

(ii) We apply (i) to {0,: ne€ Z}. Let N, denote the fixed point sub-
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algebra of N under {0,: neZ}. It follows then that the restriction &y,
of 6 to N, is periodic with period one. The action {#,:n€Z} of Z on
N is integrable by (i) and @[y, is integrable as an action of the torus
T = R/Z. Hence 0 itself is integrable, because

B(x) = Swmﬁt(x)dt - S:‘f’t( 30.@)dt, weN, .

Let + be a strictly semi-finite faithful weight on N?. It follows then
that the weight ¢ = oo B is a faithful weight on N invariant under 6.
By [30; Theorem 5.4], there exists a non-singular self-adjoint operator
L affiliated with N such that @ = 7(h-). For any x € N,, we have

7(0,(h)x) = T<0,(h0_,(x)) = e T(h0_()) = ¢ "p(f_,(x))
= e *p(x) = e ’t(hx) ;
hence we have 6,(h) = e*h. Putting w(t) = h™*, t€ R, we have
0,(u(t)) = e*u(t) .

Thus, the one parameter unitary group {u(f): t€ R} gives rise to a one
parameter automorphism group {a,;teR} of N’ such that {N, 6} =
{W*(N?, R, @), & by [15]. This proves (a).

To prove the second assertion (b), we first show that N’ is semi-
finite if and only if {N, 6} = {N’Q L*(R), ¢ translation}. Let P =
NQF, and 0, =0,Q¢, teR. It follows then that § is dominant and
N'® F.. = P?. If N’ is semi-finite then sois P?. Hence W*(N, R, 6) =
P? is semi-finite. Our claim then follows from [30; Section 9], and as-
sertion (b) in this case is standard.

If NY is properly infinite, then N* is also for every ae Z;(R, 1),
which means that ¢ is dominant since 7o .0, = ¢7'7, t€ R. Thus a = 1.

q.e.d.

COROLLARY 5.2. (i) Let N, and N, be properly infinite semi-finite
von Neumann algebras equipped with ome parameter automorphism
groups 6* and 6 respectively which transform some faithful semi-finite
normal traces T, and T, respectively im such a way that

7,00, =e°t, and T,°0=¢e°7t,, sE€R.
Then W*(N,, R, ') == W*(N,, R, 6°) if and only if there exists an tsomor-
phism © of N, onto N, such that 6. = t™*c 00w, scR.
(ii) If {N, 6} and {N,, 6,} are discrete decompositions of the same

factor of type III,, 0 < N < 1, then there exists an isomorphism =« of N,
onto N, such that 6, = wtof,0o7x.
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(iii) If {N, 0} and {N,, 6,} are discrete decompositions of the same
Jactor of type 111, then there exist central projections e, N, and e, N,,
and an isomorphism m of N,, onto N,., such that 0,, = x'cb,, o7,
where 0,,, (resp. 0,.) is an automorphism of N,. (resp. N,,,) induced
by 0, (resp.8,) as described in [3; Definition 5.4.1.].

ProOF. This is a straightforward consequence of Theorem 5.1 and
[30; §8] and [3, Theorems 4.4.1 and 5.4.2]. q.e.d.

COROLLARY 5.3. An automorphism & of a factor M of type 1. is
stable if and only if « does mot preserve the trace t of M.

PrROOF. Suppose « does not preserve the trace ¢ on M. It follows
that 7oa = At for some N\ >0 by the uniqueness of the trace. Con-
sidering &', we may assume N < 1. Let 8 = Ad (w)oa with % a unitary
in M. Then we have W*(M, o) = W*(M, B), and they are of type III,.
By Theorem 5.1, we have M*Q {(%Z)) = W*(M, ), so that M* =
W*(M, ). Thus M* and M*? are both properly infinite, which means
that « and 8 are both dominant. Therefore, there exists a unitary ve M
such that w = v*a(v), which means that 8 = Ad (v) oo Ad (v).

Suppose conversely a preserves the trace . Let ¢ be a projection
in M with 7(e) < + co. Since e ~ a(e¢), there exists a unitary welM
such that ¢ = ua(e)u™, where we note here that the equivalence between
finite projections is unitarily implemented. Let 8= Ad (u)oa. It follows
then that B preserves a normal positive linear functional ¢ = z(e-).
Hence {8": n € Z} is not integrable, so that {8"} is not conjugate to any
integrable action of Z. But there is a unitary ve M as seen in §2 that
{(Adv-pB)"} is integrable, even dominant. Hence £ and Ad(v):-B are
not conjugate; therefore either 8 = Ad (w)oa or Ad(v)of8 = Ad (vu)o
is not conjugate to a@. Therefore, a is not stable. g.e.d.

Proor or THEOREM II.1.6. Let {®, @,} and {®, @;} be two quasi-
commuting pair of dominant weights on an infinite factor M with sep-
arable predual such that a(®,, ®,) = a(®], @), say a for short. By the
uniqueness of a dominant weight, there exists a unitary « € M such that
@, = @,. Replacing @&; by @;,, we reduce the situation to the following:
given three dominant weights @, , and + on M such that {@, ¢} and
{®, ¥} are quasi-commuting with a(®, ) = a(®, ¥) = @, we must show
that there exists a unitary « in M; such that = ¢,.

Let M = W*(N, R, 0) and {u(s): séR} be a continuous decomposition
of M and the one parameter unitary group in M associated with this
decomposition. We may assume that & is the weight on M dual to a
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trace tof#,=¢e"'t, t € R. For short, put v, = (Dp: D®),, and w, = (Dr: D®),,
scR. We have then

oi(v,) = e*'v, and o¥(w,) = 6w, ;
Vepr = "0, , W,y = e wWaw, .

For each seR, put
a, = ¢” iy y(as)* and b, = e 2 u(as)* .

It is easily seen that {a,} and {b,} are both continuous and parameter
families of unitaries in N such that

Cory = 0(a,) and b, = b,0,,0,) .
By Theorem 5.1, there exists a unitary w € N such that
a, = ubf,,(u*), seR.
Hence we get, for any seR,

v, = 6" g a(as) = 6 ub,f,,(u*)u(es)
= ¢ ybu(as)u* = uwu* .

Thus it follows that ¢ = 4. q.e.d.

CHAPTER 1V. THE FLOW OF WEIGHTS AND THE
AUTOMORPHISM GROUP OF A
FACTOR OF TYPE III

IV.0. Introduction. The aim of this chapter is to extend the exact
sequence of [3, 4.5] to the general case from type III, case, 0 <A <1, for
the automorphism group Aut (M) and/or the outer automorphism group
Out (M) = Aut (M)/Int (M) of a factor M of type III in terms of the
flow F' of weights on M and a continuous decomosition M = W*(N, R, 6)
of M. Since FY is functorial to each ae Aut (M) there corresponds a
unique automorphism mod () of the flow F™ as the restriction of @e
Aut (PBy) to Py. Assuming M to be a factor of type II., we will see
that mod (@) is precisely the translation of L*(R?) by multiplying Ma) > 0
where this positive number \(a) is determined by zoa = \a)r for the
trace  on M. With this evidence, we call mod the fundamental homo-
morphism of Aut (M) in general. Considering the topologies in Aut (M)
and Aut (F¥) as in preliminary, we will show that mod is continuous;
hence ker mod contains the closure of Int (M).

We next extend the modular automorphism group {o{} from the ad-
ditive group R to the multiplicative group Z'(F¥) of unitary one cocycles
with respect to the flow F” of weights. To each c¢e ZY(F¥) and a
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faithful integrable weight ¢ on M, we associate an automorphism G¢ of
M by &i(x) = p;'(cipu(@))x for each xe M(o?, {\}). The relative com-
mutant theorem, Theorem II.5.1, then enables us to characterize these
automorphisms as those which leave the centralizer ejementwise fixed.
We then show that for a smooth ce Z'(F™) there exist a map: p— 7
from the space W) of faithful weights to Aut (M) and a map: (@, ) —
(Dp: Byp), from WY x WY, into the unitary group N of M such that

0:(@) = (Dy: D),6¢(x)(Dy: D), welM,

which coincide with ¢f and (D+: Dp), if ¢; = A*. In this setting, the
modular period group T(M) of M is generalized to BY(F™) in the sence
that 67 is inner if and only if ce B'(F™), see [30; Theorem 9.4]. Thus
we obtain a homomorphism 6, of HYF™), the first unitary cohomology
group of the flow F'¥, into Out (M) = Aut (M)/Int (M). Assuming M to
be semi-finite, we will see that (Dp: DTr), = f(1)*f(h) with ¢ = Tr(h-)
and ¢; = fF(f*), fe L°(R}). From this, we view ¢ and (Dp: Dv), as
functional calculus of the “generator” of the modular automorphism
group {o{}.

In the last section, fixing a continuous decomposition M= W*(N, R, 6),
we obtain an exact sequence:

{1} — H'(F") - Out (M) — Outy,. (N) — {1} ,
where

Out,,. (N) = {&¢ e Out (N): ex(0,)x = aey(d,), toa = 7}
and ¢y is the canonical homomorphism of Aut (N) onto Out (N).

IV.1. The fundamental homomorphism. Let M be an infinite factor
with separable predual, and F¥ the smooth flow of weights on M.
Recall that F'¥ is just the action: ¢ —Ap of R?* on the classes of in-
tegrable weights of infinite multiplicity. Let Aut (#'¥) be the group of
automorphisms F'¥, (i.e., automorphisms of the abelian von Neumann
algebra P, which commute with the action F'* of R*). For any ac
Aut (M), the permutation: g —@oa™ of classes of integrable weights of
infinite multiplicity defines a unique element mod («) of Aut (F*) such
that

mod () p,(p) = pu(pea™), aeAut (M) .
DEFINITION 1.1. We call mod the fundamental homomorphism.
This name comes from the following:

ProrposiTION 1.2. If M 4s a factor of type II., with separable
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predual, then the map: n€ RY — F¥ e Aut (FY) is an isomorphism and
Sfor any aeAut (M) and a faithful semi-finite normal trace © we have

7o = mod (a)r
wherg mod (@) is identified to N € R¥ with mod (@) = FI.

ProoF. By assumption, F'” is transitive with trivial kernel, so that
every automorphism of F'” is of the form F'¥, ne¢R*. Hence for any
a € Aut (M) there exists N > 0 such that poa™ ~ \p for every integrable
weight ¢ of infinite multiplicity. Since M is a factor, we have roa™ =
pt for some p>0. Let ¢>0. As in the proof of Theorem II.4.7,
choose an heM, 1 —e<h <1 + ¢, such that ¢ = z(h-) is an integrable
weight of infinite multiplicity. We have then Mp = poato Ad (w) for
some unitary w <€ M, so that for every xec M.,

Me(he) = np(x) = T(ha  (uzu*)) = toa  (a(h)uru®)
= pr(a(h)uru™) = pr(u*a(h)ux) .

Thus we get M = pu*a(h)u; hence (L — eV < (1 + &) and (1 — &)y =<
(1 + e)n. Therefore, N = g, ¢ being arbitrary. q.e.d.

ProposITION 1.3. (i) If M s a factor of type III,, 0 <\ <1,
with separable predual, then the map: € R — F¥ ¢ Aut (F¥) is ¢ homo-
morphism of RY onto Aut (F™) with kernel S(M)N R*, and for any
acAut (M) and o generalized trace ¢ on M, [3; 4.3], we have

poad ™t ~Np with mod(a) = F¥.

(i) If M s of type III, instead, then mod (@) =1 for every ac
Aut (M).

Proor. (i) We know that the flow F” is transitive with kernel
S(M) N R%, so that the first assertion follows. Now let ac Aut (M) and
@ be as above, and \,, N, R* be such that

po ™t ~Ng and roat ~ Agp

for any integrable weight + of infinite multiplicity on M. As above,
for any &> 0 there exists an heM,, 1 —¢<h<1+e¢ such that
@(h+) = +r is integrable and of infinite multiplicity. For some unitaries
u, ve M we have yroa™ = N\, and o™ = N, so that for any x e M,

MP(RUTu™) = N (%) = Y@ (x)) = p(ha(x))

= pla™(@(h)x)) = Mmp(va(h)zv*) ;
AP oW huw) = M (a(h)e) .
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Hence we get (Do, (w*hu-): Dp(a(h):)), = Miag%, teR. Let T, be the
generator of the modular period group T(M). Then

(Do, (w*hu+): Dp,)r (Dp,: Dp,)r(Dpy: Dp(a(h)+))r, = MoNgTo .
As we have

(Dp,: Dp,)ry = (Dpy: Dp)r (Dp,: D)7,
= w*of,(w)ot, (v v =1,
we get
Mg = (D, (u*hu): Dp,)r (Dpy: Dp((h)+))r, «

The right hand side tends to 1 when ¢ —0, so that M)\;* belongs to S(M).
(i1) We know that the flow F'¥ is trivial for a factor of type IIL.
g.e.d.

PrOPOSITION 1.4. (i) If M is an infinite factor with separable
vredual, then Aut (F'Y), equipped with the simple convergence topology
with respect to the norm topology in (Py)., is a polish topological group.

(ii) If M is a factor of type III;, N # 0, with separable predual,
then the isomorphism of R¥/S(M) N R% onto Aut (F'¥), given by Proposi-
tion 1.8, 18 a topological isomorphism.

ProoF. (i) This follows from the fact that Aut (F¥) is a closed
subgroup of the automorphism group Aut (P,) of the separable abelian
von Neumann algebra P,,.

(ii) The map: ve R* — F'¥ ¢ Aut (F'™) is continuous, so the isomor-
phism of R*/R: N S(M) onto Aut (F*¥) is continuous whose domain is
compact. Hence it is a homomorphism. q.e.d.

We are now going to show the continuity of the fundamental homo-
morphism mod. Let M be an infinite factor with separable predual.
We represent Aut (M) on the predual M, by considering the transpose
of each automorphism, then consider the pointwise convergence topology
in Aut (M) as in the preliminary. What we are going to prove is that
mod is a continuous homomorphism of Aut (M) into Aut (F'¥).

LeMMA 1.5. Let M be a von Neumann algebra with separable predual,
and 1 the unitary group of M with the wuniform structure of the o-
strong® convergence. Let & be a continuous action of a separadble locally
compact group on M. Then the set Z (G, 1) of all U-valued continuous
Sunctions on G such that u,, = u,,(u;), 9, h€G, is a Polish space with
respect to the uniform convergence topology on compact sets in G.

Proor. Let d be a bounded complete metric of 1l giving the uni-
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form structure of the o-strong* convergence. Let {K,} be an increasing

sequence of compact sets in G such that G = Uz, fQ,, where IO{,, means
the interior of K,. Put

o, ) = 5, tsupdlu,, 0,), w, v ZUG, W) .
n=1
It is not hard to see that ¢ is a complete metric on Z4(G, 1) giving the
uniform structure in question. Furthermore, Z.(G, 1) is a closed subset
of the separable complete metric space of C(G, 1) of all continuous U-
valued functions on G with the same metric 4. q.e.d.

PROPOSITION 1.6. In the same situation as above, let U, = {uell:
a,(u) =u, ge€G}. Then the map d:wel—dwe ZYG, N) with (dw), =
w*a,(w) induces ¢ Borel isomorphism d of the quotient Borel space u\u
onto a Borel subset B of ZL(G,1).

PROOF. Since 1, is a closed subspace, M,\Il is a Polish space. Now
we claim that the map d is continuous. By Akemann’s result [1], the
o-strong* topology in a bounded set in M is given by the uniform con-
vergence topology on every weakly compact set in M,. It follows then
that the map: (p, g9)e L X G— poa, e M, is continuous on every weakly
compact set L in M,, where we consider the weak topology in M,;
hence the set {poa,.pelL,geK} is weakly compact in M, for any
compact subset K of G and weakly compact subset L of M,. Hence if
{w,} is a sequence in U converging to w, then {{a,(w,), p)} converges
to {a,(w), ) uniformly for geK and peL as n— co; hence a,(w,)
tends to @,(w) uniformly in I for ge K. Since U is a topological group,
wit(w,) converges to w*a,(w) uniformly for ge K. Hence d(w,) con-
verges to d(w) in ZL(G, 1), which means that d is continuous. Further-
more, d(w,) = d(w,), w,, w1, if and only if ww}elW, Therefore, d
induces a continuous injective map d from U\l into ZL(G, ). Hence
it follows from [17] that the induced map d is a Borel isomorphism from

N\ onto a Borel subset B of Z4(@G, 1). g.e.d.

ProproSITION 1.7. Let M and N0 be as before.

(1) The space B, of all faithful weights  on M is o Polish space
with 7respect to the topology of wuniform convergence of the (DAr: Do),
wm U on compact subsets of R with ¢ e, fixed; and this topology s
independent of the choice of .

(i) For a faithful weight @ on M, the set {y e BWy:p ~ o} =
18 a Borel subset of T, and there exists a Borel map w: q}reW —
w(y) €W such that p,qy, = 4, € W,.
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Proor. (i) With e, fixed, the topology in L, is identified
with that in Z!»(R, 1) under the correspondence: +r«— (D+r: Dp) € Z1o(R, 1),
Hence the first half of the assertion follows from Lemma 1.5. Let {+,}
be a sequence in W, converging to 4. Then (D+r,: Dp), — (D+r: Dp), in
U uniformly on compact subsets of R. For any other faithful weight ¢,

(Dyrnt D), = (Dot Dp)(Dp: Dp'), — (D Dp)(Dp: Dgp'), = (Dap: D),
in 11 uniformly on compact subsets of R. Hence the topology in 2B, is
independent of the choice of .

(ii) We apply Proposition 1.6 to G = R and a = ¢*. It follows then
that @ ~ 4, €W, if and only if (Dy: Dp)edl). Let f be a Borel
cross-section from U\ to 1, and put wu(y) = fod " (Dvy: Dp). Then u is
a Borel map and @,y = 4 by construction. q.e.d.

PROPOSITION 1.8. Let M be as above, and Aut (M) be equipped with
the simple norm convergence topology in M,. For any e, the map:
acAut (M) —»poa™ W, is continuous in the topology on W, defined
above.

PrROOF. Let + be a faithful normal state on M. If a,—«, in
Aut (M), then ||4roa," —poa™||—0. Hence by [4], (Dyro@;"': Dipoa;t),—1,
n — oo, uniformly on compact subsets of R. For any ¢ c,, we have

(Dpoaty,': Dpots?), = (Dpotty,'s Dafpotty") (Dapoctys Dapocty ') (Do : Dpocty™),
= a,(Dp: D) )( Dy o az's Do o a7 ) a((Dyr: Dop),) .

Thus we have only to prove that «,(Dp: Dvr,) — a,((Dp: D+r),) in Il uni-
formly on compact subsets of R. Hence we will show that «,(u) — a(u)
in N uniformly for w in a compact subset of K of 1. For any u, vell,
a, BeAut (M) and w € M,, we have

[{a(u) — Bv), @] = [(u, we — @o )| + Ku — v, @ 5)]
s llwea— @8+ Ku — v, 0,

so that the map: (a, )€ Aut (M) x U — a(u) €l is continuous, because
the o-strong* topology and the o-weak topology in U coincide. Hence
A={a,(u):uecK,n=0,1,-.---}Cll is compact, so that the o-weak uni-
form structure and the o-strong* uniform structure agree in A. For
any fixed weM,, the set B= {woa,:mn =0,1,---} is compact in the
norm topology. For any & > 0, there exist u,, %, -+, 4, in K such that
inf <, [KUu—u,;, wot,y|<e for every u € K and #n=0,1, ---, by Akemann’s
characterization [1] of the o-strong® topology in M. Let n, be large
enough so that [{u,;, woa,—woa,y| <e for every n =mn,and 1=1,2, -+, m.
We have then, for any e K and n > n,,
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Ku, o, — woapy| = [t — Uy Wo, — @] + [{Uyy, Wo, — ®o,)]
L2+ e=3¢.

Thus {a,(w)} converges to «a,(u) o-weakly and uniformly for w € K; hence
it converges to a,(u) g-strongly* uniformly on K. g.e.d.

We are now at the position to state the continuity of 7.

THEOREM 1.9. Let M be an infinite foctor with separable preducl.
Then the fundamental homomorphism mod s & continuous homomor-
phism of Aut (M) imto Aut (F'*), where we consider the simple norm
convergence topologies in M, for Aut (M) and in (Py), for Aut (F¥)
respectively. Hence mod (&) = ¢ for every «clInt (M).

PrROOF. We know, as in the preliminary, that- Aut (M) is a Polish
topological group as well as Aut (F'¥). Hence we just have to prove
that 7, is a Borel map.

By construction, mod (@) =¢ for every acInt(M). Let @ be a
dominant weight on M, and p; be the isomorphism of the center C; of
M; onto P, defined in Theorem I.1.11 and the proof of Theorem II.2.2.
We claim that for any ae Aut (M) with @oa™ = ®

(%) p3' mod (@)p; = g, .
To see this, let w be an isometry in M with ¢ = wu* € C;. Then we have
mod (A)(Pu(@,)) = Py(@,° Q") = Dy(Dary)
= pzlale)) by Theorem I.1.11 (ii);
hence
mod (@)(pi(e)) = pa(ale)) .

Let u(-) be the Borel map from the set W5 of dominant weights on M
to the unitary group 1 of M defined in Proposition 1.7(ii) such that
@, = 4 for any dominant weight +. By Proposition 1.8, the map
h:aeAut (M) — h(a) = Ad (u(@-a))oae Aut (M) is a Borel map, since
the map Ad:vell — Ad ve Aut (M) is continuous. We then have

mod (&) = mod (Ad (u(@ - a™))) mod (), @ € Aut (M) ;

Do) = (Do )G = @ ;
therefore
o3 mod (@)p; = (@) |e; by (%)
This shows that mod is a Borel map. q.e.d.

THEOREM 1.10. Let M be a factor of type III,, N == 1, with separa-
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ble predual. Viewing the fundamental homomorphism mod as ¢ homo-
morphism of Out (M) = Aut (M)/Int (M) into Aut (FY¥) by the trivial
identification, the following three conditions for @eOut (M) are equi-
valent:

(1) mod(a) = ¢

(ii) There exists a faithful normal state  on M and a represen-
tative «, of & such that

potty, =@ and g, =¢;

(iii) For any & > 1 such that le, e[ N S(M) = {1}, there exists a
Jaithful normal state @ on M and o representative «, of @ satisfying
(ii) and

Sp (4y) N Je™, ] = {1} .

To prove the theorem, we need the following lemma which is a
slight refinement of Lemma I1.2.3 and [3; Lemma 5.2.4].

LEMMA 1.11. If + s a faithful wetght on o factor of type III,,
N # 1, then for any € > 1 with Je™, e[ N S(M) = {1} there exists a posi-
tive h<Cy such that, with @ = (h-) and e = s(h),

Sp (4,) N 1e™ ] = {1},
where 4, means of course the modular operator corresponding to {M,, p}.

Proor. This follows from Lemma I1.2.3 and the observation that the
operator He My, in the proof of Lemma I.2.3 is indeed in Cy, because
each spectral projection of H is given by the left support projection of
M(oVs, V') for each closed subset V' of R which belongs to Cy.. q.e.d.

Proor oF THEOREM 1.10. (i) = (iii): Suppose 7,(&) =¢ and @ is a
dominant weight on M. There exists a representative a, of @ such that
wo, =@ and a,|,; =¢ Let heC; be a positive operator such that
@ = @(h-) satisfies the condition in Lemma 1.11. It follows then that
poa, = @. Since M,D M;, with ¢ = s(h), we have C,cC;, = C;, by
Theorem II.5.1. Therefore, we have

poa, =@ and af,, =¢.

Being lacunary, ¢ is strictly semi-finite, so that the restriction z of ¢
to M, is a faithful semi-finite normal trace. Since «, leaves 7 invariant
and C, elementwise fixed, we have a,(p) ~ p in M, for every projection
peM, Let p be a projection in M, such that p(p) < + . It follows
then that + = (1/¢(p))p, is a normal state of M. Let w be a unitary
in M, such that upu* = a,(p). Put o, = Ad (u)*o,c@ We have then
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Jroa, = 4 and that «, leaves Cy elementwise fixed. Let w be an isometry
of M such that ww* = p. Put
ay(x) = wra(wrw™)w , xeM;
Yo = Yy -
We have that «, is a faithful normal state on M, 4o, = ¥, and «,
leaves Cy, elementwise fixed. Since a, = Ad (w*ay(w))eoa, and w*a,(w)
is unitary, «, belongs to &. Thus (iii) follows.

(iii) = (ii): Trivial.

(i) = (i): Let a,c Aut (M) and @ be a faithful normal state on M
satisfying the condition in (ii). We consider the tensor products M =
MQF,, &®=pR@w and @,®¢ = &. From the proof of Theorem II.5.1,
it follows that the center C; of M; is a von Neumann subalgebra of
C, ® UL>(R)). Since s, =¢, &, leaves C, ® U(L*(R)) elementwise
fixed. Hence C; is fixed elementwise by &, Therefore, we have
mod (&,) = mod (&) = 1. q.e.d.

IV.2. The extended modular automorphism groups. Throughout this
section, let M be an infinite factor with separable predual, P, p,, F™
and so on be as before. Let Z(F*) be the set of all o-strongly* con-
tinuous functions {¢;} on R* with values in the unitary group of P,
such that

Cin = C;_F;'I(C#) ’ Ny eRi ’
and B(FY) be the set of all elements in Z'(F*) of the form: rne R} —
v*F¥(v) for some unitary veP,. Under the pointwise multiplication,
ZYF™) is an abelian group, and B(F™) is a subgroup of Z'(F™). Put
H(F™) = ZY(F*")|B(F™).
For each te R, let t denote the element in Z'(F'¥) defined by
t(N) = A, MeERE.

PROPOSITION 2.1. If ¢ is an integrable faithful weight on M, then
to each c € Z'(F™) there corresponds a unique automorphism 67 of M such
that

(i) 6ix) = Dy (cpulP))r for every x e M(o?, {\}), N> 0;

(ii) @od? = @ and 6%,, = 6% 00G%,, ¢, c, € Z(FY);

(iii) 0% =of, teR.

PrROOF. (i) The uniqueness of ¢ follows from Lemma II.2.3. Let
M = W*(N, R, 6) be a continuous decomposition of M, and 7z be a faithful
semi-finite normal trace on N such that 700, =¢°r, se€ R. Let {u(s): s€ R}
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be the one parameter unitary group in M canonically associated with
the decomposition W*(N, R, §) = M. We know that the dual weight
@ =7 is dominant, and that ®,, = ¢*® and F¥opz(x) = D5°0_10q(%)
for every « in the center C of N and A > 0. For a fixed ce Z'(F¥),
we put

b, = p“—‘,‘(css) ’ sSER.
It follows then that b, is a unitary in C and
bs+t = bsaa(bt) ’ 8, t GR .

Hence there exists a unique automorphism &, of M = W*(N, R, §) such
that

a.(au(s)) = bau(s) , aeN,seR.

Thus we have shown that 6° exists for a dominant weight @ on M.
Now, let v be an isometry in M with vv* = ee M; = N such that

@ = @, Observing that ¢ is fixed under 6%, we define an automorphism
a of M by

a(x) = v*é@(vaev*)v , xeM.

Since the map: x ¢ M — vxv* € M, is an isomorphism of M onto M, which
brings @ to ¢° and ¢ to o?, te R, we have

a(x) = v¥*p3ieyve ,  xeM(o?, {\)).
Thus we must show that

v*p3i(a)v = N avu(P)),  aePy.
To this end, we may assume that @ = P,(4») for some integrable 4,
since py,(4r)’s generate P,. We have then
Py(v*p7(@)v) = pp(v¥es(y)v) by Theorem I.1.11,
= py(cz,(v)) by Lemma I.1.6,
= Py(Ce(¥)) = Pu(¥)px(p) by Theorem I.1.11,
= apu(p) .
Thus « satisfies the requirement for &¢.
(ii) We know that @-67 = @ by construction. Thus ¢, namely

o, preserves ¢ by definition.
(iii) If ¢ = %, then ¢; = A%, so that we get

Do(Cpu(p)) =N, N>0.
Hence ¢ = of. g.e.d.

THEOREM 2.2. Let ¢ be an integrable weight on M. If ae Aut (M)
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leaves M, elementwise fixed, then o = G¢ for some ¢ <€ Z'(F™).

PROOF. Let @& be dominant, and M = W*(N, R, 6) be the associated
continuous decomposition of M and {u(s)} the one parameter unitary
group in M appearing in the decomposition. First we assume that «
is an automorphism of M leaving N elementwise fixed. For each se€R,
let b, = a(u(s))u(s)*. By Theorem II.5.1, b, belongs to the center C of
N and

bs+t = bsos(bt) ’ S’ t eR M
Furthermore, we have
a(xu(s)) = bxu(s) , xeN,seR.
Hence, putting ¢; = pa(b_roe2), M > 0, we get a = G7.

In the general case, there is an isometry % with uwu* = ec N such
that ¢ = @,. Suppose that a e Aut (M) leaves M, elementwise invariant.
Considering the automorphism: x € M, — ua(u*zu)u* € M,, we may assume
that a € Aut (M,) leaves N, elementwise invariant.

For every xe€ N, and se€ R, we have

xa(eu(s)e)eu(s)*e = a(xeu(s)e)eu(s)*e
= a(eu(s)ed_,(xe))eu(s)*e
= aleu(s)e)d_,(xe)eu(s)*e
= a(eu(s)e)eu(s)*exed,(e) ,
so that b, = aleu(s)e)eu(s)*e € Cef,(e). A direct computation shows that
bs-{-t‘?s(e) = bses(bt) ’ 8, t GR .
Thus there exists, by Proposition A.1, b’ € Z}(R, 11,) such that b, = bjeb,(e),
s€R. Define an a’c Aut (M) by
a’(xu(s)) = byxu(s) , xeN,seR.
We have then
a(x) = a’(x) for every xzel,.
Putting ¢; = p5(b.1.z1), we have a’ = G2, so that a = g¢. q.e.d.

ExAmpLE 2.8. Let N be an infinite semi-finite factor with separable
predual. We identify {Py, F¥} with L*(R¥, d\) acted by the translation
of R as in II.2. We then conclude the following:

(i) For every ce Z'(F?) there exists a unique, up to scalar multi-
ple, unitary fe L*(R%, d\) such that ¢; = fE,(f*), » > 0.

(ii) With ¢ = df as in (i), and ¢ = 7(h,+) as integrable weight, we
have
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77 = Ad (f(hy)) .

Proor. (i) This is known.

(ii) We have first that of = Ad (h¥), te R. The integrability of ¢
implies that the spectrum of %, is absolutely continuous with respect to
the Lebesgue measure, so that f(h,) = u makes sence. Let a be a
partial isometry in N(o%, {\}), A»>0. We have then Alah;" =\"a, tc R,
so that a*hia = (\h,)"a*a. Therefore, we get

a*f(hy)a = f(Nhy)a*a ;
F(hp)af(he)* = af(hy)*f(Nhy)a*a
= f(WThe)* F(he)a = pii(e:px(P))a
= d{(a) .
Therefore, 67 and Ad (f(h,)) agree on the set of partial isometries in
N(o?, {\}), »> 0. But any element of N(o% {\}) is the product of a

positive element in N, = {h,}’ N N and a partial isometry in N(o?, {\})
by polar decomposition. Thus ¢ = Ad (f(h,)). q.e.d.

This example shows what we deal with by considering ¢: it may
be called a “functional calculus” of the “generator” of the modular auto-
morphism group.

THEOREM 2.4. Let ¢, and @, be faithful integrable weights on an
infinite factor M with separable predual, and P= M Q F,. Put

2 2
@(igilwm' X €;,5) = Pi(®y) + Py(Xy), @ = iélwm‘ Xe,;eP.

We then conclude the following:
(i) To each ce Z'(F™), there corresponds a unique wunitary u, =
(Dp,: Dp,), in M such that

il ®en) = u R ey ;
(i) We have
% (x) = w65 (x)uk , xeM, ceZ (FY);
Woyop = Wo,051(Wey) 5 €y Co € Z(F™) .

c102 1
Proor. The integrability of ¢ follows from that of ¢, and ¢,
Noticing that 1 ®e;;€P,, t = 1,2, and d¢/(x Q e;,) = ¥ (x) R ey, © = 1, 2,
we follow the arguments for the unitary cocycle Radon-Nikodym theo-
rem, without any alteration. q.e.d.

COROLLARY 2.5. Let M be an infinite factor with separable predual.
Let ¢, denote the canonical homomorphism of Aut (M) onto Out (M) =
Aut (M)/Int (M).
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(i) For every ce Z\(FY), the element €,(G?) of Out (M) is inde-
pvendent of the choice of an integrable weight @. Put d,(c) = €,(5¢).

(ii) 0y s am extension of the modular homomorphism (8,(1) =
0x(t), t e R) and Ker d,, = B'(F™).

(ili) The range of 0, s a mormal subgroup of Out (M) with

ad(e)a™ = 6, (mod (@)c) , aeOut (M) .

Proor. (i) Trivial from the previous theorem.

(ii) The first half follows from Proposition 2.13ii). Let @& be a
dominant weight and c¢e Z'(F¥). Assume that ° = Ad (u). Since &7

leaves M; pointwise fixed, we have u € C; by Theorem II.5.1. It follows
then that

¢ = pa(W)*Fi(pz(u)), »>0.
The converse is proven the same way. o
(iii) Let @ be dominant as before, and « < Aut (M). Multiplying «
by an inner automorphism, we assume @oa = @, so that
p3'omod (@) o p; = & -

If » is an element of M(o”, {\}), then a '(x)e M(c”, {\}), because a« and
o” commute; hence

Qo 0g oo (x) = a(p="(cna '(w)) = a(p3'(c))x
= p=' (mod (@)¢,)x . q.e.d.
THEOREM 2.6. Let M be an infinite factor with separable predual,
and T, the space of all faithful weights on M with the metric d de-
fined in 11.4. If ce Z'(F™) is twice continuously differentiable in norm,
then there exist uniquely maps: @ € By — a¢ € Aut (M) and (p, ) € WY, X
Yy — (Dp: D), e W(M), the unitary group of M, with the following
properties:
(i) If @ is integrable, then G¢ satisfies condition (i) in Proposi-
tion 2.1. If @ and + are both integrable, then (Dp: D), is given by
Theorem 2.4(i);

(ii) The both maps are continuous with respect to the morm to-
pologies wn Aut (M) and WM);
(iii) For each xc M, we have _ ,
G¢(x) = (Dp: D). g(x)(Dp: D) ;
(iv) For each @, @, p, €Ty, we have
(D@py: Dpy), = (D@, Dpy) (D@, Dpy), 5
D@,z Dpy), = (Dpy: Dpy)s
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(v) For any acAut (M) and weWM), we have
07" = 0 o Gha(me o @ ;
(Dpeoa: Dipoa), = a7 (Dp: Dy)moa wc) 5
(Dpy: D), = w*(Dp: D), 5%(u) ;
(vi) If e, c,e ZHFY) are twice differentiable im norm, then
00y =

(Dp: D)oo, = (Dp: D)., 02, (Dp: Dp).,)

The uniqueness of these maps follows from Proposition 2.1 and the
density of integrable weights in T89.

7% o g%
- Ucl ° Ucz ’

LEMMA 2.7. Let ce Z'(F™) be as in the theorem. For any ¢ >0
there exists 1) > 0 such that for any faithful integrable weight @ on M:

@ e Mo, [¢77, e']) = || 0i(x) — =] < e|]] .

Proor. Without loss of generality, we may assume that ¢ is domi-
nant. Put b, = p,%(c.s), s€ R. Let {u(s)} be the one parameter unitary
group in M which, together with M,, generate M as a continuous de-
composition M = W*(M,, R, §). We then have

at(u(s)) = byu(s) , seER.

If f is a function in the Schwartz space S“(R), then the M-valued func-
tion: seR——»S e " f(p)b,dp e M is integrable by the twice differenti-
ability of {b,} and we have

sy = " (" e swpap Jorads,  wen,

where we recall that the measures dp and ds are the Plancherel measures
on R. Put

a, = Sm e~ f(p)b,dp , seR.
It follows then that
o3@) = G2 o0i(n) = | (Fs) — a)ot(e)ds .

Let g be a function in L'(R) such that g§(p) = 1 for p in a neighborhood
of 0. If f(0) =1, then

" 1" G = adgwor@isis = (£0) — byosta) = 0.
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Hence we have

o3005(e — 7:e) = | " | (Pl — a)gor, (a)dsat

0

- S-Xﬁ (8) — a)(9(t — 8) — g(t))of(w)dsdt ;

lo5e 3@ — arnil = ol | | 1176 = allig — » — o(t)|dsdt

Put w(s) = Hf(s) — a,||. Then h belongs to L'(R). Hence there exists a

sequence {g,} in L'(R) by [25; page 50] such that §,(p) =1 for |p| <1l/n
and

sn=§°° S“ h(s)|g.(t — 8) — gu(t)|dsdt —0 as m—0.

If f(p) =1 for [p| < 1/n, then we have
o o 0%(x — d¥(x)) = « — G¢(x) , € M(a®, [¢7/", ¢/*]) .

Thus the conclusion follows. q.e.d.

LEMMA 2.8. Let cc€ Z'(F™) be as in Theorem 2.6. For any € > 0,
there exists 1) > 0 such that for every faithful integrable weights @, and
@, with d(p, p,) =N we have

I(Dps: Dp, — 1| ¢

Proor. We keep the notations in Theorem 2.4. It follows from
II.4 that d(p,, ¢.) =<7 means 1 e, € P(o*, [e77, ¢7]). Hence, choosing 7 > 0

as in Lemma 2.7, we get
u, — 1| = ||6i(1Rey) — 1| = c.
q.e.d.

LEMMA 2.9. Let ceZ'(F™) be as im Theorem 2.6. Let ¢ be a
Jaithful weight of imfinite multiplicity.
(@) {p.} s a sequence of faithful integrable weights such that

lim,_.. d(p, p,) = 0, then the sequence {G¢»} of automorphisms converges
to an automorphism, say &¢, of M.

(b) &% does not depend on the choice of a sequence {p,} and satisfies
podi =@ and Gf|y,=c¢.
ProoOF. Since we have, by the definition of (Dgp: D4),
| (DPw: Dpy)e — (Dpa: D@y, || = [(DPwt Dpa). — 11|,

it follows from Lemma 2.8 that {(Dp,: Dp,),} is a Cauchy sequence of
unitaries in M. Put
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(D¢: D@l)c = U, = ];»iﬂ (Dq)n: D<P1)c ’
and
0?2 = Ad (u,) o ¢ .

It follows also from Lemma 2.8 that (Dg: Dgp,), does not depend on the
choice of a sequence {p,} but only on » and ¢,. By construction, we
have

lim ||6¢ — G¢n]] = 0 .

Let {p,} be a sequence of faithful integrable weights given by ¢, =
o(h,+) with h,e M, such that h, < h,,, and lim,.. ||k, —1||=0. We
have then, for any xe M,,

p(x) = lim p(x'?h,x"?) = lim @,(x)

= lim @, o 6¢(x) = lim @(hy*G¢(x)hy?)
=Z pod;(x)

by the lower semi-continuity of . Replacing ¢ by ¢!, we have p(x) =

@od? ™ (x). Therefore, we get o ¢ = . Let 4 be an integrable faithful

weight with d(p, ) <e. Then we have M, M(o¥, [¢7*, ¢¢]). There-

fore, Lemma 2.7 entails the last assertion of (b). g.e.d.

PrROOF OF THEOREM 2.6. With possible exception for (vi), all state-
ments for faithful integrable weights follow from Proposition 2.1, Theo-
rem 2.4 and Lemma 2.8. Let @ € T be integrable and ac Aut (M). It
follows then that

Dpoe = mod (@) o p,o X ;
hence for each x e M(o** {\}) we have
0°%(x) = Pl = [a@ o pyt o mod (a)(c,) |
= a”{(p;'(mod (@)(c))a(x))
=ato 5ﬁlod(a)c(a(x>) .

Hence we get the first part of (vi) for integrable weights. The last two
formulas for integrable weights follow from this and the usual 2 x 2-
matrix arguments.

Let @, and +, be arbitrarily fixed faithful integrable weights. For
each faithful weight @ of infinite multiplicity, we put

(Dp: Dp,), = }Lgrg (Dp,: Dp,),

with a sequence {p,} of faithful integrable weights converging to ¢ in
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the metric d. We know that this does not depend on the choice of {p,}.
We define

(D@: D). = (Dp: Dpy)o(Dyp: Dpo)s

for a pair ¢, 4 of faithful weights of infinite multiplicity. With sequences
{,} and {y,} of integrable weights converging to ¢ and ++, we have

Um (Do,: Dp)o(Dvra: Do)t
= }LI;IE. (Dql,,: D@o)c(Dg)o: Dq]"o)c(D"z"fO: D@o)c(qu\n: D@O)f
) = Li_'rg (D¢n: D“/"o)c(D"zb\n: D“l’o)f ’

hence the above definition of (Dg: D+r), makes sense. Given ¢ > 0, if
d(p, ¥) < n with 7> 0 in Lemma 2.8, then
|(Dp: Do) — (Dy: Do) || = lim [[(Dpn: Dpo)e — (Dofra: Depo)e ||

= lim [[(Dp,: Dy,). — 1| = €.

Therefore, if d(p, ¢') < 5 and D(, 4¥') < 7, then we have

I|(Dg: Dap), — (D' D), ||
= |[(Dp: Dpo)(Dy: Dpy)t — (Dp': Dpy)(Dp': Depy), || < 2¢ .

Thus, by Lemma 2.9, Theorem 2.4 and continuity, all statements for
faithful weights of infinite multiplicity hold.

Let ¢ be a faithful weight of infinite multiplicity and w be an
isometry with ww* e M,. We define

(Dp.: Do), = w*ai(w) .
If v is another isometry with vv* € M, such that ¢, = @,, then we have
v*o{(v) = (Do,: Dp), = (Dp,: Dp), = w*o{(w), teR,

so that we have vw* € M, and d¢(vw*) = vw™ by Lemma 2.9. Therefore,
v*¢2(v) = w*d(w). Thus (Dp,: Do), is well-defined.

If ¢ and + are faithful weights of infinite multiplicity and v and
w are isometries of M with vv* e M, and ww* € My, then we define

(Dpy: D)o = (Dpyi Dp)o(Dp: Dojr)(Doprit Dp)s
It is then shown, by the similar arguments as above, that (Dg,: Dqr,),
is well-defined. Since any faithful weight is of the form ¢, for some

@ of infinite multiplicity, (D: D+), is defined for a general pair o, ¢
in W%,. We then define, fixing a faithful weight ¢, of infinite multiplicity,

Gi(x) = (Dp: Dp,)6e(x)(Dpy: Dp)y,  x€M.
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It follows from the chain rule that ¢ does not depend on the choice of

P, A straightforward argument shows that conditions (iv), (v), (vi)
and (v) hold. /

Thus, the only thing remains to be shown is the continuity of

(Dg@: D+f), in general. We consider P = M ® F.. It is easily seen that
for any ¢, ¢ € W), we have

(D(p ® Tr): D(y» ® Tr)), = (Dp: D), @1 ;
dlp ® Tr, ¥+ Q Tr) = d(p, ¥) . ‘
Hence the continuity of (Dg: D+r), on ¢, 4 follows from the continuity
of two maps: (p, VEWY X WY — (¢ X Tr, v @ Tr)e W, x WS  and

(& Tr, v Tr) — (D(p Q Tr): D(4 @ Tr)),. The continuity of the map:
@ — &¢ is automatic after this. q.e.d.

ExAmMpPLE 2.10. Let N be an infinite semi-finite factor with separable
predual. As in Example 2.3, let ¢ = dfe Z'(F") and ¢ = 7(h,-) a faithful
weight on N. Then we have

(D@: D7), = f(1)* f(hy) .
We leave the proof to the reader.
COROLLARY 2.11. Let M be an infinite factor with separable predual.

Let ce Z'(F™) be as in Theorem 2.6. Let ¢ be a faithful weight on M
and put

¢(h) = (D(p(h+)): Do),

for each mom-singular self-adjoint positive operator h affiliated with
M,. We conclude the following:

(1) c(h) falls in the center of {hY N M,;

(i) eea(h) = e (h)eih) for every twice differentiable ¢, c, € Z(F™).

PROOF. (i) Let P= M ® F, and

W) = p@) + o), = 30 QeeP.
Let w =1 e,. We have then
c(h) R e, = 67 (u) .
Since o¥(u) = h* ® e, we have o (u)u* € Py, so that
ol () = G¥(o¥ (u*)w) = o¥(G¥ ()oY (w) ;
hence
o(h) @ e, = w*Gl(w) = oy (u*Gy(u)) € Py ,
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which means that c(h) € M,.
If xe{hry N M,c M, N M., then we have
x = 0" (x) = c(h)ai(x)e(h)* = c(h)xe(h)* ,
so that ¢(h) e ({rY N M,) N M, = the center of {r} N M,.
(ii) This follows from (i) and Theorem 2.6 (vii). g.e.d.

We now apply Theorem 2.6 to a factor given by the group measure
space construction, and then compute the extended modular automor-
phism. Let M be an infinite factor with separable predual and ¢ a
faithful weight. Suppose that there exists a von Neumann subalgebra
N of M, with relative commutant N’ N M = C contained in N and a
continuous unitary representation %(-) of a separable locally compact
group G in M such that

w(@Nu(g)* =N, geG;
M= {NUuwG)}".
By Theorem II.6.2, there exists a non-singular self-adjoint operator p,
affiliated with C such that
of(w(g) = uw(g)oy, teR,geC.

It is also easy to see, using N'N M = Cc N, that if ac Aut (M) leaves
N elementwise fixed, then there exists a one-cocycle {a,} € Z}(G, ;) such
that

a(u(g)) = a,u(g), 9geG,
where the action 8 of G on N, hence on C, is given by
Bo(x) = u(g)zw(¢)* , xeN,geCG.

Let {I', 1} be a standard measure space with C = L=(I", i), on which G
acts in such a way that

B (2)(7) = x(g™™) , xeC,ge@,vel .
We consider the action of G on I' X R defined by:
Tg('Y,s):(g')’,s—logpy('Y)), vel,seR,geG.

Let k)(7) = — log p,(7), g€ G, YeI'. By Theorem II.6.2, the center C;
of the dominant weight ® =p X ®w on M F. is identified with

Le(I' X R, @ m)%, where m means, of course, the Plancherel measure
on R.

COROLLARY 2.12. In the above situation, if ce Z'(F¥) is as in
Theorem 2.6, then the cocycle a € Z}(G, N,) corresponding to the extended
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modular automorphism « = G¢ is given by the formula:
(V) = biyrg—1n(7, 0)
where b, = p3'(c,~s), s€ R.
Proor. For n=1,2, ..., put

D, (t) = —:b—tan‘l t, teR

T
2n

We define an isometry w, of L*(R) onto L*(—=x/2n, w/2n) by

¥.(s) = tanmns, <s< =,
2n

(w,&)(8) = VTL(5)EV,(5) , —-2% <s< _2-7-;— , celXR).

Clearly we have
(wEe)t) = VOL)eoD,(t) , teR,EeLX—r/2n, n/2n).
Let @ be the weight on F., = (L*R)) such that
(Dw: D Tr), = V,,

where {U,} and {V,} mean the one parameter unitary groups defined in
Chapter II. We have then

{(Dw,,: D Tr))(s) = (wi V,w,&)(s)
= g"Pui®E(s) ,

Hence we get d(w,,, Tr) = w/2n, so that w,, converges to Tr uniformly.
Therefore ¢ ® w,, converges to @ @ Tr uniformly; thus we get

(Dp ® Tr: D@), = lim (Dp ® ®,,,: D®),
= lim (1 @ w.,)*07(1 @ w.) .

Let u, = (Dp @ Tr: D), and u,, = Dy K ®,,: Dd),. It follows from
the proof of Lemma 2.7 that

Upo €{0yy (LQ wHo?AL Q w,): 8, te Ry < C QR L (R) ,
and that
Un,o(75 8) = bo,(—5(Ys Ba(8)) , vel,seR.
Therefore, we get u,c L°(I" x R) and
w7, 8) = b_,(7, 0),
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where we use the fact that the differentiability of b in norm, together
with the cocycle property, implies the continuity of b,(7, ¢) in ¢.
We next have

o7 (u(g) @ D(u(9)* @ 1) = of(u(g))u(g)* ® 1L = B,(0/)®1eCRC,
so that o%(u(g) ® D(u(g)* ® 1) = d, belongs to C&Q L*(R) = L=(I" X R)
and we get '
d.a(r),: 8) = bkg(y‘lr)(ly’ S) .
Since we have

@, ®1 = % (u(g) @ D(w(g)* @ 1) = u.07(u(g) @ 1)(u(9)* @ 1)(B, @ )(ul)
= el ,(By @ O(u¥) ,
we have
ag(7) = (7, 8)d (Y, )ug™, 8) = b_y(V, 0)bs,(;—11 (Y, 8)b_(g77, 0)
= bkg(g—lr)('y’ 0).
g.e.d.

IV.3. The exact sequence for the group of all automorphisms.
Given a factor M of type III with separable predual, we have constructed
various mathematical objects: the flow F¥ of weights, the fundamental
homomorphism v, of Out (M) into Aut (F¥), the extension 4§, of the
modular homomorphism and a continuous decomposition M = W*(N, R, 6).
Putting these things together, we compute Out (M) = Aut (M)/Int (M),
and generalize the exact sequence in [3; Chapter IV].

THEOREM 3.1. Let M be a factor of type III with separable predual.
If M= W*WN, R, 0) is a continuous decomposition of M, then there
exists @ homomorphism 7 of Out (M) onto Out,.(N) which makes the
Sollowing sequence exact:

(1) — HY(F*) -2, Out (M) —1— Outy,. (N) — {1},
where
Outy, () = {ex(@): e Aut (N), af, = 0,0, s€ R, toct = 7} .

ProOF. Let @ be the dominant weight of M dual to the trace t
on N with 700, = ¢ *z. By Theorem 2.2, if e Aut (M) leaves N point-
wise fixed, then a = ¢ for some c¢c Z'(F*). By Corollary 2.5. (il), « is
inner if and only if ¢ e B'(F™). Hence the map 0d,:ce Z\(F¥) — ,(d7) ¢
Out (M) gives rise to an isomorphism of H'(F") into Out (M) which will
be denoted by 5, again.

Let @ be an arbitrary automorphism of M. Then @o« is again
dominant. By the uniqueness of a dominant weight, there exists a
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unitary u € M such that @oao-Ad (u) = @. Hence, putting
Aut; (M) = {acAut (M): Boa = @},

we have Out (M) = e (Aut; (M)). Let acAut; (M). If a= 67 for some
ce Z'(F™), then a|y=¢ by construction. If a|y = Ad(w) for some
uweW(N), then we have aoAd (u)*|y =¢ so that acAd(u)™ = 47 for
some ¢ € Z'(F'™) by Theorem 2.2. Hence the kernel of the homomorphism
v: e Auts (M) — ey(e|y) € Out (V) is precisely the image of Z'(F™) under
6°. Since we have

Aut; (M) N Int (M) = {Ad (w): w e WN)}, ,
v gives rise to a unique homomorphism ¥ of Out (M) into Out (N) such

that F¥oe, = 7.
We examine the range of 7. Put

Auty . (N) ={acAut (N):af, = 0,&,sc R, toax = T} .

Let {u(s)} be the one parameter unitary group in M which appears in
the crossed product decomposition M = W*(N, R, ). Let ac Aut; (M)
and 8 = al|y. Since « and {¢7} commute, we have o7(a(u(s))) = e**a(u(s)),
so that a, = a(u(s))u(s)* eM(N). It is straightforward to see that
a/s+t = a’sﬁs(a’t) ’ S, teR ;
hence a € Zj(R, W(IN)). By Theorem III.5.1, we have ¢ = b*0,(b) for some
be(N). Thus we get a(u(s)) = b*0,(b)u(s) = b*u(s)db, so that ao-Ad(d)
leaves u(s) fixed for every se R, which means that 80 Ad (b)=a-Ad (b)|y
and {#,} commute. Since ®oa = @, &|y leaves T invariant by the equalities
@ =7oF; and E;oa = E;, so that 8-Ad (b) leaves 7 invariant. Thus
we conclude the inclusion:
¥(Out (M)) C ex(Aut, . (N)) = Outy,. (N) .

Suppose B¢c Auty.(N). A standard argument shows that B is ex-
tended uniquely to an @€ Aut (M) such that a(xu(s)) = B(x)u(s), x €N,
se R. Trivially, we have a|y = 8. Thus we have

¥(Out (M)) D ey(Aut,,. (N)) .
g.e.d.

THEOREM 8.2. In the same situation as in Theorem 3.1,

Outy,. (N) = {@€Out (N): ey(0,)& = dey(,), SER, To & = T} .

Proor. Let C denote the center of N. The unitary group U(N)
of N is a polish group with respect to the o-strong* topology and Y(C)
is a closed subgroup of MW(N). We consider the pointwise convergence
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topology in Aut (N) with respect to the norm topology in N,. The
map Ad:ueW(N)— Ad(u) € Aut (N) is a continuous homomorphism with
kernel 1(C). Hence the naturally induced map Ad: #eW(N)/MWC)—
Ad (w) € Aut (N) is a continuous isomorphism from the polish group onto
Int (N). Hence Int(N) is a Borel subset of Aut(N) and the inverse
map Ad™ is a Borel map from Int(N) onto WN)WC). Let T be a
Borel transversal of TW(N)/M(C) in W(N), and let 7 = ToAd™'. Then =
is a Borel map from Int (V) into I(N) such that Ad (z(a)) = a for every
a e Int (N).

Suppose @ € Aut (M) commute with 4,, s € R, modulo Int (M), that is,
ex(@)e(d,) = e(0,)ex(@). Put B, = aof,0oacf;*cInt (N) and b, = 7(B,) €
MW(N), se R. We have then

Ad (b)) o8, = acl,oa ™, SER.
By the one parameter group property of {aof,oa™'}, we have
Ad (b,0,0,) = Ad (b,,,) , s,teR.
Put
c(s, t) = b¥b,..0,(bF) e (), s,teR.
By a direct computation, we get
c(r, 8)e(r + s, t) = 0,(c(s, t))e(r, s + ), r,s,teR.

Hence ¢ is a Borel unitary 2-cocycle of the flow {C, §}. By the triviality
Hi(R, 1(C)) = {0} of the second cohomology group of a flow, see Appendix,
we can find a 11(c)-valued Borel function {d,} such that

c(s, t) = d¥d,..0,(d¥), for almost s, e R.

Let a, = d,b,, s€ R. We then obtain a U(N)-valued Borel function {a,}
such that for almost every s, ¢t in R,

as+t = a’aes(at) ] S, teR ;
Ad(a,)o0, = aof,oa,
By Remark III.1.9, there exists ¢ e Z}(R, WN)) such that a, = a, for
almost every se R.
By the triviality of H;j(R, W(N)), Theorem III.5.1, we have an element
% € W(N) such that a, = u*0,(u), se R. Thus we get Ad (u*)o6,0Ad (u) =

aof,oa™ for almost every scR. Namely, Ad ()o@ and {A,} commute
in Aut (M) by continuity. q.e.d.

REMARK 3.3. The exact sequence in Theorem 3.1 does not split in
general.
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APPENDIX

PROPOSITION A.1. Let G and H be separable locally compact groups
and {I, 1t} a standard measure space on which G acts ergodically. Let
E be a Borel subset of I' with p(E)>0. Put A={(g,7"eG X E:gYec E}.
If b is an H-valued Borel fumction on A such that for every ¢, ¢g.€G
with p(EN g E N g7'g7'E) >0

b(g:9: V) = b(gs, 9,7)b(gs, 7)
Jor almost every e E N g:'E N gi'9r'E, then there exists an H-valued
Borel function ¢ on G x I' such that

c(g, '7) = b(g: IY) ’ (g) 7>6A )

for every ¢, 9,.€G

(9,92 1) = (¢, 957)¢(gy V)
Jor almost every vel.

ProoF. Let G, be a dense countable subgroup of G. Let I'y=U,cq,9E.

By ergodicity, we have pu(I" — I'y) = 0. Hence we may assume [' = [,
Then, there exists a family {E,: g € G,} of Borel subsets of E such that

Ir=UggE,, gE,NhE, =90, g+h.

geGy
Define a G-valued Borel function a(-) on I by
o) =9 if vegH,,
and put @) = a(¥)"v € E, and p(g, 7) = a(gY)"'ga(7). We have then
T = a(Mo), olgY) = (g, (V) ;
009,92 7) = 0(g1y 9:7)0(g2 V) «
Furthermore, for each fixed ge G, po(g, -) takes only countably many
values: indeed po(g, 7) € G,9G, for every Yel'. Define
c(g, 7) = b(p(g, M), w(7), geG,7el.
Since we can choose E, = E where 1 means the unit of G, we have
e(g, ¥) = b(g, 7) for (g,v)e A. Furthermore, we have
(9,95 V) = b(0(g.9: 7), O(7)) = b(0(g1, 9:7)0(gs V), @(7))
= b(0(g:s 9:7), 0(gzs O(V))b(0(gs, 7), (7))
= b(0(91y 9:7), ©(9:7))b(0(gz V), O(Y))
= ¢(gy 9:7)¢(gs )

for almost every veI', where we use, in order to exclude a null set of
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7, the fact that p(g,, ¢.7) and o(g., V), Y€, are at most countable.
q.e.d.

The authors learned that the following result had been proven by
L. Brown sometime earlier. We present, however, a proof for the sake
of convenience of the reader, since Brown’s work is not yet available
in print.

PrOPOSITION A.2. Let A be an abelian von Neumann algebra with
separable predual, and {a,;: te R} be an ergodic one parameter automor-
phism group of A. Then for every m = 2, we have HyR, ) = {1}.

PrROOF. By virtue of the representation theorem for flows, due to
Ambrose, Kakutani, Krengel and Kubo [12], [16], we may assume that
the flow {4, a} is built under a ceiling function from a single ergodic
automorphism. Let {I', #) be a standard measure space equipped with
an ergodic transformation 7. Let f be a positive Borel function on I'.
Consider the abelian von Neumann algebra B = L™(I" X R, ¢t (@ m), where
m means the Lebesgue measure on R. We define a one parameter auto-
morphism group {8;} and an automorphism 8 of B as follows:

Bx)(, 8) =x(Y,s—t), xeB, (7,s) el X R, teR,
0(x)(7, 8) = (T, s + f(7)) .

The representation theorem says that {4, a} = {B? 8} for a suitable
choice of I', ¢, T, and f.

An m-cochain ¢ C%R, 1,) is by definition a unitary of L*(R") X A
considered as a 1 ,valued function on R*. In particular, CYR, 1,) = 1,
For each » =0, and ceC%R, 1,), the coboundary dc¢ is given by the
formula:

dc<31, ) Sn-l—l) = 0531(0(32, % 3n+1))c(31 + 8y Sy sn+1)_l' o C(Sl, % Sn)(ﬁl)%ﬂ
n .
= aSI(C(Sz, ) Sn+1)) [[1 C(Su ceey 85t Sipn 00y Sn+1)(_1)J
j=

X c(31; Sgy %y Sn)(—nn—H .

Thus we obtain a cochain complex:

(1) U, =CYR M) 2 CAR, 1) -+ — CUR, M)~ -+
We have then by definition HZ(R, 11,) = {the kernel of d in C%R, 11,)}/{the
range of d}.

Let U™ be the unitary group of L*(R"*)® B = L”(R"** x I'). For
each celU”, we define the coboundary d¢ by the formula:
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n+1

dC(to, by o005 bary ‘7) = IIo C(to, by o=y i\j, 0, t%_,_l')')(—l)j ,
a:

where fj indicates that the term ¢; is missing. We then have a long
exact sequence:

(2) AN L L AN

For each # = 0, we define an automorphism of L*(R**')® B, denoted
by 6 again for the obvious reason, by the following:

0(%)(%, tu tt Y tm 'Y) = x(to + f(’y)) tl + f('Y), tt %y tn + f(7)’ T_h/) .
Let 7= be a map of L*(R") ® A into L*(R"*') Q B defined by the following:
ﬁ(x)(to; tu ) tm 7) = x(tx — toy tz - tu *t tn - t’n—l’ 7, to) ’

where we identify A with B?. It follows then that = is an isomorphism
of L*(R*) ® A onto (L*(R"") ® B)? which makes the following diagram
commute:

d

cuR, 0 - onr, 1) % - L oxRr, 1) -5 -

I I |-
S L AU /S AR
Moreover, we have n(C%R, 1)) = (")’ = the fixed point subgroup of 1"

under 4. Therefore, cochain complex (1) is isomorphic to the following
cochain complex:

(3) @y~ ey 2, amy
Now, let C = L=(I", ) and 0(x)(7) = x(Tv) for each xzecC. Putting

) =1QRxe L*(R)® C for each xe€C, we obtain an injective resolution
of the Z-module N,:

d d

(4) U — 1, —nw w4 .. e
where Z acts on each group, of course, via 6 and the injectivity follows
from the divisibility of the unitary group of a von Neumann algebra.
Hence the cohomology groups of cochain complex (38), hence (1), are iso-
morphic to the cohomology groups H}Z, N,), » =1, (cf. [10; page 105]).
This means then that

HZ(R9 U’A) = Ht;n(z’ uc) ’ w ; 1 .
It is known, however, that
WZ,0g) = {1}, n=2.

d
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The above result, or more precisely the proof, is known in homo-
logical algebra as Shapiro’s lemma.
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